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Cascading failures have become major threats to network robustness due to their potential catastrophic
consequences, where local perturbations can induce global propagation of failures. Unlike failures spreading
via direct contacts due to structural interdependencies, overload failures usually propagate through
collective interactions among system components. Despite the critical need in developing protection or
mitigation strategies in networks such as power grids and transportation, the propagation behavior of
cascading failures is essentially unknown. Here we find by analyzing our collected data that jams in city
traffic and faults in power grid are spatially long-range correlated with correlations decaying slowly with
distance. Moreover, we find in the daily traffic, that the correlation length increases dramatically and reaches
maximum, when morning or evening rush hour is approaching. Our study can impact all efforts towards
improving actively system resilience ranging from evaluation of design schemes, development of protection
strategies to implementation of mitigation programs.

A
s crisis of blackouts1, congestions2 and bankruptcies3 have demonstrated, localized perturbation in
different networks4–9 can lead to domino-like cascade of failures10 representing major threat to
network robustness. For example, the August 2003 cascading blackout in large portion of the north-

eastern U.S. and eastern Canada had a direct cost on order of 10 billion dollars. While research has focused
mostly on the critical conditions and consequences of cascading failures11–15, an important question has been
rarely raised: What is the propagation behavior of cascading failures? Indeed, it is difficult to develop an
efficient protection or mitigation strategy against cascading failures without understanding the propagation
behavior of cascading failures.

Propagation of failures can be mainly classified into two categories: either by structural dependencies16–18, or by
functional overloads19,20. In cascading structural failures, the damages spread directly via structural dependencies
in the network connections that bind directly the failure of one network element to the failure of other network
elements. However, different from cascading structural failures, many cascading failures spread due to the
propagation of overloads21,22. The cascading occurs, when perturbations to systems route the flow through
alternative paths, which may cause some nodes to become overloaded and failed. This may finally develop into
a series of cascading failures that can disable the entire network.

In marked contrast to cascading structural failures, overload failures usually interact and propagate in networks
globally due to cooperative overload pressure, without visible or direct causal relation. The many-body effects of
failure interactions and the lack of real failure data make the study of propagation behavior of cascading overload
failures a big challenge. Here we study in our collected real data the correlations and their evolution characterizing
failure interaction of cascading overload failures. The mechanisms behind our findings are here understood using
a unified framework of percolation and overload model.

Results
Spatial correlation of failures. We begin by studying the spatial pattern of cascading failures in our collected real
data of traffic congestions and blackout of power grid. As can be seen in both traffic and power grid data shown in
Fig. 1a–b, the spatial pattern of cascading failures seems neither compact as expected by typical model of cascade
dynamics23 nor purely random as in percolation theory24. To quantify these unexpected spatial patterns, we use
the concept of spatial correlation25,26, C(r), which measures the relation between failures separated at a distance r.
The spatial correlation is defined as:
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Here, xi represents the failure value of site i, which is 1 if component i
is failed or 0 otherwise. �x is the average of xi over the whole network.
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=NF is the variance, where F is the set of
cascading failed components, NF is the total number of cascading
failures, and rij is the Euclidean distance between i and j. The d
function selects nodes at distance r. This definition guarantees the
normalization so that when r50, C(r) 51, which is not influenced by
the number of functional nodes. Positive values of C(r) indicate
positive correlations (i.e., tendency of failures to be close to each
other), while negative values imply anti-correlations.

Strikingly, we find below in the real data of congestions and black-
outs that these cascading failures have long-range correlations char-
acterized approximately by a power law decay:

C rð Þ*r{c, ð2Þ

where c quantifies the strength of spatial correlation between failures.
Strong correlations correspond to small c, while the short-range
correlated case is represented by c $ d, where d is the space dimen-
sion (here d 5 2)25,27. The correlation values we find in real data (see
below) suggest that failures tend to ‘attract’ each other in a long-range
power law pattern.

Spatial correlation of congestion. From the viewpoint of physics,
transportation systems are considered as non-equilibrium systems
composed of interacting vehicles, which undergo a phase transition
between free flow and congestion28. This transition is usually the
result of a collective effect, where certain spatial pattern of traffic
congestion can be formed. A wide moving jam in highway is a
typical spatial pattern of traffic congestion, which appears as a
local region of low speed and high density29.

However, for city traffic on global scale, understanding of spatial
pattern of interacting jamming is missing mainly due to the lack of
data in network scale. Here we study our recently collected data
records spanning the city of Beijing, which include the whole road
network with real-time traffic situation (see SI). Our data of traffic
covers 30 days of 24 hours (10-mins resolution) in different months
during 2013. In our study, we consider congested roads (e.g. express-
way with velocity below 20 km/h) as failures (jams), which are
marked in red in a typical snapshot figure of real-time traffic situ-
ation shown in Fig. 1a. As seen in Fig. 1c (see Fig. S1 in SI for another
example), the spatial correlations of traffic jamming at rush hours
(e.g. at 8:20) seem to decay as a power-law with distance. The scaling
exponent c is found to be close to 0.6, which suggests strong correla-
tions between congestions in network traffic. At off-peak hours (e.g.
at 6:00 or 10:00) the correlations decay faster with distance. In a
network scale, different from local spatial pattern of highway jam-
ming, we find that the congestions are long-range correlated.

