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Abstract
Emerging data have shown a close association between 
compositional changes in gut microbiota and the de-
velopment of nonalcoholic fatty liver disease (NAFLD). 
The change in gut microbiota may alter nutritional 
absorption and storage. In addition, gut microbiota are 
a source of Toll-like receptor (TLR) ligands, and their 
compositional change can also increase the amount of 
TLR ligands delivered to the liver. TLR ligands can stim-
ulate liver cells to produce proinflammatory cytokines. 
Therefore, the gut-liver axis has attracted much inter-
est, particularly regarding the pathogenesis of NAFLD. 
The abundance of the major gut microbiota, including 
Firmicutes  and Bacteroidetes , has been considered a 
potential underlying mechanism of obesity and NAFLD, 
but the role of these microbiota in NAFLD remains un-
known. Several reports have demonstrated that certain 
gut microbiota are associated with the development of 
obesity and NAFLD. For instance, a decrease in Akker-
mansia muciniphila causes a thinner intestinal mucus 
layer and promotes gut permeability, which allows the 
leakage of bacterial components. Interventions to in-
crease Akkermansia muciniphila  improve the metabolic 

parameters in obesity and NAFLD. In children, the lev-
els of Escherichia were significantly increased in nonal-
coholic steatohepatitis (NASH) compared with those in 
obese control. Escherichia can produce ethanol, which 
promotes gut permeability. Thus, normalization of gut 
microbiota using probiotics or prebiotics is a promising 
treatment option for NAFLD. In addition, TLR signaling 
in the liver is activated, and its downstream molecules, 
such as proinflammatory cytokines, are increased in 
NAFLD. To data, TLR2, TLR4, TLR5, and TLR9 have 
been shown to be associated with the pathogenesis of 
NAFLD. Therefore, gut microbiota and TLRs are targets 
for NAFLD treatment.
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Core tip: The gut-liver axis has attracted much interest 
particularly regarding the pathogenesis of nonalcoholic 
fatty liver disease (NAFLD) because gut microbiota 
contribute to nutritional absorption and storage. In ad-
dition, gut microbiota are a source of Toll-like receptor 
(TLR) ligands, which can stimulate liver cells to pro-
duce proinflammatory cytokines. To date, TLR2, TLR4, 
TLR5, and TLR9 have been shown to be associated 
with the pathogenesis of NAFLD. The present article 
reviewed the current understanding of gut microbiota 
and TLR signaling in NAFLD and potential treatment 
targeted at gut microbiota and TLRs.
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INTRODUCTION
The gut-liver axis has attracted much interest regard-
ing the pathogenesis of  nonalcoholic fatty liver disease 
(NAFLD), in which the balance between nutritional ab-
sorption and energy storage and expenditure is impaired. 
The gut is an organ that absorbs a variety of  nutritional 
components from food; gut microbiota plays an impor-
tant role in humans as well as rodents[1-3]. In addition, 
gut microbiota contribute to energy storage in the liver. 
Bäckhed et al[4] clearly showed that conventionally raised 
mice had a 42% higher body fat as well as hepatic triglyc-
eride content than germ-free mice despite the fact that 
conventionally raised mice consuming fewer calories. 
Supporting the role of  gut microbiota in nutritional ab-
sorption, germ-free mice in which gut microbiota from 
conventionally raised mice were transplanted produced a 
57% increase in body fat within 2 wk. Certain gut bacte-
ria are able to ferment complex carbohydrates, which are 
not digested by mammalian enzymes. Short-chain fatty 
acids (SCFAs), which are digested products of  complex 
carbohydrates, account for 10% of  dairy energy intake[5] 
and also stimulate de novo lipogenesis[6]. Thus, gut micro-
biota contribute to the development of  NAFLD.

