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Abstract
Liver cirrhosis is the final pathological result of various 
chronic liver diseases, and fibrosis is the precursor of 
cirrhosis. Many types of cells, cytokines and miRNAs 
are involved in the initiation and progression of liver 
fibrosis and cirrhosis. Activation of hepatic stellate cells 
(HSCs) is a pivotal event in fibrosis. Defenestration 
and capillarization of liver sinusoidal endothelial cells 
are major contributing factors to hepatic dysfunction in 
liver cirrhosis. Activated Kupffer cells destroy hepato-
cytes and stimulate the activation of HSCs. Repeated 
cycles of apoptosis and regeneration of hepatocytes 
contribute to pathogenesis of cirrhosis. At the molecu-
lar level, many cytokines are involved in mediation of 
signaling pathways that regulate activation of HSCs and 
fibrogenesis. Recently, miRNAs as a post-transcriptional 
regulator have been found to play a key role in fibrosis 
and cirrhosis. Robust animal models of liver fibrosis 
and cirrhosis, as well as the recently identified critical 
cellular and molecular factors involved in the develop-

ment of liver fibrosis and cirrhosis will facilitate the de-
velopment of more effective therapeutic approaches for 
these conditions.
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Core tip: Cirrhosis is the end-stage condition of many 
types of chronic liver diseases but the underlying mech-
anisms are far from being clarified. Multiple cellular and 
molecular factors might be involved in the initiation and 
progression of cirrhosis. Activation of hepatic stellate 
cells is a pivotal event in the development of cirrhosis. 
Animal models are crucial for understanding the patho-
genesis and the development of more efficient thera-
peutic strategies for cirrhosis, with which cirrhosis may 
become a treatable or even a reversible disease.

Zhou WC, Zhang QB, Qiao L. Pathogenesis of liver cirrhosis. 
World J Gastroenterol 2014; 20(23): 7312-7324  Available from: 
URL: http://www.wjgnet.com/1007-9327/full/v20/i23/7312.htm  
DOI: http://dx.doi.org/10.3748/wjg.v20.i23.7312

INTRODUCTION
Liver cirrhosis is the final common pathological pathway 
of  liver damage arising from a wide variety of  chronic 
liver diseases[1-3]. The etiology of  cirrhosis varies geo-
graphically, with alcoholism, chronic hepatitis C virus 
infection, and nonalcoholic fatty lives disease (NAFLD) 
being the most common causes in western countries[4-6], 
whereas chronic hepatitis B is the primary cause of  liver 
cirrhosis in the Asia-Pacific region[7-9]. Liver cirrhosis has 
many other causes, include inherited diseases such as he-
mochromatosis and Wilson’s disease[10-14], primary biliary 
cirrhosis, primary sclerosing cholangitis[15-18], and autoim-
mune hepatitis[14,19]. Some cases are idiopathic or crypto-
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genic. In recent decades, NAFLD has become a leading 
cause of  chronic liver disease in Western countries such 
as the United States, with a prevalence of  as high as 30% 
in the general population[20]. Thus, NAFLD has attracted 
extensive attention as an important cause of  chronic liver 
diseases[21-23].

Although the causes of  liver cirrhosis are multifacto-
rial, there are some pathological characteristics that are 
common to all cases of  liver cirrhosis, including degen-
eration and necrosis of  hepatocytes, and replacement 
of  liver parenchyma by fibrotic tissues and regenerative 
nodules, and loss of  liver function[24-27]. Fibrosis as a pre-
cursor of  cirrhosis is a pivotal pathological process in the 
evolution of  all chronic liver diseases to cirrhosis[2,28]. At 
present, effective strategies to treat liver cirrhosis are still 
lacking, partially because of  a poor understanding of  the 
molecular mechanisms leading to cirrhosis. Thus, a bet-
ter understanding of  the pathogenesis of  liver cirrhosis 
would facilitate the development of  more effective treat-
ment options.

In this review, we aim to summarize the recent ad-
vance in the molecular pathogenesis, animal models, and 
therapeutic strategies for liver cirrhosis.

