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ABSTRACT

Prostate cancer (CaP) is the most commonly diagnosed malignancy in males in the Western world with one in six males

diagnosed in their lifetime. Current clinical prognostication groupings use pathologic Gleason score, pre-treatment

prostatic-specific antigen and Union for International Cancer Control-TNM staging to place patients with localized CaP

into low-, intermediate- and high-risk categories. These categories represent an increasing risk of biochemical failure and

CaP-specific mortality rates, they also reflect the need for increasing treatment intensity and justification for increased

side effects. In this article, we point out that 30–50% of patients will still fail image-guided radiotherapy or surgery despite

the judicious use of clinical risk categories owing to interpatient heterogeneity in treatment response. To improve

treatment individualization, better predictors of prognosis and radiotherapy treatment response are needed to triage

patients to bespoke and intensified CaP treatment protocols. These should include the use of pre-treatment genomic

tests based on DNA or RNA indices and/or assays that reflect cancer metabolism, such as hypoxia assays, to define

patient-specific CaP progression and aggression. More importantly, it is argued that these novel prognostic assays could

be even more useful if combined together to drive forward precision cancer medicine for localized CaP.

BACKGROUND: THE NEED FOR NOVEL
BIOLOGICAL END POINTS FOR PROSTATE
CANCER PROGNOSIS
Prostate cancer (CaP) is the most commonly diagnosed
malignancy in males in the Western world, as .500 000
cases are diagnosed annually and 1 in 34 will die of meta-
static disease.1 Treatment options for localized CaP depend
on the Union for International Cancer Control-TNM
staging [i.e. extent of tumour (local), nodal and distant
metastatic cancer burden] of the disease. Using the clinical
prognostic variables, local T-category, pre-treatment serum
prostate-specific antigen (PSA) and pathologic Gleason score
(GS; usually ranging from 5–10) males with localized CaP
(e.g. T1–T4N0M0) are placed in low-, intermediate- and
high-risk prognostic groups.2,3 These risk groups predict
for biochemical failure based on a post-treatment rise in
PSA (also referred to as biochemical relapse-free rate) and
CaP-specific mortality (PCSM) after local therapies with
curative intent.2–4

Active surveillance (AS) is a treatment option for low-risk
and probably indolent CaPs, which have PSA values
,10 ngml21 associated with small volume of GS6 or less

in patients’ diagnostic biopsies.5,6 Radical prostatectomy or
radiotherapy [RT; using either external beam RT (EBRT)
or brachytherapy] constitutes the major treatment options
for non-indolent intermediate-risk CaP (e.g. T1–T2 lesions,
PSA,20ngml21 and GSs 6 or 7; Figure 1). The final choice
of treatment will depend on patient preference and other
considerations (e.g. operative risk, comorbidities, obstructive
urinary symptoms, contraindications to RT etc.).1 However,
patients with high-risk or locally advanced disease (e.g.
T3–T4 lesions outside the prostate gland and/or GSs $8
and/or PSA values .20ngml21) undergo combined mo-
dality treatment consisting of either adjuvant or salvage RT
following surgery to offset local failure, or undergo combined
use of EBRT with androgen deprivation therapy (ADT) to
offset the risk of subclinical metastases.1,7,8 In males who
develop castrate-resistant and metastatic disease (Figure 1),
palliative options include systemic treatment using ADT
(luteinizing hormone-releasing hormone agonists/antago-
nists with secondary hormonal manipulation using enzalu-
tamide or abiraterone), chemotherapy (using docetaxel or
cabazitaxel), systemic radionuclides (Radium-223), immu-
notherapy (Sipuleucel-T) and/or targeted palliative RT
(e.g. 8 Gy single dose or 20–30 Gy in daily fractions).9,10
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Despite a multitude of treatment options, there are no in-
dividualized clinical tests that absolutely tell which patients are
unlikely to fail local treatment from those patients who are most
likely to fail local treatment within a given clinical risk category.
This problem is illustrated by the fact that despite the use of
stringent clinical criteria to place patients into clinical prognostic
groups, 30–50% of males can still fail precision RT or surgery
owing to local resistance and/or systemic spread.1–3 Despite the
publication of Phase III dose-escalated EBRT clinical trials in CaP
designed to counteract failure due to CaP radioresistance, none of
these trials have shown benefit in decreasing PCSM.8 The lack of
an effect on survival with EBRT dose escalation can be explained
by the fact that in a significant proportion of patients, treatment
failure is due to the presence of occult systemic disease rather than
local resistance, and that these patients need to be treated with
intensification of systemic therapy not EBRT dose intensification,
to decrease CaP mortality.1,8 Personalized CaP medicine therefore
requires genomic- or biology-based biomarkers, in addition to
existing clinical biomarkers, to explain interpatient heterogeneity in
outcomes. Furthermore, even if an increased probability of occult
metastases can be predicted, even more biomarkers will be required
to favour the use of one systemic agent vs another, let alone the
scheduling of these agents relative to each other (Figure 1).10

