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Abstract
There have been considerable recent advances to-
wards a better understanding of the complex cellular 
and molecular network underlying liver fibrogenesis. 
Recent data indicate that the termination of fibrogenic 
processes and the restoration of deficient fibrolytic 
pathways may allow the reversal of advanced fibrosis 
and even cirrhosis. Therefore, efforts have been made 
to better clarify the cellular and molecular mechanisms 
that are involved in liver fibrosis. Activation of hepatic 
stellate cells (HSCs) remains a central event in fibrosis, 
complemented by other sources of matrix-producing 
cells, including portal fibroblasts, fibrocytes and bone 
marrow-derived myofibroblasts. These cells converge in 
a complex interaction with neighboring cells to provoke 
scarring in response to persistent injury. Defining the 
interaction of different cell types, revealing the effects 
of cytokines on these cells and characterizing the regu-
latory mechanisms that control gene expression in acti-
vated HSCs will enable the discovery of new therapeu-
tic targets. Moreover, the characterization of different 
pathways associated with different etiologies aid in the 
development of disease-specific therapies. This article 
outlines recent advances regarding the cellular and mo-
lecular mechanisms involved in liver fibrosis that may 
be translated into future therapies. The pathogenesis 
of liver fibrosis associated with alcoholic liver disease, 

non-alcoholic fatty liver disease and viral hepatitis are 
also discussed to emphasize the various mechanisms 
involved in liver fibrosis.
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Core tip: Liver fibrosis is a dynamic process that results 
from an imbalance between the production and disso-
lution of the extracellular matrix. Development of liver 
fibrosis is orchestrated by many cell types, including 
hepatic stellate cells (HSCs). The activation of HCSs is a 
complex process, leading to multiple potential sites for 
therapeutic interventions. Additionally, the differences 
between the pathogenesis of liver fibrosis associated 
with different etiologies may provide the determination 
of new therapeutic approaches. This review summa-
rizes the most significant data that has contributed to 
the understanding of the cellular and molecular patho-
genesis of liver fibrosis, which may be translated into 
future therapeutic strategies.
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INTRODUCTION
Liver fibrosis is a common pathological consequence of  
a variety of  chronic stimuli, including viral, autoimmune, 
drug induced, cholestatic and metabolic diseases[1-4]. Liver 
fibrosis can be defined as a result of  the progressive ac-
cumulation and decreased remodeling of  the extracellular 
matrix (ECM), which disrupts the normal architecture of  
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the liver[2]. If  left untreated, fibrosis can progress to liver 
cirrhosis, ultimately leading to organ failure and death. 
The characterization of  the underlying mechanisms of  
liver fibrogenesis has indicated that fibrosis is driven by 
a dynamic process involving the increased synthesis of  
matrix components and a failure of  physiological mecha-
nisms of  matrix turnover. Moreover, the capacity of  the 
liver to undergo fibrosis regression following cessation 
of  the liver insult has been highlighted[4-6]. These find-
ings have provided progressed the understanding of  the 
pathogenesis of  chronic liver diseases and have presented 
opportunities for novel therapeutic approaches for the 
management of  liver fibrosis.

This review presents key advances in the new in-
sights into the cellular and molecular mechanisms that 
regulate liver fibrosis, which may represent future thera-
peutic targets. 

ECM IN LIVER FIBROSIS
During chronic liver injury, an increase of  fibril-forming 
collagen and the replacement of  the low density, base-
ment membrane-like interstitial matrix occurs[4,6,7]. There 
is also an accumulation of  other matrix proteins, includ-
ing elastin, hyaluronan, proteoglycans and fibronectin. 
This type of  matrix has the capacity to activate quiescent 
HSCs, leading to the loss of  hepatocyte microvilli and the 
disappearance of  endothelial fenestrations (Figure 1)[4,7,8]. 
This architectural change of  endothelial cells also impairs 
the transport of  solutes from the sinusoid to the hepa-
tocytes, further contributing to hepatocyte dysfunction[7]. 
Moreover, the accumulation of  ECM itself  provokes 
positive feedback pathways that further amplify fibrosis[8]. 
The alteration of  ECM proteins influences cellular be-
havior via cell membrane receptors. The most potent pro-
teins are integrins that permit communication between 
the ECM and the cytoskeleton[9-11]. Patsenker et al[11] 

demonstrated that the inhibition of  integrin alpha-V-beta 
slows the progression of  biliary fibrosis and suggested 
that this inhibition could have potential therapeutic utility.

ECM remodeling is critical in the preservation of  ho-
meostasis during liver injury. This homeostasis depends 
on the fine balance between matrix metalloproteinases 
(MMPs) and their inhibitors, tissue inhibitors of  matrix 
metalloproteinases (TIMPs). While the excessive increase 
in the ECM is controlled by MMPs (especially MMP-1, 
2, 8 and 13), progressive fibrosis is correlated with the 
marked increase of  TIMPs (TIMP-1 and TIMP-2)[12,13]. 
Moreover, because TIMP-1 has also anti-apoptotic ef-
fects on HSCs, it induces fibrogenesis by promoting 
fibrogenic cell survival. Several studies have reported 
that the regulation of  TIMPs in HSCs may accelerate 
the elimination of  fibrotic liver tissue and the reversal of  
fibrosis[14,15]. Enhancing the degradation of  excess ECM 
by increasing the activity of  MMPs or decreasing that of  
TIMPs is an additional approach in the development of  
antifibrotic drugs.