MULTIPLE CELL TYPES CONTRIBUTE TO 
PATHOGENESIS OF LIVER CIRRHOSIS
The liver is formed by parenchymal cells (i.e., hepato-
cytes) and other cells commonly known as nonparen-
chymal cells. The walls of  hepatic sinusoids are lined 
by three different nonparenchymal cells: liver sinusoidal 
endothelial cells (LSECs), Kupffer cells (KCs), and he-
patic stellate cells (HSCs). Both hepatic parenchymal and 
nonparenchymal cells are involved in the initiation and 
progression of  liver fibrosis and cirrhosis.

HSCs
HSCs, formerly known as fat-storing cells, Ito cells, lipo-
cytes, perisinusoidal cells, or vitamin A-rich cells, reside 
in the space of  Disse in the normal liver and their main 
function is storage of  vitamin A and other retinoids[27,29]. 
Following multiple injurious insults and/or exposure to 
inflammatory cytokines such as platelet-derived growth 
factor (PDGF), transforming growth factor (TGF)-β, 
tumor necrosis factor (TNF)-α, and interleukin (IL)-1, 
HSCs undergo the transition from a quiescent to activat-
ed state. HSC activation is a pivotal event in initiation and 
progression of  hepatic fibrosis and a major contributor 
to collagen deposition[30,31]. Activation of  HSCs is char-
acterized by cell proliferation and migration, contraction 
after transforming into myofibroblasts, generation of  a 
large amount of  collagen and other extracellular matrix 
(ECM), ultimately leading to liver fibrosis[32-34].

LSECs
LSECs constitute the sinusoidal wall, also called the 
endothelium, or endothelial lining. The structural char-

acteristic of  LSECs is the fenestrae on the surface of  
the endothelium[28,35,36] The endothelial fenestrae mea-
sure 150-175 nm in diameter, and act as a dynamic filter 
facilitating the exchange of  fluids, solutes and particles 
between sinusoidal blood and the parenchymal cells[37-39]. 
LSECs have high endocytotic capacity[28,40]. Chronic alco-
hol abuse could result in defenestration, and a decrease in 
the number of  fenestrae[37,41]. In cirrhotic liver, defenes-
tration of  sinusoidal endothelium and the presence of  a 
subendothelial basement membrane are frequently pres-
ent[35,42]. It is known that retinol deficiency can activate 
and transform HSCs into myofibroblasts with enhanced 
ECM production, resulting in perisinusoidal fibrosis and 
ultimately in cirrhosis[24,35]. Defenestration and capil-
larization of  the hepatic endothelium are believed to be 
important in the initiation of  perisinusoidal fibrosis by al-
tering retinol metabolism. Studies in animals and humans 
have revealed that LSECs can secrete the cytokine IL-33 
to activate HSCs and promote fibrosis[43]. Defenestration 
and capillarization of  LSECs lead to impaired substrate 
exchange and are considered major contributing fac-
tors for hepatic dysfunction in liver cirrhosis[39]. On the 
contrary, differentiated LSECs can promote reversion 
of  activated HSCs to quiescence and thereby accelerate 
regression and prevent progression of  fibrosis through 
vascular endothelial growth factor (VEGF)-stimulated 
NO production[44,45].

KCs
KCs, also known as Browicz-Kupffer cells and stellate 
macrophages, are specialized macrophages located in 
the lining walls of  the sinusoids of  the liver that form 
part of  the reticuloendothelial system (RES)[46]. Studies 
in animal models have shown that KCs are implicated in 
the pathogenesis of  various liver diseases[47,48]. KCs can 
be activated by many injurious factors such as viral infec-
tion, alcohol, high-fat diet, and iron deposition. Activated 
KCs destroy hepatocytes by producing harmful soluble 
mediators and serving as antigen-presenting cells during 
viral infection[47]. KC-mediated hepatic inflammation is 
considered to aggravate liver injury and fibrosis[49,50]. KCs 
are involved in the activation of  HSCs and formation of  
fibrosis. In vitro studies have shown that KC-conditioned 
medium can promote activation of  cultured rat HSCs 
with enhanced matrix synthesis and cell proliferation by 
eliciting expression of  PDGF receptor in HSCs[51]. KC-
derived TGF-β1 stimulates proliferation and collagen 
formation of  HSCs derived from rats fed with high-fat 
diet and ethanol[52,53]. Alcohol can induce the circulat-
ing level of  Gram-negative bacterial lipopolysaccharide 
(LPS), which is a strong activator of  KCs[54]. In genetic 
hemochromatosis, iron overload in KCs could induce the 
expression of  intercellular adhesion molecule (ICAM)-1 
on hepatocytes, therefore facilitating activation of  HSCs 
and collagen deposition in the hepatic tissues[55]. Gelati-
nase secreted by activated KCs triggers the phenotypic 
change in HSCs by degrading collagen type Ⅳ[56]. KCs 
engulf  apoptotic bodies and produce death ligands, in-
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cluding Fas ligand and TNF-α, thereby promotes inflam-
mation and fibrogenesis[57]. In addition, KCs activated by 
β-glucans increase portal pressure through the release of  
thromboxane A2 in normal and fibrotic livers[58].