In addition to nutritional absorption and energy stor-
age, the gut microbiota are a source of  Toll-like receptor 
(TLR) ligands, which induce inflammation under certain 
conditions. Although bacterial components are potent 
TLR ligands, the liver has a high tolerance to TLR li-
gands because hepatic cells express minimal TLRs in 
normal liver. In contrast, TLR signaling is activated and 
downstream molecules are increased in NAFLD because 
the tolerance has been disrupted[7]. Altered gut micro-
biota and increased gut permeability are potential causes 
of  the breakdown of  tolerance. Indeed, circulating 
bacterial components and hepatic TLR expression are 
increased in human NAFLD patients as well as in animal 
models[8-11]. Thus, gut microbiota and TLRs are potential 
targets for NAFLD treatment.

The exact mechanisms by which gut microbiota con-
tribute to NAFLD are poorly understood, although the 
role of  gut microbiota in the development of  NAFLD is 
well documented. Here, we first review the role of  TLRs 
that are associated with NAFLD. Then we describe the 
function of  gut microbiota observed in metabolic syn-
dromes including NAFLD.

TLRS ARE ASSOCIATED WITH THE 
DEVELOPMENT OF NAFLD
TLRs are pattern recognition receptors that perceive 
bacterial and viral components[12,13]. TLR signaling is 
suppressed in healthy liver but is activated when patho-
genic microorganisms and bacteria-derived molecules are 
delivered to the liver. This TLR signaling is the first line 
of  defense against the invading pathogens through the 
production of  anti-bacterial and anti-viral cytokines such 
as tumor necrosis factor (TNF) α, interleukin (IL)-1β, 

and interferons. However, sustained elevation of  these 
cytokines injures the host; thus, continuous stimulation 
of  TLR signaling does not always provide a benefit for 
the host. Recent data demonstrate that TLR signaling 
enhances hepatic injury in NASH, alcoholic liver disease, 
and chronic viral hepatitis[14-16]. Among the 13 TLRs 
identified in mammals, the pathogenesis of  NASH is as-
sociated with TLRs including TLR2, TLR4, TLR5, and 
TLR9[14,17-20], which recognize lipopolysaccharide (LPS), 
peptidoglycan, flagellin, and bacterial DNA, respectively. 
Table 1 summarizes the results of  TLR mutant mice fed 
a diet that induce NAFLD. Although other TLRs may 
contribute to the development of  NAFLD, no solid data 
are available.

TLR4 is a receptor for LPS, which is a cell compo-
nent of  Gram-negative bacteria. Circulating LPS levels 
are elevated in rodent NAFLD induced by a high-fat (HF) 
diet, fructose-rich diet, methionine/choline-deficient 
(MCD) diet or choline-deficient amino acid-defined 
(CDAA) diet[9,11,19,21]. Although the mechanism by which 
these diets induce steatosis is different, these diets modi-
fy the gut microbiota and gut permeability[22,23]. Wild type 
(WT) mice on these diets show steatosis/steatohepatitis 
with increased expression of  TLR4 and proinflamma-
tory cytokines. LPS injections in NAFLD mice further 
increased proinflammatory cytokines and promoted liver 
injury[24,25]. Even in WT mice on standard laboratory 
chow, continuous infusion of  low-dose LPS resulted in 
hepatic steatosis, hepatic insulin resistance, and hepatic 
weight gain[21]. Supporting the role of  the LPS-TLR4 
pathway in the development of  NAFLD, TLR4 mutant 
mice are resistant to NAFLD[9,19,26], even though LPS 
levels are equivalent to those in WT mice. Consistent 
with histological findings in the liver, the expression of  
proinflammatory cytokines was suppressed in TLR4 mu-
tant mice. Because 80% of  intravenously injected LPS 
accumulates in the liver within 20-30 min[27,28], the liver is 
a target of  LPS. In humans, plasma LPS levels are also 
elevated in metabolic syndromes including diabetes[29,30] 
and in NAFLD patients[31,32]. As in rodents, an HF diet 
elevates plasma endotoxin concentrations and endo-
toxin activity in humans[33,34]. Total parenteral nutrition 
and intestinal bypass surgery can increase plasma LPS 
levels. Under these conditions, hepatic steatosis occured 
without metabolic syndrome[35-37]. Antibiotics treatment 
to kill Gram-negative bacteria decreased plasma LPS 
levels and attenuated the steatosis in these patients[35-37]. 
Thus, LPS is closely associated with the development of  
NAFLD, and TLR4 signaling is a key pathway for the 
progression of  NAFLD in humans as well as rodents.