Spatial correlation of blackout. Similar to traffic congestion,
cascading failures are also common in power grids, whose
devastating effects have been manifested in many major blackouts.
In our collected data of cascading failures in power grids (see Fig. 1b
and SI for more details), failures mainly include line and generator
trips during the blackout of Western Systems Coordinating Council
(WSCC) area in July 1996, United States. Similar to city traffic, we
find that failures in blackout are also spatially correlated with power
law decay. However, the spatial correlations of failures in blackout
are found relatively weaker than those found in traffic congestions,
with an exponent c between 0.9 and 1.0 (see Fig. 1d and Fig. S2 in SI
for more examples).

Model. Overload models6,7 are usually considered to explain these
cascading failures in networks, which, however, refer mostly to

limiting cases of malicious attack on the hubs of networks.
However, many cascading overload failures are initiated in power
transmission systems by disturbances (e.g. component aging,
weather or fault operations) or in transportation networks and
Internet, by daily congestion instabilities. Furthermore, while most
previous cascading-failure models did not have a parameter that can
be tuned to criticality, it is shown in our analysis of real traffic data
that the long-range of scaling of failure correlations found in realistic
cascading failures only present at criticality. To understand the origin
of the surprising long-range correlations found in real systems near
criticality, we here incorporate the percolation framework24 into an
overload model19 (see SI for details), by quantifying these initial
disturbances with a fraction (1-p) of nodes initially removed from
a network. The overload model assumes that each network
component has a load and tolerance parameter a. The load
quantifies the amount of flow that a node is requested to transmit,
which is assumed to be proportional to the total number of shortest
paths passing through it. When the component’s current load value
Li is at least (1 1 a) times more than its original load, L0, this
component will fail and its load will be redistributed to other
components, see also [21]. After the initial step of having a fraction
(1-p) of random failures, the loads of the failed nodes are
redistributed and new nodes become overloaded. At this instant
the number of cascading steps is increased by one. The new
overloaded nodes are removed and further nodes become
overloaded in next iteration step. The iterations continue until all
remaining nodes’ loads are lower than their tolerated capacity. Note
that p in percolation framework and the tolerance parameter a in the
overload model are the main control parameters in this model, and
their combined effects determine the propagation pattern of
cascading failures.

We begin by studying how the main control parameters p and a
affect the network robustness as a result of cascading failures in
square lattice. The robustness of the network is quantified by the
relative size, G, of the giant percolation cluster. As shown in
Fig. 2a, the giant component of network G decreases as we either
decrease a or p. As we reduce p for a given a, the system is undergoing
a phase transition process, which separates between a failure phase
and a functional phase. For small a values (e.g. a 5 1), G decreases
abruptly after a removal of 1% of nodes, meaning that the full lattice
is near criticality for small a. For very large a values (e.g. a 5 500),
since there are rarely overloads failures due to high tolerance, G
decreases smoothly, with pc approaching 0.5927, as expected in the
case of classical percolation in 2d lattice24. For intermediate a values
(e.g. a 5 10, 15), G decreases in a more complicated manner, sug-
gesting a possible hybrid pattern of the above two limiting cases. In
Fig. 2b, we identify the critical threshold pc of the phase transition for
each a as the p value having maximal cascading steps13. The critical
value pc is shown to decrease with increasing a, since the increase of
overload tolerance decreases the overloads and therefore the failures
in the system. We study in our model the spatial pattern of cascading
failures mainly near criticality, since it has been suggested based on
the historical data and modeling that cascading failures in power
grids1,22 and transportation systems28–30 occur at criticality.

Cascading failures in the model also follow a certain spatial pattern
at criticality, as in the typical example shown in Fig. 2c. This pattern
can be seen to be very different from random failures with the same
concentration (Fig. 2d). As Fig. 2e shows, the spatial correlations of
failures in the model seem to follow a power law at criticality, while
away from criticality the correlations decay faster. Note that the
correlations in the random case (Fig. 2d) are zero. We also find in
the model that the correlations of the cascading failures at criticality
show universal behavior (Fig. 2f), since the c values seem to be
independent on a. Moreover, the scaling exponent c found above
in traffic congestions is very close to that found in the model (Fig. 2f
and see Fig. S5 in SI). This may suggest the universality feature of the
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long-range correlations as a result of the phase transition process,
which does not depend on the detailed differences between road
network in Beijing and lattice assumed in the model.

Different from the above results in traffic congestions and model,
the spatial correlation in blackout is weaker and the exponent c is
found to be close to 1.0 (figure 1d and see Fig. S2 in SI). This may arise
due to the presence of long-range connections (that do not appear in
traffic network) such as high-voltage transmission lines in power
grid, which allow redistribution of load to distinct areas. Indeed,
when adding long-range connections into the lattice model by ran-
domly rewiring a small fraction of lattice links (see Fig. S6 in SI), we
find that the spatial correlation is becoming weaker as rewiring
probability is increased. With small amount of long-range connec-
tions, similar spatial correlation as in blackouts is found in the model
(shown in figure 1d and Fig. S6 in SI).