Hepatocytes
Hepatocytes are the primary liver parenchymal cells, and 
play complicated roles in fibrosis and cirrhosis. Hepato-
cytes are targets for most hepatotoxic agents, including 
hepatitis viruses, alcohol metabolites, and bile acids[59]. 
Chronic liver diseases either promotes apoptosis or trig-
ger compensatory regeneration of  hepatocytes[60]. Dam-
aged hepatocytes release reactive oxygen species (ROS) 
and fibrogenic mediators, induce activation of  HSCs, 
and stimulate the fibrogenic actions of  myofibroblasts[59]. 
Apoptosis of  hepatocytes is a common event in liver in-
jury and contributes to tissue inflammation, fibrogenesis, 
and development of  cirrhosis. Steatohepatitis enhances 
Fas-mediated hepatocyte apoptosis, which correlates 
with active nuclear factor (NF)-κB and disease severity[61]. 
Both HCV infection and ethanol consumption induce 
hepatocyte apoptosis in animal models and humans, and 
induction may be related to downregulation of  Bcl-2 sig-
naling[62]. Chronic HCV infection can induce hepatocyte 
G1 arrest and impair hepatocellular function and limit 
hepatic regeneration[63,64]. In CCl4-induced liver injury, 
hepatocyte apoptosis is induced at the early phase, which 
is followed by constant proliferation and if  it persists, 
liver cirrhosis ensues at a later stage[65]. Hepatocytes are 
the major sources of  matrix metalloproteinases (MMP-2, 
MMP-3 and MMP-13) and tissue inhibitors of  matrix 
metalloproteinases (TIMP-1 and TIMP-2); all of  which 
are involved in the pathogenesis of  liver cirrhosis in CCl4-
induced liver cirrhosis in rats[66]. In the last fibrotic stage 
or cirrhosis, hypoxic hepatocytes become a predominant 
source of  TGF-β1, further exacerbating hepatic fibro-
genesis[67]. Recently, it has been shown that hepatocyte 
telomere shortening and senescence can result in fibrotic 
scarring at the cirrhosis stage, presenting a novel explana-
tion for the pathophysiology of  cirrhosis[68].

ROLE OF CYTOKINES IN LIVER FIBROSIS 
AND CIRRHOSIS
Liver cirrhosis is orchestrated by a complex network of  
cytokine-mediated signaling pathways regulating the acti-
vation of  HSCs and fibrogenesis. 

PDGF
PDGF is the strongest mitogen to HSCs among all poly-
peptide growth factors. PDGF family has four members, 
PDGF-A, -B, -C and -D[69]. PDGF and its receptors are 
markedly overexpressed in fibrous tissues, and its activity 
increases with the degree of  liver fibrosis[70-72]. A variety 
of  factors such as viruses, chemicals, or mechanical dam-
age to hepatocytes can induce KCs to synthesize and re-
lease PDGF[73]. Upon binding to its specific receptor on 

the membrane of  HSCs, PDGF activates corresponding 
signal molecules and transcription factors, leading to the 
activation of  its downstream target genes and activation 
of  HSCs[74,75]. PDGF has been shown to upregulate the 
expression of  MMP-2, MMP-9 and TIMP-1, and inhibit 
the activity of  collagenase, thereby reducing ECM deg-
radation[69,75]. PDGF-B and PDGF-D are potent PDGF 
isoforms in PDGF receptor (PDGFR)β signaling within 
HSCs, as evidenced by PDGFRβ autophosphorylation 
and activation of  extracellular signal-regulated kinase 
(ERK)1/2, C-Jun N-terminal kinase (JNK), p38 mitogen-
activated protein kinase (MAPK), and protein kinase 
(PK)B/Akt pathways[75-77]. PDGF-D can activate HSCs 
and exerts mitogenic and fibrogenic effects, and there-
fore plays an important role in matrix remodeling in liver 
fibrosis[72].