TLR9 recognizes DNA containing an unmethylated-
CpG motif, which is rich in bacterial DNA[12,13]. TLR9 
expression in the liver is increased in several types of  
nonalcoholic steatohepatitis (NASH) models[14,38,39], and 
bacterial DNA is detected in blood and ascites samples 
from advanced cirrhosis patients[40,41]. We have demon-
strated that bacterial DNA is detectable in the blood in 
CDAA-fed mice but not in control diet-fed mice[14]. To 
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Table 1  Toll-like receptor mutant mice and nonalcoholic fatty liver disease

investigate the role of  TLR9, WT mice and TLR9 defi-
cient mice were fed a CDAA diet to induce steatohepati-
tis. TLR9 deficient mice on the CDAA diet showed less 
steatosis, inflammation, and liver fibrosis compared with 
their WT counterparts. In addition, insulin resistance and 
weight gain induced by the CDAA diet were suppressed 
in TLR9 deficient mice[14]. A TLR9 ligand evokes inflam-
masome-associated liver injury[42,43], which is activated 
in human NASH compared with chronic hepatitis C[44]. 
Consistent with the in vivo experiments results, TLR9 
signaling is associated with inflammasome expression in 
WT macrophages[14,45], resulting in the production of  IL-
1β. These data indicate that TLR9 signaling promotes 
the progression of  NASH.

TLR2 perceives components of  Gram-positive bac-
terial cell walls such as peptidoglycan and lipoteichoic 
acid[12,13]. The levels of  Firmicutes, which are Gram-
positive bacteria and a major component of  the gut 
microbiota, are increased in mice on an HF diet, sug-
gesting that TLR2 ligands are rich in gut microbiota 
in obese mice. Blockade of  TLR2 signaling prevents 
insulin resistance induced by an HF diet in mice[46,47]. 
We have shown that TLR2 deficient mice are resistant 
to CDAA-induced steatohepatitis[48]. TLR2 deficient 
mice on a CDAA diet showed lower expression of  pro-
inflammatory cytokines such as TNFα and IL-1β. In in 
vitro experiments, TLR2 ligands induced proinflamma-
tory cytokines in WT macrophages.

In contrast, TLR2-deficient mice on an MCD diet 
exhibit equivalent or more severe steatohepatitis as a re-
sult of  hypersensitivity to LPS[17,18]. Although the MCD 
diet induces typical features of  steatohepatitis, metabolic 
parameters are completely different; mice on MCD lose 
weight with increased insulin sensitivity, whereas mice 
on an HF or CDAA diet gain weight accompanied by 
insulin resistance. The difference in gut microbiota may 
account for the contrasting results in the role of  TLR2 
ligands.

TLR5 is a receptor for bacterial flagellin. Although 
the role of  hepatic TLR5 expression remains unknown, 
its expression on intestinal mucosa plays critical roles 
in the development of  metabolic syndrome. The first 

report on TLR5 showed that a lack of  TLR5 in mice 
resulted in spontaneous colitis[49], indicating that TLR5 
plays a protective role in the intestinal epithelium. A 
rederived line of  TLR5 KO mice developed obesity and 
steatosis[20]. A striking finding in TLR5 KO mice is the 
alteration in gut microbiota at the species level. Transfer 
of  TLR5 KO microbiota to WT germ-free mice re-
produced the metabolic syndrome. On the other hand, 
TLR5 deficient mice from different animal colonies 
show no basal inflammation and metabolic syndrome 
under normal conditions[50]. These data suggest that the 
interplay between TLR5 and specific gut microbiota 
contributes to the development of  metabolic syndrome.