Angiogenesis is another response to chronic liver 
injury that leads to sinusoidal remodeling and pericyte 

amplification[16-18]. Consequently, many potent angiogenic 
mediators are involved in the exaggerated wound healing 
response to chronic liver injury, leading to an excessive 
accumulation of  ECM[17,18]. The ECM can also affect cell 
function indirectly by releasing cytokines. These include 
transforming growth factor β (TGF-β), platelet derived 
growth factor (PDGF), hepatocyte growth factor (HGF), 
connective tissue growth factor (CTGF), tumor necrosis 
factor-α (TNF-α), basic fibroblast growth factor (bFGF) 
and vascular endothelial growth factor (VEGF)[19].

CELL TypES INVOLVED IN ThE 
paThOgENESIS OF LIVER FIBROSIS
Although the cellular source of  ECM components in 
fibrotic liver has been a matter of  controversy for many 
years, recent investigations have revealed that ECM accu-
mulation during chronic liver injury is driven by a hetero-
geneous population of  cells. Currently, it is accepted that 
liver fibrogenic cells (myofibroblasts) play a central role 
during liver fibrosis. Their origin has been extensively 
studied, and several sources of  myofibroblasts (MFs) 
have been identified[3,20-27]. Because HSCs are the main 
ECM-producing cells in the injured liver[20] they are cur-
rently considered to be the major source of  MFs[3,20-22]. 
Hepatic MFs may also originate from portal fibroblasts 
and bone marrow derived mesenchymal cells[24,28]. Two 
other minor contributors of  fibrogenic cells are the 
epithelial-mesenchymal transition (EMT)[29,30] and endo-
thelial to mesenchymal transition (Figure 2)[31,32].

HSCs
Activation of  HSCs is recognized as a central event dur-
ing liver fibrosis, and the molecular mechanisms of  this 
cellular alteration continue to attract increasing atten-
tion, creating many new findings[33,34]. However, there 
is limited knowledge about HSC activation from the 
viewpoint of  cell fate or lineage regulation[35-37]. Recently, 
many studies have shown that HSCs are derived from 
mesodermal-derived multipotent mesenchymal progeni-
tor cells (MMPC), which also give rise to neural cells 
and other mesenchymal cells[38,39]. Supporting these find-
ings, HSCs also express neural and mesenchymal lineage 
markers. Because cell types derived from MMPC may 
undergo transdifferentiation within their lineages, the 
notion that HSC transdifferentiation may reside in these 
mesenchymal lineages is reasonable[39]. In normal liver 
tissue, HSCs exist in a quiescent state, storing retinoids 
and synthesizing glial fibrillary acidic protein (GFAP)[40-43]. 
Following liver injury, HSCs are activated with a gradual 
loss of  retinoids and GFAP, leading to a reduction in the 
expression of  adipogenic/lipogenic factors. Meanwhile, 
a complex network of  autocrine/paracrine fibrogenic 
signals promotes the transdifferentiation of  HSCs to a 
myofibroblastic phenotype. 

Portal fibroblasts
Portal fibroblasts are spindle shaped cells of  mesenchy-
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mal origin that undergo myofibroblastic differentiation, 
primarily in biliary and cholestatic liver injuries[44-46]. Al-
though they possess biological similarities with activated 
HSCs, portal fibroblasts have different genetic profiles 
and signaling responses[45,46]. The latter could enable the 
development of  disease specific antifibrotic therapies tar-
geting these cells.

Fibrocytes
Fibrocytes originate from hematopoietic stem cells and 
have the ability to differentiate into MFs. In cases of  
tissue damage, fibrocytes proliferate and migrate to the 
injured organ and secrete growth factors that promote 
deposition of  the ECM[47-49]. Several studies have sug-
gested that the extent of  fibrocyte differentiation into 
MFs depends on the organ and the type of  injury[48,49]. 
Other studies have demonstrated that liver injury induces 
migration of  fibrocytes to lymphoid organs[49], suggest-
ing that the function of  these cells may not be limited to 
ECM deposition.

Bone marrow-derived MFs
A fraction of  hepatic MFs can also arise from bone mar-
row-derived mesenchymal stem cells (MSCs), which are 
defined as multipotent progenitor cells with the capacity 
to differentiate into lineage-specific cells[44,48,49]. Currently, 
it is not clear whether circulating MSCs significantly con-
tribute to ECM deposition in the course of  liver fibrosis 
or not, but they most likely represent a population that is 
distinct from hematopoietic-derived fibrocytes[49].

EMT
EMT is a process during which fully differentiated epi-
thelial cells undergo phenotypic transition to fully differ-
entiated mesenchymal cells. Liver cell culture studies have 
shown that hepatocytes and cholangiocytes may undergo 
EMT and acquire mesenchymal features, including FSP-1 

expression[50-52]. However, more recent reports provide 
strong evidence against EMT in the liver as a source of  
MFs, convincingly arguing for an epithelial origin of  
ECM-producing cells[52,53].

hSCS IN LIVER FIROSIS
During liver fibrogenesis, parenchymal injury and the 
resulting inflammatory reaction generate a large panel of  
signals that stimulate the induction of  specific transcrip-
tion factors and morphogens in quiescent HSCs, thereby 
initiating the activation and the acquisition of  fibrogenic 
and proinflammatory properties. Sustained activation 
leads to discrete changes in hepatic stellate cell (HSC) be-
havior, including proliferation, chemotaxis, fibrogenesis, 
contractility, retinoid loss and WBC chemoattractant/
cytokine release[1]. In these phases there is a release of  
proinflammatory, profibrogenic and promitogenic stimuli 
acting in an autocrine and paracrine manner (Figure 3). 

aCTIVaTION OF hSCS
Activation of HSCs by neighboring cells
In the early stage of  injury, all neighboring cell types 
can contribute to the paracrine stimulation of  HSC acti-
vation. 