TGF-β
TGF-β is the strongest known inducer of  fibrogenesis 
in hepatic fibrosis[78,79]. TGF-β is mainly synthesized by 
HSCs/myofibroblasts, KCs, LSECs, and hepatocytes in 
the liver. The TGF-β1 family is composed of  six mem-
bers, and among them, TGF-β1 has been shown to play 
a key role in the initiation and maintenance of  liver fi-
brosis[78-82]. The expression level of  TGF-β1 is increased 
in fibrotic liver and reaches a maximum at cirrhosis[67]. 
The pro-fibrogenesis effect of  TGF-β1 is complicated, 
involving multiple aspects: the primary effect of  TGF-β1 
is to stimulate activation of  HSCs, and the TGF-β1 au-
tocrine loop in activated HSCs is an important positive 
feedback to the progression of  liver fibrosis[80,81]. TGF-β1 
induces expression of  the matrix-producing genes and 
inhibits degradation of  ECM by downregulating expres-
sion of  MMPs and promoting TIMP, leading to exces-
sive deposition of  collagenous fibers and promoting the 
development of  liver fibrosis[82,83]. In addition, TGF-β1 
has been shown to inhibit DNA synthesis and induces 
apoptosis of  hepatocytes. TGF-β1-induced apoptosis 
is thought to be responsible for tissue loss and decrease 
in liver size seen in cirrhosis[78]. Given the critical role of  
TGF-β1 in the pathogenesis of  liver cirrhosis, specific 
blockade of  TGF-β1/Smad3 signaling has shown some 
therapeutic value for liver fibrosis[82].

TNF-α
TNF-α is mainly produced by monocyte, macrophage, 
HSCs, and KCs. It has proinflammatory activities and 
cytotoxic effects in these cells. In the process of  liver 
fibrosis, TNF-α plays an important role in the activa-
tion of  HSCs and synthesis of  ECM[84,85]. TNF-α can 
reduce the spontaneous apoptosis of  activated rat HSCs 
by upregulating the antiapoptotic factors NF-κB, Bcl-XL 
and p21WAF1, as well as downregulating the proapoptotic 
factor p53[86]. However, the effects of  TNF-α on HSCs 
and fibrosis are complicated and even paradoxical, as 
demonstrated by studies showing that TNF-α could in-
duce apoptosis in HSCs[87]. TNF-α has also been shown 
to exert antifibrogenic effect in rat HSCs by reducing 
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dependent upregulation of  inflammatory signaling in 
macrophages[100].

Another profibrotic cytokine is IL-17, whose expres-
sion level increases with degree of  liver fibrosis[101,102], 
indicating that IL-17 may be involved in disease progres-
sion and chronicity[101]. Studies in mice have shown that 
IL-17 induces liver fibrosis through multiple mechanisms, 
including upregulation of  TNF-α, TGF-β1, and collagen 
1α, which is dependent on signal transducer and activator 
of  transcription (STAT)3 signaling pathway, and promo-
tion of  myofibroblast-like change of  HSCs[102,103].

Antifibrogenic ILs: IL-10 is a cytokine that downregu-
lates the proinflammatory response and has a modula-
tory effect on hepatic fibrogenesis[104,105]. IL-10 may have 
therapeutic potential for patients with HCV-related liver 
fibrosis who do not respond to IFN-based therapy[105]. 
IL-10 has been shown to exert antifibrotic effects through 
inhibiting HSC activity[106], and this was demonstrated 
in a rat model in which exogenous IL-10 was shown to 
reverse CCl4-induced hepatic fibrosis by inhibiting the 
expression of  TGF-β1, MMP-2 and TIMP-1[104,106,107].