PROINFLAMMATORY CYTOKINES IN 
NAFLD
Proinflammatory cytokines such as TNFα and IL-1β are 
downstream targets of  TLRs and have been shown to 
promote the progression of  NAFLD in animal models. 
For instance, TNFα signaling deficiency was resistant 
to NAFLD induced by an HF diet[51] or MCD diet[52]. 
Additionally, mice that were deficient in IL-1β signal-
ing were protected from HF diet-induced fatty liver[53] 
or CDAA diet-induced NASH[14]. In addition, mice 
that were deficient in inflammasome components and 
caspase-1, which converts the pro-form of  IL-1β to its 
active form, were also resistant to steatosis/steatohepa-
titis in NAFLD models[54,55]. These data indicate that 
TNFα and IL-1β are important mediators in the devel-
opment of  NAFLD. Because NAFLD patients show 
increased expressions of  these cytokines as well as their 
receptors[56-58], these molecules are potential targets for 
NAFLD treatment.

TNFα regulates lipid metabolism and hepatocyte 
cell death. TNFα impairs insulin signaling by inhibit-
ing insulin receptors and insulin receptor substrate-1[59], 
resulting in insulin resistance with elevated insulin levels. 
Insulin resistance increases fatty acid release from adi-
pose tissue and inhibits free fatty acid (FFA) uptake in 
adipocytes. On the other hand, elevated insulin concen-
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Mice Diet Duration Steatosis Inflammation Fibrosis Ref.

TLR2 KO MCD   5 wk Identical Worsen N/A   [17]
TLR2 KO MCD   8 wk Worsen Worsen N/A   [18]
TLR2 KO CDAA 22 wk Identical Improved Improved   [48]
TLR2 KO HF 20 wk Improved Improved N/A   [46]
TLR2 KO HF   5 wk Improved Improved N/A   [47]
TLR4 mu MCD   3 wk Improved Improved N/A [9]
TLR4 KO MCD   8 wk Improved Improved Improved   [19]
TLR4 mu HF 22 wk Improved N/A N/A   [26]
TLR4 mu Fru   8 wk Improved Improved N/A   [10]
TLR5 KO ST Worsen Worsen N/A   [20]
TLR9 KO CDAA 22 wk Improved Improved Improved   [14]

Assessment of toll-like receptor (TLR) mutant mice were compared with control (WT) mice. CDAA: Choline-deficient amino-acid defined; Fru: Fructose-
rich; HF: High fat; MCD: Methionine and choline deficient.
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Table 2  Classification of gut microbiota based on Gram staining

tration facilitates FFA flux into hepatocytes and hepatic 
lipogenesis[60]. Moreover, TNFα promotes cholesterol 
accumulation in hepatocytes by increasing cholesterol 
uptake through LDL receptors and by decreasing the ef-
flux through lipid transporting genes such as ABCA1[61]. 
Lipid-accumulated hepatocytes are more sensitive to 
TNFα-mediated cell death[62,63]. Although TNFα does 
not induce apoptosis in normal hepatocytes by induc-
ing nuclear factor κB (NF-κB)-related anti-apoptotic 
genes[64], excessive lipid levels in hepatocytes alter the cell 
survival signals. For instance, lipid-accumulated hepato-
cytes generate reactive oxygen species[62] and show in-
creased gene expression of  ASK-1 and c-Jun N-terminal 
kinase (JNK)[63], which drive cell death signaling.

IL-1β also mediates the features of  NAFLD includ-
ing steatosis[14,53] and hepatocyte death[14]. IL-1β regulates 
lipid metabolism by suppressing PPARα and its down-
stream molecules, resulting in hepatic accumulation of  
triglycerides[65]. On the other hand, IL-1β increases the 
expression of  diacylglycerol acyltransferase 2, an enzyme 
that converts diglycerides to triglycerides[14]. Thus, IL-1β 
promotes triglycerides accumulation in hepatocytes. IL-
1β contributes to hepatocyte death when hepatocytes are 
laden with lipids. Pro-apoptotic genes such as Bax are 
induced in lipid-accumulated hepatocytes upon IL-1β 
stimulation, whereas anti-apoptotic genes are increased 
in normal hepatocytes[14].