Hepatocytes
Hepatocyte apoptosis is a common feature in liver in-
jury. This process is mediated partially by Fas and may 
also involve TNF-related-apoptosis-inducing ligand 
(TRAIL)[54-56]. Recent data have shown that the engulf-
ment of  the apoptotic bodies of  hepatocytes by HSC 
lines results in a profibrogenic response and activates 
Kupffer cells[57,58]. A similar profibrogenic response can 
be observed following disruption of  Bcl-xl (an anti-apop-
totic mediator) that leads to hepatocyte apoptosis[59,60]. 
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Figure 1  Extracellular matrix accumulation in subendothelial space activates quiescent hepatic stellate cells leading to the loss of hepatocyte microvilli 
and disappearance of endothelial fenestrations. These architectural changes impair transport of solutes from the sinusoid to the hepatocytes, further contributing 
to the hepatocyte damage. ECM: Extracellular matrix; HSCs: Hepatic stellate cells.
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Lymphocytes
Lymphocytes, especially CD4 T-helper lymphocytes, may 
activate HSCs via cytokine production. Previous experi-
mental models imply that during liver injury Th2 lympho-
cytes, a subset of  T-helper lymphocytes, are more fibro-
genic as compared to the Th1 lymphocytes subset[81,82]. 

Natural killer cells 
Recent findings indicate that natural killer (NK) cells in-
hibit liver fibrosis by directly killing activated HSCs[83-86]. 
In cases of  liver injury, NK cells induce apoptosis of  
HSCs by IFN-γ. Moreover, IFN-γ not only inhibits HSC 
activation directly but also amplifies NK cell cytotoxicity 
against HSCs via upregulation of  NKG2D (best defined 
natural cytotoxicity receptor) and TRAIL expression on 
NK cells[87-90]. It has been shown that HSCs in the early 
stages of  activation are more prone to be killed by NK 
cells than quiescent or fully activated HSCs, because they 
still produce retinoic acid that is important in the induc-
tion of  NK cell-activating ligands (MICA in humans)[91]. 
Thus, activation of  NK cells could be a novel, therapeu-
tic target to treat liver fibrosis[91,92]. It should be noted that 
another T cell subset, NKT cells, has diverse effects on 
liver fibrosis depending on the stage of  the disease[91-93].

Leukocytes recruited to the liver during injury pro-
duce compounds that modulate HSC behavior. Neutro-
phils are an important source of  reactive oxygen species 
(ROS) that also produce nitric oxide (NO), which may 
counteract the effect of  superoxide on collagen produc-
tion[94,95]. 

Platelets that produce TGF-β1, PDGF and epidermal 
growth factor (EGF) are also an important source of  

HSC activation by hepatocyte-derived apoptotic bodies is 
partially mediated by the interaction of  hepatocyte DNA 
with Toll-like receptor 9 (TLR9) expressed in HSCs[61]. 
Hepatocytes also produce fibrogenic lipid peroxides[62]. 
Experimental studies have demonstrated that either 
blockage of  hepatocyte apoptosis or selective stimulation 
of  apoptosis in HSCs could be a therapeutic strategy for 
the prevention of  fibrosis[63-66]. However, this approach 
has not been successful in clinical trials[26].

Liver sinusoidal endothelial cells
In response to injury, sinusoidal endothelial cells contrib-
ute to HSC activation, owing to their capacity to produce 
fibronectin, TGF-β1 and PDGF[67]. Conversely, recent 
data indicate that restoration of  liver sinusoidal endo-
thelial cell differentiation may contribute to fibrosis re-
gression by promoting HSC quiescence[68-70]. It has been 
proposed that a loss of  endothelial fenestration following 
injury leads to changes in liver sinusoidal endothelial cell 
differentiation and, consequently, HSC activation[3]. 

Kupffer cells
Kupffer cells and infiltrating monocytes express a 
number of  chemokine receptors that influence fibrosis 
progression and resolution[71-74]. Indeed, different macro-
phage subsets have been described in experimental mod-
els; however, their molecular profile is incomplete and 
additional studies are warranted[74-78]. To date, profibro-
genic macrophages have been shown to have high Gr1 
(Ly6c) expression and to activate HSCs[74,78]. Additionally, 
another subset of  monocytes (Gr1Io) is vital for fibrosis 
regression[79,80].
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Figure 2  Hepatic myofibroblasts are a heterogenous population of fibrogenic cells. Hepatic stellate cells are considered to be a major source of liver fibrogenic 
cells followed by portal fibroblasts that play an important role in the fibrogenic process during cholestatic liver diseases. Other sources of hepatic myofibroblasts 
include circulating fibrocytes and bone marrow-derived cells that constitute a minor proportion of liver fibrogenic cells. The epithelial origin of liver fibrogenic cells is 
unlikely. EMT: Epithelial mesenchymal transition; MFBs: Myofibroblasts; HSCs: Hepatic stellate cells.
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paracrine stimuli in HSC activation and fibrogenesis[96-98].

Molecular activation of HSCs
ROS: ROS that are generated through lipid peroxida-
tion have the ability to activate HSCs and stimulate the 
progression of  fibrosis[99,100] They can originate from 
hepatocytes, macrophages, cholangiocytes and inflamma-
tory cells[99,100]. Moreover, ROS can also be produced by 
HSCs in response to several fibrogenic mediators, such 
as PDGF, TGF-β leptin and Angiotensin Ⅱ[101-104]. Al-
though it has been suggested that the loss of  antioxidant 
capacity in activated HSCs amplifies the effects of  lipid 
peroxidation products, more recent studies have indicated 
that activated HSCs have an increased ROS-detoxifying 
capacity compared to quiescent HSCs[62,105-107]. It has also 
been demonstrated that increased glutathione levels and 
hydrogen peroxide detoxifying enzymes protect HSCs 
from ROS-induced necrosis and apoptotic cell death, 
respectively[107]. Because ROS can activate signal trans-
duction pathways and transcription factors, including 
JNK and NFκB, they also upregulate the expression of  
fibrosis-associated genes, including COL1A1, COL1A2, 
MCP1 and TIMP1 in HSCs[102-104]. At the cellular level, 
ROS are generated via mitochondrial damage, mitochon-
drial transport chain or via activation of  cytochrome 
P450 (especially cytochrome P450 2E1), xanthine oxidase 
and NADPH oxidase[108]. It has been demonstrated that, 