IL-22 is known to play a key role in promoting an-
timicrobial immunity, inflammation, and tissue repair at 
barrier surfaces. IL-22 has been shown to induce HSC 
senescence, restrict liver fibrosis, and accelerate the 
resolution of  liver fibrosis during recovery in a mouse 
model[108]. 

IL-6 is a pleiotropic cytokine involved in inflamma-
tory pathways, hematopoiesis and immune regulation. 
IL-6 can attenuate apoptosis and promote regeneration 
of  hepatocytes through NF-κB signaling and the Ras-
MAPK pathway[109]. IL-6 reduces CCl4-induced acute 
and chronic liver injury and fibrosis[110]. Pretreatment 
of  fibrotic liver with IL-6 improves hepatic microen-
vironment and primes it for mesenchymal stem cell 
transplantation, leading to improvement in liver injury 
after fibrosis[111]. Meanwhile, increased blood level of  
IL-6 has been found in patients with NAFLD, and IL-6 
could induce insulin resistance and inflammation in the 
liver[112,113], suggesting that IL-6 may play a role in the de-
velopment of  NAFLD.

miRNAS AND CIRRHOSIS
miRNAs represent a family of  small noncoding RNAs 
controlling translation and transcription of  many genes, 
which have recently emerged as post-transcriptional regu-
lators. miRNAs play a key role in various hepatic patholo-
gies, including hepatitis, cirrhosis and hepatoma[34,114]. 
miRNAs may play pro- and antifibrogenic roles, depend-
ing on cellular context and the nature of  the stimuli.

Profibrogenic miRNA
miR-21 has an important role in the pathogenesis and 
progression of  hepatic fibrosis. miR-21 can downregu-
late TGF-β expression and suppress HSC activation[115]. 
TGF-β1 induces expression of  miR-181a and miR-181b, 

glutathione and inhibiting pro-collagen α1 expression[88]. 
In a rat model of  nonalcoholic steatohepatitis (NASH), 
TNF-α antibody was shown to reduce the inflammation, 
necrosis and fibrosis in liver[89]. TNF-α signaling through 
activation of  KCs plays an essential role in the pathogen-
esis of  liver fibrosis in animal models of  NASH[90].

Interferon
Interferon (IFN) is a family of  soluble extracellular 
signaling molecules. Leukocytes synthesize IFN-α and 
IFN-β in response to virus infection, and T cells se-
crete IFN-γ upon stimulation with various antigens and 
mitogens. IFNs possess antiviral activity and is well-
recognized for their antiviral effects[91]. Patients treated 
with IFNs exhibit a regression of  liver fibrosis even if  
viral eradication is not achieved, indicating that IFN it-
self  has antifibrotic activity via triggering the apoptosis 
of  HSCs[92]. IFN-β could inactivate HSCs and decrease 
their production of  α-smooth muscle actin (SMA) and 
collagen through inhibition of  the TGF-β and PDGF 
pathways[93]. Similarly, IFN-γ has been demonstrated 
to reduce ECM deposition in vivo by inhibiting HSC 
activation via TGFβ1/Smad3 signaling pathways[94,95]. 
Treatment of  rats with fibrosis by IFN-γ led to a re-
duced production and deposition of  collagen, laminin, 
fibronectin, and pro-collagen type I in liver[95]. However, 
the effect of  IFNs on fibrosis is not consistent, as dem-
onstrated by a recent study showing that IFN-α and 
IFN-γ may exert opposite effects on apoptosis in HSCs. 
IFN-α was shown to elicit an antiapoptotic effect on 
activated HSCs, whereas IFN-γ was found to exert pro-
apoptotic effect on HSCs by downregulating heat-shock 
protein 70[96].

ILs 
ILs are a group of  cytokines initially found to be ex-
pressed by leukocytes, but later on were shown to be 
produced by a wide variety of  cells, such as CD4 T lym-
phocytes, monocytes, macrophages, and endothelial cells. 
ILs have a complicated role in immune response, inflam-
mation, and liver fibrogenesis.