A major source of  these proinflammatory cytokines 
is macrophages in the liver because macrophage deple-
tion by liposomal clodronate causes low expression 
of  TNFα and IL-1β[9,66]. In addition, mice deficient 
in TLR2, TLR4, and TLR9 exhibit low expression of  
proinflammatory cytokines even when these mice were 
fed a CDAA or MCD diet[9,14,48]. For a detailed analysis 
of  hepatic macrophages, we generated chimeric mice in 
which WT mice and TLR2 deficient mice were reconsti-
tuted with TLR2 deficient macrophages and WT mac-
rophages, respectively. Using a combination of  macro-
phage depletion and bone marrow transplantation, more 
than 90% of  the macrophages were successfully recon-
stituted by transplanted macrophages[11,15,67]. Chimeric 
mice reconstituted with TLR2 deficient macrophages 
reduced inflammation and liver fibrosis[48]. These data in-
dicate that TLR2 on macrophages contribute not only to 
inflammation but also to liver fibrosis. Recent data show 
that TNFα and IL-1 produced by hepatic macrophages 
contribute to liver fibrosis by promoting the survival of  
activated hepatic stellate cells[68]. Indeed, IL-1β induces 
pro-fibrogenic genes in hepatic stellate cells[14,69,70]. These 
data indicate that hepatic macrophages contribute to the 
pathogenesis of  NAFLD by TLR-mediated proinflam-

matory cytokine production.

COMPOSITIONAL CHANGE IN GUT 
MICROBIOTA IN OBESITY AND NAFLD
Because gut microbiota are a source of  TLR ligands, 
their compositional change is a potential trigger in the 
activation of  TLR signaling in the liver. Thus, there has 
been extensive research aimed at identifying the specific 
bacteria changes that lead to NAFLD. At least following 
nine microbacteria phyla reside in the gut: Actinobacteria, 
Bacteroidetes, Cyanobacteria, Deferribacteres, Firmicutes, Proteo-
bacteria, Tenericutes, TM7, and Verrucomicrobia. Of  them, 
Bacteroidetes and Firmicutes are major components of  
gut microbiota at the phylum level in rodents and hu-
mans[71]. Table 2 shows the classification based on the 
Gram staining. Proteobacteria, Actinobacteria, and Verruco-
microbia are minor phyla compared with Bacteroidetes and 
Firmicutes. Currently, there is insufficient information on 
TM7, Deferribacteres, Cyanobacteria and Tenericutes in meta-
bolic syndrome.

Most studies have shown that the levels of  Fir-
micutes are increased whereas those of  Bacteroidetes are 
decreased in obesity and its related diseases[72-74] in hu-
mans as well as rodents; thus, an increased Firmicutes/
Bacteroidetes ratio is a potential phenotype of  obesity. 
In addition, the levels of  Bacteroidetes were increased 
by interventions aimed at weight reduction, including 
prebiotics treatment[75] and Roux-en-Y gastric bypass 
(RYGB) surgery[76] in obese mice. These data suggest 
that Bacteroidetes are likely to have beneficial effects 
on obesity. On the other hand, transplantation of  com-
mensal Bacteroides thetaiotaomicron into germ-free mice 
induced a 23% increase in body fat[4]. It remains unclear 
whether the compositional change is a cause or result of  
obesity. To date, the role of  Bacteroidetes in metabolic 
syndrome remains unknown. If  a high Firmicutes/Bac-
teroidetes ratio is a feature of  obesity, one may speculate 
that a larger amount of  TLR2 ligands is delivered to 
the liver because Firmicutes are Gram-positive bacteria. 
Indeed, TLR2 deficient mice were resistant to NAFLD 
induced by an HF diet, which increases Firmicutes. On 
the other hand, mice on an MCD diet, a NASH model 
that exhibits weight loss, showed an increase in the lev-
els of  Gram-negative bacteria of  the Bacteroidetes fragilis 
group[22], suggesting that TLR4 ligands are increased. 
As expected, TLR4 mutant mice were protected from 
NASH induced by an MCD diet[9,19]. Although the Fir-
micutes/Bacteroidetes ratio is likely to be correlated with the 
amount of  TLR2 and TLR4 ligands, the association be-
tween gut microbiota and TLRs is not so simple. For in-
stance, TLR4 deficient mice are also resistant to NAFLD 
induced by an HF diet, which increases the levels of  
Gram-positive bacteria. Detailed analysis showed that an 
HF diet increased the abundance of  some minor Gram-
negative bacteria such as Desulfovibrionaceae and Entero-
bacteriaceae[21,77]. Although both of  these bacteria belong 
to a minor phylum, Proteobacteria, they are a potential 
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Gram-positive bacteria Gram-negative bacteria Unclassified