Evolution of correlation length. Until now, we have studied the
spatial correlation of cascading failures mainly near criticality. How-
ever, to protect or mitigate real systems from cascading failures, it is
indispensable to understand how these long-range correlations we
find evolve and emerge when systems are approaching criticality.
Therefore, we study in real data and model the evolution of the
spatial range of correlations when the system approaches criti-
cality. The length j of spatial correlations is defined when correla-
tions become zero25,27, i.e.

C r~jð Þ~0 ð3Þ

We study in real traffic the evolution of the correlation length j
during a day. As seen in Fig. 3a, the correlation length j increases
dramatically as time evolves towards morning or evening rush hours,
while at off-peak hours the correlation length is extremely small.

Figure 1 | Spatial correlation of cascading failures in real data. (a) Spatial pattern of cascading failures in traffic in Beijing, at 8:10 on 25th September 2013.

Congested roads are in red (e.g. expressways with speed lower than 20 kilometers per hour), functional roads with higher speed are marked in yellow or

green, depending on their velocities. More details are presented in Supplementary Information. (b) Spatial pattern of cascading failures in power grid

(failures are red nodes and links; functional components are marked in green). This blackout occurred in the Western Systems Coordinating Council on

2nd July 1996. More details are presented in Supplementary Information. (c) Spatial correlation of cascading failures in city traffic for different instants.

Power law spatial correlation is found at rush hour (8:20), while correlations decay faster at off-peak hours. Resolution of network distance r for

congestion data is around 50 meters in geographical distance. Results from 30 days in April, May, September, October and November in 2013 are averaged

here. (d) Spatial correlation of cascading failures (red dots) during blackouts in power grid, where similar spatial correlation is found in the model (green

dots) of cascading failures in small-world network (rewiring probability is 0.002). Resolution of network distance r for blackout data is around 5

kilometers in geographical distance. Result in small world model (averaged over 50 realizations) is shifted down for comparison.
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Moreover, as seen in Fig. 3a, the number of jams Nf, closely follows
the correlation length, and reaches maximum at the same time (see
Fig. S4 for more examples). This dynamical behavior of the corre-
lation length may suggest that the traffic system evolves towards
criticality, which occurs during rush hours in a typical day. This
suggestion is further supported in the model (Fig. 3b and Fig. S3 in

SI), where the correlation length j grows and reaches maximum at
criticality together with the number of cascading failures.

Discussion
In summary, cascading failures in realistic congestions and black-
outs, are found here to show long-range spatial correlation, whose

Figure 2 | Spatial correlations of cascading failures in model. (a) The relative size of giant component G in the network as a function of p for different a.

Results are averaged over 100 realizations. (b) The number of cascading steps as a function of p for different a. The maximal cascading step corresponds to

the phase transition threshold, pc. Results are averaged over 100 realizations. (c) Spatial patterns of cascading failures in the model near criticality.

One realization of model on lattice of size 10,000 is shown here, with a 5 10 and p 5 0.92. (d) Spatial pattern of randomly distributed failures with the

same number of failure as in (c). (e) Spatial correlations of cascading failures as a function of r in the model for different p values with a 5 10. Note that the

correlation decays as a power law at criticality (at pc), and decays faster when p is away from pc. Results are averaged over 50 realizations. (f) The values of

correlation exponent c as a function of a in model and in real data of traffic during rush hours (08:00, 08:30, 18:00). Results of model are averaged over 50

realizations. Results from 30 days in April, May, September, October and November in 2013 (Beijing) are averaged in traffic data.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 5381 | DOI: 10.1038/srep05381 4



length grows dramatically and reaches maximum as systems
approach criticality. The long-range correlations and their time
evolution found in our paper enable us to understand and predict
the collapse process of systems, which may help to evaluate and
improve existing protection and mitigation strategies against cascad-
ing failures. For example, in power grids, to automatically detect
overloads and to isolate the functional part of system from cascading
failures, different types of relays and fuses are installed. However,
these electromechanical protection methods are used to mainly pro-
tect nearby components from failures, which do not capture the
long-range correlations between failures found here. These
approaches can lead to systematic risks, as indicated by the fact that
the frequency of large blackouts in the United States is not decreas-
ing31. Our finding suggests the possibility and direction of rescuing
systems from cascading failures by global protection and mitigation
strategies, which should decouple the long range correlations
between failures to localize failures from spreading. Faced with the
challenge of robust control and reliable management for networked
infrastructures, we believe that the spatial pattern and its evolution of
cascading failures found here will be useful for the realization and
improvement32 of the future Intelligent Transportation Systems and
Smart Grid.
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Figure 3 | Evolution of correlations in real traffic congestion and model. (a) Evolution of number of failures NF and correlation length j in traffic data,

where two maximums correspond to rush periods during a day. Results from 9 days in September (Beijing) are averaged. The maximum of j reaches the

diameter of the main part of Beijing. (b) Evolution of number of failures NF and correlation length j in the model with a 5 10, results are averaged

over 10 realizations. The unit of j is the same as network distance r in traffic data or model.
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