Pro-fibrogenic ILs: KCs and SECs can rapidly produce 
ILs in response to liver tissue damage. IL-1 can directly 
activate HSCs and stimulate them to produce MMP-9, 
MMP-13 and TIMP-1, resulting in liver fibrogenesis. In 
contrast, IL-1-receptor-deficient mice are less likely to 
sustain liver damage and exhibit reduced susceptibility 
to develop fibrosis[97]. Deficiency of  IL-1α or IL-1β also 
makes the mice less susceptible to develop liver fibrosis 
in animal models of  steatohepatitis[98]. Similarly, IL-1 re-
ceptor antagonists were found to protect rats from devel-
oping liver fibrosis in response to dimethylnitrosamine[99], 
and blocking IL-1 signaling could markedly attenuate 
alcohol-induced liver inflammation and steatosis. IL-
1β was reported to increase the inflammatory and pro-
steatotic chemokine monocyte chemoattractant protein-1 
in hepatocytes, and augment Toll-like receptor (TLR4)-
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and the latter can promote HSC proliferation by regulat-
ing p27 and the cell cycle. Elevation of  serum level of  
miR-181b is suggested as a potential diagnostic biomark-
er for patients with cirrhosis[116].

miR-214-5p can increase expression of  fibrosis-related 
genes (such as MMP-2, MMP-9, α-SMA, and TGF-β1) in 
LX-2 cells, and therefore, it may play crucial roles in HSC 
activation and progression of  liver fibrosis[117]. 

miR-221 and miR222 are upregulated in human liver 
in a fibrosis progression-dependent manner and in mouse 
models of  liver fibrosis. TGF-α or TNF-α induce expres-
sion of  miR-222, which can bind to the CDKN1B (p27) 
3’-untranslated region (UTR) and regulate expression of  
the corresponding protein[118].

Other fibrosis-associated miRNAs have been identi-
fied. For example, miR-199a, miR-199a*, miR-200a, and 
miR-200b were positively and significantly correlated with 
progression of  liver fibrosis in both mouse and human 
studies. Overexpression of  these miRNAs significantly 
increases the expression of  fibrosis-related genes in 
HSCs[119]. miR-571 is upregulated in human hepatocytes 
and HSCs in response to TGF-β[120].

Antifibrogenic miRNAs
miRNA-150 and miRNA-194 are reduced in HSCs isolat-
ed from experimental rats with liver fibrosis. It has been 
demonstrated that these two miRNAs inhibit HSC acti-
vation and ECM production, at least in part, via inhibi-
tion of  c-myb and rac1 expression[121]. In contrast, several 
miRNAs such as miR-29, miR 19b, miR-146a, and miR-
133a are markedly downregulated in HSCs isolated from 
experimental animals with liver fibrosis, and restoration 
of  these miRNAs attenuates hepatic fibrogenesis[30,122,123].

It is now thought that miRNAs can serve as biomark-
ers for HSC activation and liver fibrosis progression, and 
may represent therapeutic targets for hepatic fibrosis and 
cirrhosis.

ANIMAL MODELS OF LIVER FIBROSIS 
AND CIRRHOSIS 
Animal models are crucial to understanding the patho-
genesis and development of  therapeutic strategies for 
liver fibrosis and cirrhosis. So far, many types of  animal 
model have been developed in mice, rats, rabbits, and 
pigs to mimic the complicated process of  fibrosis and 
cirrhosis. Animal models of  liver fibrosis and cirrhosis 
can be induced by one of  the following approaches: (1) 
Fibrosis induced by chemical compounds and toxins. 
These agents cause direct injury to hepatocytes and trig-
ger secondary inflammatory reaction in the liver, which in 
turn activate HSCs and result in fibrosis. Commonly used 
chemical agents include CCl4[124-126], thioacetamide[127,128] 
dimethylnitrosamine[129,130], dioxin[131], sodium arsenate[132], 
and ethanol[126,133,134]. These agents can be administered to 
experimental animals alone or in combination; (2) Spe-
cial diet, such as choline-deficient, L-amino acid-defined, 
methionine-deficient diet[89,135,136], and high-fat diet[134,137,138]. 