Actinobacteria Bacteroidetes Deferribacteres
Firmicutes Cyanobacteria Tenericutes
TM7 Verrucomicrobia
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source of  LPS[78,79]. In addition, Desulfovibrionaceae can 
disrupt the gut barrier[80], suggesting that these bacteria 
contribute to the pathogenesis of  NAFLD, even at low 
levels. In vitro experiments indicate that LPS stimulates 
TLR4 at low concentrations compared with a TLR2 
ligand. Thus, minor populations of  gut microbiota may 
participate in the hepatic inflammation in the setting of  
an HF diet.

Proteobacteria, a phylum of  Gram-negative bacteria, 
includes several pathogenic bacteria such as Escherichia 
coli, Salmonella, Vibrio parahaemolyticus, and Helicobacter pylo-
ri. In obese humans and mice, the levels of  Proteobacte-
ria are increased in their abundance. On the other hand, 
the Proteobacteria phylum was also increased after RYGB 
surgery[76]. Because the Proteobacteria phylum includes both 
non-harmful and pathogenic bacteria, further investiga-
tion is required to determine the role of  Proteobacteria in 
the development of  NAFLD.

The Verrucomicrobia phylum includes mucin-degrading 
bacteria Akkermansia muciniphila residing in the mucus 
layer of  the intestine, which represents 3%-5% of  the 
microbial community of  healthy humans[81,82]. Recent 
studies showed that the proportion of  Akkermansia 
muciniphila was decreased in the obese and was in-
versely correlated with body weight in rodents and hu-
mans[75,83-85]. Cani et al[75] intensively investigated the role 
of  Akkermansia muciniphila in obese mice. Probiotic treat-
ment significantly increased the abundance of  Akker-
mansia muciniphila and improved metabolic parameters in 
obese mice models. In addition, Akkermansia muciniphila 
treatment reversed fat gain, serum LPS levels, gut barrier 
function, and insulin resistance by increasing endocan-
nabinoids and gut peptides. Shin et al[86] reported that 
metformin, an anti-diabetic agent, increased the abun-
dance of  Akkermansia muciniphila, in which Treg cells 
improve insulin signaling. Furthermore, RYGB surgery 
increases the levels of  Akkermansia muciniphila[76]. These 
data suggest that Akkermansia muciniphila has potential 
as a probiotics.

GUT MICROBIOTA IN OBESE CHILDREN
The incidence of  NAFLD in children is also consider-
ably increasing worldwide[87]; therefore, examination of  
gut microbiota has been extended to children. Mixed 
data were shown regarding Firmicutes and Bacteroidetes be-
tween normal and obese children: Xu et al[88] reported an 
increased levels of  Firmicutes and an increased Firmicutes/
Bacteroidetes ratio in obese individuals, whereas Zhu et al[89] 
showed increased levels of  Bacteroidetes and an increased 
Bacteroidetes/Firmicutes ratio. These studies were con-
ducted in different countries, i.e., China and the United 
States. A report from Egypt further demonstrated dif-
ferent results[90], suggesting that the composition of  gut 
microbiota may depend on the environment, particularly 
in children.