through the induction of  oxidative stress, homologs of  
NADPH oxidase (NOX) might contribute not only to 
HSC activation but also to the activation of  Kupffer cells 
and macrophages[109]. More recently it has been shown 
that the phagocytic NADPH oxidase NOX2 is expressed 
in HSCs and its activation leads to the induction of  fibro-
genic cascades[110,111]. Angiotensin Ⅱ-mediated induction 
of  NOX1 was also described as profibrogenic[111,112]. In 
a recent study, Jiang et al[113] demonstrated that NOX4 
plays an important role in ROS production and HSC ac-
tivation. They proposed that inhibition of  NOX4 might 
be a promising new strategy for translational trials in 
liver fibrosis. The cytochrome P450 2E1 (CYP2E1) may 
also contribute to activation of  HSCs via the generation 
of  ROS. In the presence of  cells that express CYP2E1 
(E47 cells), the production of  collagen by HSCs is in-
creased[114,115]. Conversely, in the presence of  antioxidants 
or a CYP2E1 inhibitor the increase in collagen produc-
tion is blocked, suggesting that the CYP2E1 derived ROS 
are responsible for the increased collagen production[115]. 

Because ROS constitute a heterogeneous group of  
species with widely varying chemical reactivity and bio-
logical properties, the blockade of  oxidative stress as a 
therapeutic target is still under investigation. Early results 
demonstrated that the use of  an antioxidant mitoquinone 
might decrease liver inflammation possibly through the 
induction of  the antioxidant transcription factor Nrf2[116]. 
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Figure 3  Hepatic myofibroblasts myofibroblasts have multiple functions during liver fibrogenesis. In the activated form, hepatic stellate cells show de novo 
properties, including increased proliferation, fibrogenesis, contractility, chemotaxis, matrix degradation, retinoid loss and secretion of chemokines. Each of these 
properties is controlled by the release of many cytokines acting in an autocrine and paracrine manner offering many potential sites for therapeutic intervention. MMP: 
Matrix metalloproteinase; TIMP: Tissue inhibitor of matrix metalloproteinase; ADAMS2: A disintegrin and metalloproteinase 2; PDGF: Platelet derived growth factor; 
VEGF: Vascular endothelial growth factor; TGF-α: Transforming growth factor-α; EGF: Epidermal growth factor; bFGF: Basic fibroblast growth factor; TGF-β1: Trans-
forming growth factor-β1; CTGF/CCN2: Connective tissue growth factor; ET-1: Endothelin 1; NO: Nitric oxide; FXR: Farnesoid X receptor; PPARγ: Peroxisome prolife-
rators activated nuclear receptorsγ; ADRP: Adipose differentiation related protein. 
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In a more recent study, chloride channels that are in-
volved in HSC activation by superoxide anion radicals 
were proposed as a potential target for new anti-fibrotic 
drugs[117].

Toll-like receptors: Toll-like receptors (TLRs), receptors 
for microbial products, are present in HSCs and Kupffer 
cells, introducing a role of  immunity in HSC activation 
and hepatic fibrosis. In chronic liver diseases, increased 
intestinal permeability results in an enhanced portal in-
flow of  gut-derived microbial products, lipopolysaccha-
rides (LPS), bacterial DNA, peptidoglycan and viral and 
fungal components[118]. The impact of  intestinal decon-
tamination on liver fibrogenesis has been reported. Paral-
lel to this data, mice with a knockout of  TLR4 (the LPS 
receptor), TLR2 and TLR9 were shown to be protected 
from liver fibrosis[118]. The stimulation of  HSCs by LPS 
or bacterial products through TLR4, TLR9 and TLR2 has 
been shown to induce a proinflammatory response[118,119]. 
The activation of  HSCs in response to LPS and its re-
ceptor TLR4 may elicit a fibrogenic response by down-
regulating a transmembrane suppressor of  TGF-β-1, 
BAMBI[119-121]. By contrast, it has been indicated that in 
addition to LPS (exogenous ligand) TLR4 signaling may 
also be activated by endogenous ligands from cellular 
compartments that are released and/or increased during 
tissue injury, including high mobility group box 1 protein 
(HMGB1)[122,123]. This chromatin-associated, highly con-
served nuclear protein has been shown to be upregulated 
during liver fibrosis. In vitro studies have demonstrated 
that HMGB1 activates TLR4 signaling in HSCs to en-
hance their inflammatory phenotype, indicating that 
TLR4 signaling need not rely solely on gut-derived LPS 
for activation during liver injury[123]. HMGB1 also has a 
synergistic effect with TGF-β1 to stimulate fibrogenic 
protein expression, which is likely to be TLR4-depen-
dent[123]. It has been suggested that inhibition of  HMGB1 
and TLR4 signaling activity may therefore be important 
targets of  antifibrotic therapy, warranting further investi-
gation by in vitro and in vivo studies[122,123].

Gene regulations in activated HSCs
There are countless changes in gene transcription that 
may take place after HSC activation. Among the many 
target genes of  transcription factors described in HSCs 
include: Type 1 collagen, α-SMA, TGF-β-1, TGF-β re-
ceptors, MMP-2, TIMPs 1 and 2[124-126]. The transcription 
factors that activate these downstream targets are Ets-1, 
Mef2, CREB, Egr-1, Vitamin D receptor, Foxf1, JunD 
and C/EBPβ[127].