Animals develop NAFLD and cirrhosis when they are 
fed these diets alone or in combination with other chemi-
cal agents; (3) Physical methods. Bile duct ligation creates 
obstruction of  the extrahepatic bile duct[139,140], leading to 
cholestasis and subsequent injury to biliary epithelial cells 
and hepatocytes, infiltration of  inflammatory cells in the 
portal area, fibrous tissue proliferation, and formation of  
liver fibrosis; (4) Fibrosis induced by immune reaction. 
Antigen-antibody complexes can provoke type Ⅲ hyper-
sensitive reactions. Deposition of  immune complexes in 
the portal area and around the central vein area causes 
allergic reaction and inflammation, stimulating HSCs to 
secrete collagen, and fibrosis formation. Common im-
munogens include plant protein concanavalin A[141] and 
xenogenic serum[142,143], such as serum from pigs, cattle, 
humans, and schistosoma. It was reported that 85.5% of  
rats immunized with subcutaneous injection of  human 
serum albumin develop liver fibrosis and cirrhosis[144]. 
Similarly, injection of  the excretory-secretory (ES) anti-
gens of  Ascaris suum into golden hamsters also success-
fully induces hepatic fibrosis[144]; and (5) Genetic modifica-
tion. Forced overexpression of  critical profibrotic genes 
and/or silencing of  antifibrotic genes has been shown to 
induce cirrhosis in animals. For example, high-speed intra-
venous injection of  naked plasmid DNA of  TGF-β1 can 
induce transient and reversible liver fibrosis in mice[145]. 
Mice with liver-specific deletion of  CYLD exon7/8 
[CYLD(FF)xAlbCre] exhibit a prominent biliary pheno-
type with ductular reaction and biliary-type fibrosis[146].

THERAPY OF LIVER FIBROSIS AND 
CIRRHOSIS
Recent developments in our understanding of  the 
process of  hepatic fibrogenesis have revealed that the 
process is dynamic and reversible. Animal and clinical 
evidence has confirmed that any degree of  fibrosis and 
even cirrhosis are potentially reversible by reasonable 
therapeutic strategies[147-149]. At present, the therapeutic 
strategies for liver fibrosis include the following. 

Therapies to eliminate the etiological factors
Removing the etiological factors is the most direct and 
perhaps most effective method of  treating liver fibro-
sis. As such, treatments against HBV and HCV infec-
tions[150,151], abstinence from alcohol abuse, weight and 
blood lipid control, chelation of  overloaded iron and 
copper[152] are considered potentially effective therapies 
for a large proportion of  liver fibrosis cases. In particu-
lar, the commonly used antiviral agents such as IFN-α, 
ribavirin, lamivudine, adefovir, entecavir, and especially 
pegylated IFN-α have been shown to exert antifibrotic 
effects[91,151,153-156].

Anti-inflammatory and immunosuppressive therapies
Intrahepatic inflammation and immune response are 
direct causes of  injury to hepatocytes and activation of  
HSCs. Therefore, anti-inflammatory and immunosup-
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pressive therapies are important measures to inhibit fi-
brogenesis, especially for fibrosis and cirrhosis resulting 
from viral hepatitis, autoimmune hepatitis, and primary 
sclerosing cholangitis. The anti-inflammatory drug ce-
lecoxib[157] and antioxidative agents taurine and vitamin 
E[158,159] all show some degree of  antifibrotic effect. Like-
wise, glucocorticoids, azathioprine[160], colchicines[161] and 
rapamycin[162,163] appear to exert anti-inflammatory, antifi-
brotic and immunomodulatory effects, and therefore may 
potentially be useful in the treatment of  liver fibrosis.

Suppressing activation and promoting apoptosis of 
HSCs 
HSCs play a critical role in hepatic fibrogenesis, and 
therefore are potential target cells of  antifibrotic thera-
py[164]. As such, inhibition of  HSC activation is an attrac-
tive therapeutic approach for liver fibrosis. Inactivation 
of  HSCs can be achieved by inhibiting the TGF-β1 sig-
naling pathway and PDGF-B[165-167], and activated HSCs 
can be removed by inducing these cells to undergo apop-
tosis[27,31,164]. Some cytokines and growth factors such as 
insulin-like growth factor-1, IFN-α and IFN-γ have been 
found to induce apoptosis of  HSCs[90,96,168]. Inhibitors of  
IκB kinase has also been shown to promote apoptosis 
of  HSCs and exert antifibrotic effectd[31]. Other pharma-
cological agents such as gliotoxin, sulfasalazine, benzo-
diazepine ligands, curcumin and tanshinone I have been 
explored for their effects in inducing HSC apoptosis[27].