Zhu et al[89] further investigated the compositional 
changes in gut microbiota and focused on the function 

of  the Proteobacteria phylum. Among the Proteobacteria phy-
lum, the levels of  Escherichia were significantly increased 
in NASH compared with those in obese children. 
They also found higher plasma ethanol levels in NASH 
children. They speculated that Escherichia produced 
ethanol in the gut because in vitro experiments showed 
that Escherichia could generate ethanol. However, it is 
unclear whether an increase in Escherichia is a common 
mechanism of  adult NASH. RYBS surgery increased the 
abundance of  Escherichia in the gut, although obesity and 
metabolic parameters were improved. Thus, the effect of  
Escherichia on the development of  NASH may be differ-
ent between children and adults. Similarly, the abundance 
of  Desulfovibrio, a source of  LPS, was decreased in obese 
children[84] whereas this species was increased by an HF 
diet[21,77].

PROBIOTICS AND NAFLD
Probiotics are live microorganisms that have beneficial 
effects on health. Bifidobacterium and Lactobacillus are 
widely used as probiotics because these bacteria can 
inhibit an expansion of  Gram-negative pathogenic bac-
teria by producing lactic acid and other antimicrobial 
substances. Although these probiotic bacteria generally 
reside in the gut, the population of  probiotic bacteria 
decreases in pathogenic conditions. Indeed, the levels 
of  Bifidobacterium, a member of  the Actinobacteria phylum, 
are decreased in rodent NAFLD models[21,22,77] as well 
as in humans[89]. Thus, probiotic supplementation is 
expected to reverse the phenotype of  gut microbiota, 
leading to improved health. There are many reports on 
the beneficial effects of  probiotics such as Bifidobacte-
rium spp. in rodents. Administration of  Bifidobacterium 
spp improves metabolic parameters including cholesterol 
levels, visceral fat weight, and insulin resistance[91,92]. The 
Lactobacillus casei strain Shirota, a member of  Firmicutes, 
protects against NASH induced by an MCD diet in 
mice[22] and steatosis induced by a fructose-rich diet[93]. 
VSL#3 is a probiotic that consists eight strains of  bac-
teria including Lactobacillus and Bifidobacterium species. 
VSL#3 administration ameliorates the grade of  NAFLD 
in ApoE-/- mice or HFD-fed rats[94,95]. Probiotics sup-
press inflammatory indicators including serum LPS 
levels and hepatic TNFα expression in rodents[22,94,95]. 
In addition to compositional changes in gut microbiota, 
probiotics regulate gut permeability, which is enhanced 
in NAFLD. There are several junctions between intesti-
nal epithelial cells to control barrier functions, including 
tight junctions, adherence junctions, gap junctions, and 
desmosomes. Of  them, the tight junction is thought to 
play a central role in intestinal barrier function[5]. The 
expression of  tight junction proteins such as ZO-1 and 
occludin decreased in murine models of  NAFLD[96,97]. 
Several probiotic bacteria can strengthen barrier func-
tion by increasing the expression of  tight junction pro-
teins. For instance, the probiotics Bifidobacterium lactis 
420, Escherichia coli Nissle 1917, and Lactobacillus plantarum 
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increased tight junction proteins and preserved barrier 
function in DSS-induced colitis[98-100]. Probiotics also 
suppress the production of  proinflammatory cytokines 
including TNFα, IL-1, and IFN-γ, which can disrupt 
tight junctions[101].

A question arises as to whether probiotic treatment 
may also supply TLR ligands including TLR2 and TLR9. 
Lactobacillus and Bifidobacterium are Gram-positive bac-
teria and contain TLR2 ligands such as peptidoglycan 
and lipoteichoic acid. Interestingly, probiotic treatment 
increased anti-inflammatory cytokines in a TLR2-de-
pendent manner[102]. Clostridium butyricum induced IL-10 
production from intestinal macrophages in acute experi-
mental colitis through TLR2[103]. These data suggest that 
TLR2 has a dual function: TLR2 ligands from probiotic 
bacteria direct an anti-inflammatory state, whereas TLR2 
ligands from obesity-related bacteria induce inflamma-
tion. Probiotic bacteria also contain an unmethylated-
CpG motif, which is a TLR9 ligand. Indeed, the CpG-
motif, which is abundant in Bifidobacterium species, can 
drive a murine macrophage cell line to produce TNFα 

and MCP-1[104], which are mediators that promote the 
progression of  NASH[66]. On the other hand, most pro-
biotic bacteria are not able to produce TLR9-mediated 
IFN-γ in myeloid dendritic cells except for limited 
strains[105], suggesting that the response to TLR9 ligands 
in immune cells may differ among bacteria. Collectively, 
the TLR ligands derived from probiotics may suppress 
inflammation partially through the production of  anti-
inflammatory cytokines.