HSCs also express many nuclear receptors, such as 
the retinoid responsive RxR and RAR, the farnesoid 
X receptor (FXR), the pregane X receptor (PXR) and 
peroxisome proliferators-activated nuclear receptorsγ 
(PPARγ)[128-130]. While RXR an FXP suppress collagen 
production, PXR is activated by steroids and antibiotics, 
dimerizes RXR to induce cytochrome p450 and thereby 
induces fibrosis[128]. By contrast, PPARγ down-regulates 

HSC activation and reduces collagen production[128-130].

microRNAs: Micro RNAs (mi-Rs) regulate posttran-
scriptional gene repression by decreasing target mRNA 
levels. Many mi-Rs are expressed in HSCs and control 
fibrosis progression[131] including mi-R29, mi-R19b and 
miR 221/222, among others[132-134]. Based on gene array 
analysis, mi-R29, which is a physiological inhibitor of  
various ECM proteins, including collagens, is down regu-
lated by TGF-β and LPS in cultured HSCs[132,133]. MiR-
19b is an inhibitor of  TGF-β signaling and its expression 
is decreased in patients with advanced fibrosis, while its 
overexpression in HSCs blocks activation[132]. In contrast, 
miR-221/222 is upregulated in human livers in paral-
lel with progression of  liver fibrosis. Its expression also 
increases during HSC activation, and its contribution to 
HSC proliferation has been proposed[134].

DNA methylation and histone modifications: DNA 
methylation of  genes expressed in quiescent HSCs con-
tributes to the maintenance of  the quiescent phenotype. 
During activation, HSCs express DNA-methyl binding 
proteins (MeCP2). These proteins promote the silencing 
of  antifibrogenic genes and increase the expression of  
histone methyl transferases, leading to enhanced tran-
scription of  collagen, TIMP-1 and TGF-β[135-137].

It is noteworthy that epigenetic changes can also 
modulate fibrosis susceptibility[136]. In a recent study, off-
spring from the progeny of  male fibrotic rat ancestors 
are found to be more resistant to liver fibrosis than their 
counterparts with no previous history of  fibrosis[137]. 
In experimental models, DNA methylation and histone 
acetylation in the sperm of  rats with fibrosis may also 
take place in the resistance to the wound healing process, 
leading to hypomethylation of  the PPARγ gene, resulting 
in elevated hepatic expression of  this antifibrogenic tran-
scription factor in adult offspring[137].

pROLIFERaTION OF hSCS
The most potent mitogen in HSCs is PDGF. Other 
mitogens that stimulate HSC proliferation are VEGF, 
thrombin and its receptors, EGF, TGFα and bFGF[3,104]. 
Downstream pathways in HSCs include PI3 kinase and 
ERK/MAP kinase, among others[104,138]. PDGF signaling 
at the cell membrane of  HSCs can also be enhanced by a 
co-receptor, neuropilin-1[139]. In addition to its mitogenic 
effect, PDGF also stimulates Na+/H+ exchange, provid-
ing a potential site for therapeutic intervention by block-
ing ion transport[140]. Signaling pathways for these mito-
gens have been clearly identified in HSCs, offering many 
potential sites for therapeutic intervention[141,142]. 

ChEMOTaXIS OF hSCS
HSCs can migrate towards many chemokines, includ-
ing VEGF, PDGF, MCP-1, CXCR4 and CXCR3[3]. For 
example, CCR5 and its ligand RANTES stimulate the mi-
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gration of  HSCs[143]. Hypoxia is another activator of  HSC 
migration. In hypoxic conditions the motility of  HSCs is 
not only induced by ROS but also by VEGF in an auto-
crine manner because prolonged hypoxia induces HSCs 
to produce and secrete VEGF in an HIF-1α-dependent 
manner[144].

The role of  ECM in migratory behavior of  HSCs has 
been previously described. Additionally, cellular fibronec-
tin containing an alternatively spliced domain A (EⅡA) 
has been shown to induce motility of  HSCs, supporting 
the role of  ECM in HSC behavior[145].

Interestingly, while adenosine blunts chemotaxis and 
fixes cells at sites of  injury via the loss of  actin fibers, 
enhanced adenosine signaling may also stimulate HSC 
fibrogenesis[146,147]. Therefore, understanding the dual role 
of  adenosine will be important in the development of  
antifibrotic agents. Recent epidemiologic studies demon-
strated that caffeine exerts its protective effect by inhibit-
ing adenosine signaling in HSCs[148,149].

hSCS IN FIBROgENESIS
Production of  the ECM, in particular collagen type Ⅰ, 
is a major characteristic of  HSCs. The expression of  
collagen type Ⅰ in HSCs is regulated posttranscription-
ally by multiple stimuli and pathways. Prominent among 
these is TGF-β, the most profibrogenic cytokine in the 
liver[150,151]. TGF-β is produced by Kupffer cells, liver si-
nusoidal endothelial cells, hepatocytes and HSCs and has 
paracrine/autocrine effects on HSCs[150,151]. It has three 
major isoforms: TGF-β1, TGF-β2 and TGF-β3. In ad-
dition to its role in the stimulation of  collagen type Ⅰ, 
TGF-β also stimulates the production of  other matrix 
components, including cellular fibronectin and proteo-
glycans[150,151]. Although none appears to be as potent as 
TGF-β, a variety of  other factors have profibrogenic 
effects on HSCs, including retinoids and angiotensin Ⅱ
[103,152]. TGF-β1 is stored as an inactivated protein and, 
when activated, signals via its receptors to Smad proteins, 
which enhance the transcription of  target genes, such as 
procollagens Ⅰ and Ⅲ[150,151]. The response of  SMADs 
in HSCs differs between acute and chronic injury to fur-
ther favor matrix production[151]. Because TGF-β1 may 
also contribute to liver homeostasis during regeneration, 
therapeutic antagonization of  TGF-β1 is challenging[153].