Protect liver function and promote hepatocyte 
regeneration
The hepatoprotective agent silymarin has been widely 
used in the management of  chronic liver diseases and 
cirrhosis[129,169]. Ursodeoxycholic acid and taurourso-
deoxycholic acid have shown protective effects against 
hepatocyte organelle injury, and have been confirmed as 
effective agents for the treatment of  primary sclerosing 
cholangitis[170,171]. Calcium channel blockers (e.g., vera-
pamil) also show hepatoprotective and antifibrotic effects 
by stabilizing the hepatic cellular membrane[172] and low-
ering the portal vein pressure.

Hepatocyte apoptosis is a common event in liver 
injury and contributes to fibrogenesis and development 
of  cirrhosis. Hence, preventing the hepatocytes from 
undergoing apoptosis and promoting hepatocytes regen-
eration can be useful therapeutic strategies for liver fibro-
sis and cirrhosis. Hepatocyte growth factor (HGF), an 
antifibrotic growth factor that induces apoptosis in HSCs 
and stimulates hepatocyte regeneration[173,174], has been 
attempted as a therapeutic agent for liver cirrhosis. In 
this respect, infusion of  bone-marrow-derived cells and 
mesenchymal cells have been reported as a potentially ef-
fective method for the treatment of  liver cirrhosis[175-177], 
because these cells can differentiate into hepatocyte-like 
cells in the liver and stimulate proliferation of  hepato-
cytes by secreting some growth factors such as HGF. 
Furthermore, HGF-overexpressing human umbilical-
cord-blood-derived mesenchymal stem cells have shown 

promising therapeutic effects on liver fibrosis[178].

Gene therapy and targeted therapy
Several critical genes implicated in the pathogenesis of  
liver cirrhosis such as TGF-β, PDGF-β, CTGF, and 
TIMP have been investigated as therapeutic targets for 
liver cirrhosis[179]. Antisense oligonucleotides[167,180,181] and 
siRNAs[182-184] against these genes have been tested in vitro 
and in vivo. Recently, miRNA has been found to play a 
regulatory role in the pathogenesis of  liver fibrosis and 
cirrhosis through regulating the expression of  profibrotic 
or antifibrotic genes, and influencing the proliferation 
and activation of  HSCs. As such, miRNA-based therapy 
can potentially be useful for the treatment of  liver fibro-
sis[185]. Furthermore, in order to target more directly the 
fibrogenic cells, attempts have been made to target the 
receptors of  the profibrogenic proteins expressed on 
HSCs[184,186,187].

Complementary and alternative medicine
Evidence indicates that some traditional Chinese herbal 
medicines are effective in the treatment of  liver fibrosis 
and cirrhosis, and have thus gained popularity world-
wide[188,189]. These herbal medicines include the follow-
ing categories: pure compounds (e.g., salvianolic acid 
B[190] and oxymatrine[143]). The mechanisms by which 
tetrandrine[191], glycyrrhetinic acid[192] and curcumin[193]), 
single agents (e.g., Salvia miltiorrhiza[194] and Ganoderma lu-
cidum[195]), and composite formulae (e.g., Fuzheng Huayu 
Capsule[196], Biejiajian[197], Yi-Gan-Kang granule[198] and 
Qinggan Huoxuefang[199]). Chinese herbal medicines exert 
antifibrotic effect are far from clear but may include an-
tiviral and anti-inflammatory effects, immune regulation, 
inhibition of  HSC activity, and promotion of  collagen 
degradation. Further randomized controlled clinical tri-
als are needed and the possible adverse effects should be 
carefully evaluated.

CONCLUSION
In summary, the etiology of  cirrhosis is multifactorial and 
the mechanisms underlying pathogenesis of  cirrhosis are 
far from being clarified. Further studies, particularly with 
appropriate animal models, to unveil the molecular mech-
anisms leading to liver fibrosis and cirrhosis are essential 
for the development of  effective therapeutic approaches.
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