An additional complication to personalized medicine is the
knowledge that many low-risk CaPs are indolent and that their
overtreatment results in significant morbidity.4,5,11 For example,

two-thirds of low-risk CaPs have an indolent course that can be
followed without radical treatment when appropriately placed
into AS protocols, thereby preventing the side effects and costs
of RTor surgery. The corollary is that one-third of these low-risk
patients are being inaccurately classified as having indolent
cancers and require treatment.5 On an individual basis, there are
no assays that can predict with confidence the need for therapy
in low-risk CaP.

So, how do we move forward in precision medicine for CaP
using precision RT when faced with such clinical conundrums?
One approach is to take advantage of technological advances in
genomic medicine to determine patient-specific CaP genomics
that reflect tumour progression and metastatic disease in addi-
tion to novel biology.12,13 State-of-the-art whole-genome se-
quencing technologies have the capacity for generating a
breathtaking amount of genomic data (in excess of 10 billion bases
per day) at a fraction of the cost than a decade ago. DNA- and
RNA-based prognostic tests to predict CaP recurrence are being
actively developed within the industry and academia for clinical
use. Finally, there is also a rich history in radiation oncology for
characterizing the tumour microenvironment, including assays for
subregions of hypoxia within localized CaPs, which have a prog-
nostic impact. This article will now discuss the potential of ge-
nomic and hypoxia assays to help attain the goal of implementing
precision cancer medicine for patients undergoing curative RT
for CaP.

Figure 1. Curative and non-curative states in prostate cancer. Localized prostate cancers (CaPs) can be divided into low-,

intermediate- and high-risk (including locally advanced) groups using T-category, pre-treatment prostate-specific antigen (PSA)

level and the pathologic Gleason score. These groups have increasing probability of CaP-specific mortality. Low-risk tumours can be

aggressively followed using active surveillance. By contrast, intermediate-risk tumours are treated with surgery, external beam

radiotherapy (EBRT) or brachytherapy. In cases where a local recurrence occurs after surgery, patients can be treated with post-

operative EBRT and convert a local failure into a cure. In high-risk CaP, there is an increased probability for occult systemic

metastases, therefore systemic androgen deprivation [androgen-deprivation therapy (ADT)] is used in combination with EBRT.

Palliative systemic therapy is the mainstay for patients with castrate-resistant disease in the micrometastatic or macrometastatic

stages to increase progression-free survival by months. These therapies include additional ADT (including the use of newer agents,

such as abiraterone and enzalutamide), chemotherapy, immunotherapy, systemic radionucleotides (RA233) and use of bespoke

molecular-targeted agents. It is argued that an understanding of the genomic and microenvironmental factors that lead to occult

metastases could drive intensification protocols using systemic agents in the localized CaP setting to improve the cure rates with