PREBIOTICS AND NAFLD
Prebiotics are indigestible food ingredients including inu-
lin and fructooligosaccharides, which have beneficial ef-
fects by altering the composition of  gut microbiota, lipid 
metabolism, and gut barrier function. Although mamma-
lian enzymes cannot digest complex carbohydrates, cer-
tain gut microbiota are able to ferment the carbohydrates 
to SCFAs such as acetate, propionate, and butyrate. These 
SCFAs are used as energy[106,107] as well as molecules to 
stimulate lipogenesis and gluconeogenesis. Interestingly, 

Figure 1  Gut-liver axis in the development of nonalcoholic fatty liver disease. Under healthy conditions, commensal microbiota inhibit the expansion of patho-
genic bacteria and maintain the barrier function of the intestinal epithelium. In nonalcoholic fatty liver disease (NAFLD), the levels of pathogenic bacteria may increase, 
and the barrier function is disrupted by multiple mechanisms, leading to a translocation of bacteria components [toll-like receptor (TLR) ligands] into the portal vein. 
TLR ligands stimulate TLR expressing cells, such as macrophages, to produce proinflammatory cytokines including tumor necrosis factor a (TNFa) and interleukin-
1b (IL-1b), which promote lipid accumulation as well as hepatocyte cell death. TLR ligands also stimulate macrophages to produce chemokines such as MCP-1, which 
recruits inflammatory macrophages. These proinflammatory cytokines and certain TLR ligands directly stimulate hepatic stellate cells to produce fibrogenic factors. In 
contrast, treatments with probiotics or prebiotics protects against the translocation of TLR ligands and the expansion of pathogenic bacteria. In addition, probiotics/pre-
biotics stimulate immune cells to produce anti-inflammatory cytokines.
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SCFAs protect mice from obesity induced by diet or gene 
modification[108-110]. Acetate is a substrate for middle- to 
long- chain fatty acids[107] that stimulates hepatic lipogen-
esis, and the incorporation of  acetate to these fatty acids 
did not occur under fasting conditions[111].

SCFAs can strengthen the barrier function of  the in-
testine. For instance, butyrate restores the mucosal barri-
er in heat- or detergent-induced colonic injury[112]. In ad-
dition, treatment with MIYARI 588, a butyrate-produc-
ing probiotics, suppressed gut permeability by increasing 
the expression of  tight junction proteins in mice fed a 
CDAA diet. As a result, elevation of  LPS was inhibited, 
and steatohepatitis was ameliorated[23]. The probiotic 
Lactobacillus plantarum 299v showed beneficial effects by 
elevating butyrate concentrations in patients with recur-
rent Clostridium difficile-associated diarrhea. Although the 
levels of  butyrate-producing bacteria in NASH remain 
unknown, the relative proportion of  butyrate-producing 
bacteria is decreased in type 2 diabetes[113,114].

PERSPECTIVES
Accumulating evidence demonstrates that gut micro-
biota and TLR signaling are closely associated with the 
development of  NAFLD. Figure 1 summarizes the 
association between gut microbiota and TLRs and po-
tential effects of  prebiotics and probiotics in NAFLD. 
To data, inconsistent data have been generated regard-
ing the composition of  gut microbiota at the phylum 
level in NAFLD patients because of  environmental and 
interindividual diversity. In addition, studies that show 
beneficial effects of  probiotics and prebiotics are based 
on small sample sizes. Because certain gut microbiota 
are likely to contribute to the development of  NAFLD 
by regulating the intestinal barrier function, additional 
analyses should be performed to confirm their role in 
NAFLD. In the near future, further information will be 
provided by metagenomic analysis of  gut microbiota in 
NAFLD. This information will inform NAFLD treat-
ments through worldwide trials.
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