Connective tissue growth factor (CTGF/CCN2) is 
a growth factor protein that is upregulated by hypergly-
cemia, hyperinsulinemia and alcohol-induced cellular in-
jury[154,155]. While the stimulation of  CTGF/CCN2 in he-
patocytes is TGF-β dependent, this stimulation in HSCs 
is independent of  TGF-β, highlighting the fact that, in 
exception to the general rule, cytokine signaling in HSCs 
is not always autocrine[156]. 

Adipokines are polypeptides mainly secreted in adi-
pose tissue and, to lesser extent, by stromal cells. In the 
liver, they not only contribute to the hepatic manifesta-
tion of  obesity but are increasingly recognized as key 
mediators of  liver fibrogenesis. Leptin, adiponectin and 

ghrelin are the main adipokines that contribute to liver 
injury[157-161]. Leptin is an adipogenic hormone that pro-
motes HSC fibrogenesis and activates Kupffer cells, mac-
rophages and endothelial cells to produce TGF-β1[162]. 
It modulates the HSC phenotype through the leptin 
receptor (OB-R), which leads to stimulation of  the Janus 
kinase 2 (JAK 2) and signal transducer and activator of  
transcription 3 (STAT 3) pathways[157]. Leptin also par-
tially suppresses PPARγ, which can reverse HSC activa-
tion and maintain senescence[163]. Recently, it has been 
demonstrated that leptin deficiency may reduce the activ-
ity of  norepinephrine, thereby reducing fibrogenesis[164]. 
Reduced activity of  norepinephrine leads to decreased 
activity of  NK cells and attenuates the release of  pro-
fibrogenic cytokines and reduces ECM production[164]. 
Adiponectin, a counter-regulatory hormone of  leptin, 
inhibits hepatic fibrogenesis both in vivo and in vitro[160,162]. 
Ghrelin also appears to attenuate hepatocellular damage 
and fibrosis in experimental studies[161]. 

Neurochemical and neurotrophic factors also contrib-
ute to the fibrogenic function of  HSCs. Following liver 
injury, activated HSCs express specific receptors (CB1 
and CB2) that are components of  the endocannabinoid 
system that regulates the fibrogenic cascade[165-168]. Two 
receptors exert opposing effects; while CB1 stimula-
tion induces fibrogenesis, the stimulation of  the CB2 
receptor is anti-fibrotic and hepatoprotective[165-167]. The 
overexpression of  these receptors is observed both in 
experimental models of  liver fibrosis and in the livers 
of  patients with chronic liver disease[165,167]. Therefore, 
efforts for therapeutic strategies are being directed to 
either antagonize CB1 or agonize CB2. Non-brain pen-
etrant CB1 antagonists have shown promising results in 
experimental models[168]. Similarly, opioids that contribute 
to fibrogenesis by stimulating HSCs can be antagonized 
by naltrexone[169,170]. Serotonin and thyroid hormones are 
also involved in fibrogenesis, with agonists or antagonists 
for these mediators already in existence[41,171].

CONTRaCTILITy OF hSCS 
Activation of  HSCs is accompanied by an increase 
in expression of  proteins characteristic of  contractile 
cells[172]. In the process of  becoming contractile, HSCs 
develop an increased expression of  the cytoskeletal 
protein α-smooth muscle actin (α-SMA)[172]. It has also 
been reported that HSC contraction is mediated by both 
Ca2+ dependent and Ca2+ independent mechanisms[173,174]. 
Contractility of  HSCs has a multitude of  effects in the 
injured liver, including perisinusoidal constriction and 
portal hypertension, leading to an increase in portal resis-
tance during liver fibrosis[174]. Contractile HSCs impede 
portal blood flow by constricting sinusoids and by con-
tracting the cirrhotic liver[174-177]. This contractility is likely 
associated with multiple different systems, including 
endothelin-1. Endothelin-1 receptors are expressed in 
both quiescent and activated HSCs[176]. Nuclear receptor 
FXR antagonizes endothelin 1[176]. There is a shift in the 
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predominant type of  endothelin receptor and increased 
sensitivity to endothelin-1 after activation of  HSCs[178]. 
The effect of  endothelin-1 may also be reversed by lo-
cally produced vasodilator substances; particularly, nitric 
oxide (NO) may counteract the constrictive effects of  
endothelin-1[179]. Similarly, carbon monoxide also medi-
ates sinusoidal dilatation[179].

RETINOID LOSS OF hSCS
Retinoid is stored as retinyl esters in the form of  peri-
nuclear droplets in the cytoplasm of  quiescent HSCs. 
Activation of  HSCs is accompanied by the loss of  these 
characteristic droplets. The form of  retinoid released 
outside the cell during activation is retinol, suggesting 
that there is intracellular hydrolysis of  esters prior to 
export[127]. Several nuclear retinoid receptors have been 
identified in HSCs. Lecithin retinol acetyl transferase 
(LRAT) catalyzes the esterification of  retinol into retinyl 
ester in liver[180]. In liver injury models, LRAT-deficient 
animals exhibit increased fibrogenesis in the liver[181]. In 
contrast, treatment with retinoid acid decrease activation 
of  HSCs by inhibiting TGF-β[182].

PPARs regulate glucose and lipid metabolism[129]. Their 
expression decreases with the activation of  HSCs[128,130]. In 
contrast, forced expression of  PPARγ in activated HSCs 
inhibits collagen expression, blocks TGF-β1 signaling and 
increases cytoplasmic lipid droplets[129]. 

Adipose differentiation related protein (ADRP), an 
intracellular lipid storage protein, is present in quiescent 
HSCs and its expression is reduced during HSC activa-
tion. ADRP is induced by retinoid exposure, suggesting 
that ADRP may have a regulatory role between lipid con-
tent and cellular activation through an unknown mecha-
nism[183,184].

Because energy homeostasis is maintained through 
autophagic digestion of  lipid droplets in many cells, it 
has been hypothesized that autophagy drives HSC activa-
tion by digesting lipid droplets, thereby providing energy 
required for the activation process[185,186]. Recent studies 
have demonstrated that inhibition of  autophagy down-
regulates the fibrogenic properties of  HSCs, revealing 
HSC autophagy as a therapeutic target[185-187]. 

hSCS IN INFLaMMaTION aND WBC 
ChEMOaTTRaCTION
HSCs may produce chemokines that amplify inflamma-
tory responses by inducing migration of  inflammatory 
cells[141,188]. Additionally, cell surface expression of  che-
mokines by HSCs promotes ICAM-1- and VCAM-1-
dependent adhesion and migration of  lymphocytes[189]. 
Therefore, some of  these chemokines are attractive 
therapeutic targets[188]. The interaction of  HSCs with im-
mune cells (especially with T cells) promotes or inhibits 
their maturation[190]. The results from a recent proteomics 
analysis supports the immunosuppressive role of  activat-
ed HSCs[191]. It has been suggested that HSCs also have 

the capacity to interact with bacterial LPS because they 
express TLRs[94,118,119]. 

paThOgENESIS OF FIBROSIS 
aSSOCIaTED WITh VaRIOUS 
ETIOLOgIES
Alcoholic liver disease
The pathogenesis of  liver fibrosis in alcoholic liver 
disease (ALD) is complex and may be cell specific and 
controlled through feedback mechanisms and cross-talk 
between neighboring and distant cells. The development 
of  liver fibrosis in alcoholics has been linked to the oxi-
dation of  ethanol to the highly reactive compound acet-
aldehyde. After alcohol consumption, acetaldehyde stim-
ulates type Ⅰ collagen synthesis and gene transcription 
in cultured rat and human HSCs through the activation 
of  protein kinase C (PKC)[192]. Acetaldehyde was also 
shown to increase NFκB (p65) and its binding to the 
α2(I) collagen promoter as well as to enhance NFκB by 
a mechanism dependent on H2O2 accumulation[90,193-195]. 
The activity of  cytochrome P450 isoform 2E1 (CYP2E1) 
is an important source of  ROS in alcohol-induced in-
jury. It has been reported that the inhibition of  CYP2E1 
activity prevented the induction of  collagen Ⅰ gene ex-
pression in rat stellate cells overexpressing CYP2E1[196]. 
Oxidative stress also activates c-Jun N-terminal kinase 
(JNK), a protein that regulates the secretion of  proin-
flammatory cytokines in cultured HSCs[144]. The results 
of  a recent study indicated that butein inhibited etha-
nol- and acetaldehyde-induced activation of  HSCs at 
different levels, acting as an antioxidant and inhibitor of  
ethanol-induced MAPK, TGF-β and NFκB/IκB trans-
duction signaling; therefore, butein is a promising agent 
for antifibrotic therapies[197].

Alcohol inhibits the anti-fibrogenic effects of  NK 
cells by stimulating TGF-β production by HSCs, induc-
ing suppressors of  cytokine signaling (SOCS-1) and ROS 
in hepatocytes, thereby sustaining HSC activation and re-
ducing HSC apoptosis[90,198]. Recently, it has been suggest-
ed that alcohol increases the binding of  the early growth 
response-1 (Egr-1) transcription factor to the TNF-α 
promoter and enhances macrophage sensitivity to LPS 
in the progression of  liver injury to fibrosis[199]. Recent 
discoveries have revealed that alcohol inhibits PPARα, 
suppressing sterol-regulatory element binding protein-1 
(SREBP-1), which is involved in fatty acid synthesis, lead-
ing to the activation of  HSCs and ultimately fibrosis[90,200]. 
Other recently identified novel molecules and physi-
ological/cell signaling pathways include hedgehog (Hh) 
signaling, fibrinolysis and involvement of  novel cytokines 
such as osteopontin. Alcohol increases liver progenitor 
cell accumulation by providing an increase of  Hh and Hh 
ligands in an autocrine manner[201]. Osteopontin (OPN), 
which is secreted by several cell types in the presence of  
alcohol, activates NFκB and activator protein 1 (AP-1) as 
well as several other genes, including urokinase plasmino-

7267 June 21, 2014|Volume 20|Issue 23|WJG|www.wjgnet.com

Elpek GO. Pathogenesis of liver fibrosis



gen activator (uPA), MMPs and TGF-β[202,203]. Moreover, 
the profibrogenic plasminogen activator inhibitor (PAI-1) 
was increased in liver cells after alcohol consumption, 
leading to the inhibition of  uPA, plasmin and fibrinolysis, 
thereby tipping the balance in favor of  fibrosis[204]. 

Non-alcoholic fatty liver diseases and non-alcoholic 
steatohepatitis
Although the role of  HSC activation in non-alcoholic 
fatty liver disease (NAFLD) has not been completely 
clarified, several studies have reported increased HSC 
activation in non-alcoholic steatohepatitis (NASH)[205]. 
Although the TGF-β signaling pathway plays a major 
role in the activation of  HSCs in liver fibrosis, many 
other signaling pathways are implicated in liver fibrosis in 
NAFLD, including the hedgehog (Hh), PI3K/AKT and 
JAK/STAT signaling pathways[206].

Several studies have demonstrated that insulin resis-
tance is associated with advanced stages of  fibrosis in 
NAFLD[206,207]. Because insulin promotes HSC activation 
and insulin sensitizers can attenuate hepatic fibrosis in 
NASH, it has been suggested that insulin resistance plays 
an important role in NASH-related fibrogenesis[208,209].

It is understood that oxidative stress induces the acti-
vation of  HSCs in NASH[108]. The role of  oxidative stress 
in fibrogenesis is supported by the finding that antioxi-
dants, such as vitamin E and astaxanthin, can decrease 
NASH-related fibrogenesis[210].

Recently reported data also indicate that adipokines 
affect not only lipid metabolism but also inflammatory 
and fibrotic processes in NAFLD[157] (the adipokines 
are described in more detail in the section “HSCs in fi-
brogenesis”). Recent data related to the newly described 
adipokines visfatin, chemerin and vaspin in NASH 
fibrogenesis is limited, warranting further studies to bet-
ter understand their importance in the pathogenesis of  
NASH[211,212].

It has been hypothesized that various factors might 
contribute to the development of  liver fibrosis in NAFLD, 
including LPS-derived from gut bacteria. Because LPS 
presents its effects by binding TLRs and because a recent 
finding in a murine NAFLD model demonstrated that 
TLR9 knockout mice demonstrate less steatohepatitis 
and liver fibrosis than controls, a role for TLRs in the 
progression of  fibrosis of  NASH have been proposed[213]. 
Recently, it has also been suggested that NK cells may 
play a pivotal role in NAFLD-related liver fibrogenesis. 
Although the population of  hepatic NK cells in NAFLD 
patients is controversial, it has been shown that activation 
of  the Hh pathway lead to hepatic accumulation of  NK 
cells, resulting in progression of  liver fibrosis in NASH[214].

In experimental studies as well as studies in patients 
with NASH, PPARγ agonists and especially pioglitazone 
have been shown to diminish liver fibrosis[209,215]. These 
data support the key role of  PPARs in fibrosis in NASH. 
Among the other nuclear receptor family, liver X recep-
tors (LXRs) play important roles in the regulation of  cho-
lesterol absorption, efflux, transport and excretion. In a 

more recent experimental study LXR ligands were found 
to suppress the activation of  HSCs and the expression of  
fibrosis related genes[216].

Chronic viral hepatitis
During liver fibrogenesis, hepatotrophic viruses can 
induce HSC activation through several mechanisms. Im-
mune cell types, especially NK cells, are engaged in the 
hepatitis B virus (HBV)-related acceleration of  fibro-
sis[217]. It has been demonstrated that hepatitis B virus X 
protein (HBx) expression in hepatocytes leads to para-
crine activation and proliferation of  HSCs[218]. Moreover, 
in patients with chronic HBV, superinfection of  hepatitis 
delta virus (HDV) accelerates the progression of  fibrosis. 
The large isoform of  hepatitis delta antigen (LHDAg) 
can induce liver fibrosis through the regulation of  TGF-
β-mediated signal transduction. LHDAg synergistically 
activates HBx protein-mediated TGF-β and AP-1 signal-
ing, enhancing the level of  TGF-β-induced PAI-1[219]. 

It has been found that the biology of  activated HSCs 
is modulated by hepatitis C virus (HCV)-derived proteins 
in a profibrogenic manner[220]. Recent findings indicate 
that both oxidative stress and mitochondrial dysfunction 
are related to HCV pathogenesis. The blockade of  oxida-
tive stress as a therapeutic target in patients with HCV 
hepatitis remains under investigation[221,222]. Recent stud-
ies have indicated that hepatic iron accumulation is also 
correlated with histologic disease severity and with HSC 
numbers in patients with HCV infection, supporting the 
assumption that hepatic iron concentration may also in-
fluence fibrogenesis[223]. Huang et al[224] demonstrated that 
specific single nucleotide polymorphisms of  TLR4 are 
related to the rate of  progression of  fibrosis in patients 
with HCV hepatitis. It has been suggested that this find-
ing presents a link between a genetic marker and disease 
pathogenesis. 

Although a correlation between HCV viral load and 
the progression of  fibrosis has not been demonstrated 
in HCV hepatitis, HIV RNA levels predict the fibrogenic 
progression of  chronic hepatitis in HCV/HIV-co-infect-
ed individuals[225,226]. In contrast, patients infected with 
HIV alone do not show significant liver fibrosis, indicat-
ing that HIV infection is not profibrogenic per se but 
rather accelerates the fibrogenic process in the presence 
of  hepatic damage induced by hepatotropic viruses[225-227]. 
A recent, elegant study by Bruno et al[228] demonstrated 
that HIV gp120 modulates HSC behavior, including di-
rectional cell movement and expression of  proinflamma-
tory cytokines. They concluded that these results identify 
a direct pathway that most likely links HIV infection with 
liver fibrosis via envelope proteins, presenting new pro-
spective strategies for the management of  liver diseases 
in HCV/HIV-co-infected patients.

CONCLUSION
In conclusion, there have been considerable advances in 
the understanding of  the mechanisms that underlie he-
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patic fibrogenesis. A critical event in liver fibrogenesis is 
that the ECM is a dynamic structure, and even advanced 
fibrosis may be reversible. Multiple interactions between 
the ECM, HSCs, endothelial cells and immune cells have 
been identified. The central event in fibrogenesis appears 
to be the activation of  HSCs, which is a complex process, 
leading to multiple potential sites for therapeutic inter-
ventions. Although specific, effective and safe antifibrotic 
therapies are not currently available for the identification 
of  potential new therapeutic agents, once available, they 
will mediate the progression of  hepatic fibrogenesis. 
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