radiotherapy and surgery. LHRH, luteinizing hormone-releasing hormone; Post-op, post-operative; RA223, radium-223.
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TUMOUR HYPOXIA MEASUREMENTS ARE
PROGNOSTIC IN LOCALIZED PROSTATE CANCER
The tumour microenvironment is characterized by subregions of
nutrient deprivation, low extracellular pH, high interstitial fluid
pressure and hypoxia. Hypoxic areas arise in tumours when
oxygen consumption rate exceeds that of supply. The blood
vessels within a tumour microenvironment are usually irregularly
organized and have abnormal architecture such that tumours will
contain regions where the partial oxygen concentration (pO2) is
significantly ,5mmHg (i.e. normal tissues range from 10 to
80mmHg).14 Tumour cells that lie beyond the diffusion distance
for oxygen (.100mm away from blood vessels) can quickly
outstrip blood supply and are exposed to chronically low oxygen
tensions for hours to days; this is often referred to as “chronic
hypoxia”.14,15 Tumour cells remain hypoxic until they die (due to
lack of oxygen or nutrients) or are reoxygenated. Hypoxia can also
be transiently “acute” or “cycling” due to acute perfusion changes
in the tumour vasculature.14,15 Tumours therefore contain a mix-
ture of acute (cycling) and chronic hypoxia subregions
with varying biology and varying effects on tumour cell
radiosensitivity and genomic stability.14

Intratumoural hypoxia limits the effectiveness of RT and
chemotherapy. Cells that are hypoxic or anoxic are usually two to
three times more resistant to ionizing radiation when compared
with oxic cells unless they are DNA repair deficient (see hypoxia
section below).14 Chemotherapy-related tumour cell kill in this
scenario is also limited owing to poor drug distribution and de-
creased tumour cell proliferation that limits the effectiveness of S-
phase-specific chemotherapuetics.14 Therapy-resistant cells can
adapt to hypoxic regions and result in cycles of selection for
aggressive mutator phenotypes with faulty DNA repair and
increased genetic instability.15,16 Pre-clinical data have also linked
tumour cell hypoxia to increased experimental and spontaneous
metastasis.14 Metastasis is a multistep process that involves
intravasation through the basement membrane and extracellular
matrix into the host vasculature, extravasation through vessel
walls and then forming a new nidus with the organ of metastatic
spread, and then tumour angiogenesis during secondary tumour
growth. Indeed, hypoxia alters metastasis gene expression in-
cluding that of E-cadherin (cell–cell contact), urokinase-type
plasminogen activator receptor (degradation of extracellular
matrix proteins), hepatocyte growth factor (cellular motility) and
vascular endothelial growth factor (VEGF; angiogenesis and vas-
cular permeability).14 Therefore, pre-clinical data support two
general aspects relating to the resistance of hypoxic tumours during
RT: increased local tumour cell radioresistance1 and/or an increased
capacity for systemic metastases.2

Clinical studies that have attempted to directly measure the level
of hypoxia in CaP have used pO2 electrodes, hypoxia imaging
[positron emission tomography (PET)] and immunohistochemistry
(IHC)17–25 (Table 1). These studies support the concept that hyp-
oxic subregions exist within localized CaPs and are associated with
higher rates of biochemical failure following surgery or RT. For
example, a prospective clinical trial showed that localized CaPs have
uptake of the hypoxia biomarker, pimonidazole, and that this up-
take correlated with GS but not vascularity.18 Turaka et al23 showed
that decreased prostate-to-muscle oxygen ratio was an important

predictor of early biochemical recurrence following brachytherapy
secondary to occult metastases at the time of treatment. In the
largest clinical study of CaP hypoxia using direct pO2 measure-
ments, Milosevic et al21 showed that hypoxia is associated with both
early biochemical relapse and local recurrence in the prostate gland.

Hypoxia leads to an upregulation of the transcription factor, hyp-
oxia inducible factor 1a (HIF-1a), which in turn can increase the
expression of downstream proteins such as VEGF, carbonic anhy-
drase IX (CAIX), glucose transporter 1 (GLUT-1) and osteopontin
(OPN).22,26 Vergis et al24 used an IHC-based approach to show that
HIF-1a, VEGF and OPN (for surgical patients) and HIF-1a and
VEGF (for RT patients) predicted biochemical failure independent
of the clinical tumour stage, GS, serum PSA and RT dose. However,
a study from the University of Michigan (Ann Arbor, MI) using
PET-fluoroazomycin arabinoside analogue (FAZA; as a hypoxia
marker) failed to show FAZA uptake or CAIX staining in CaP,
suggesting that these biomarkers have little utility in prognostica-
tion.19 When taken together, the observation of a low pO2 pre-
dicting early failures in the first 2 years following either RT or
surgical treatment suggests that hypoxia is associated with a meta-
static phenotype.21,23,24 Such hypoxic tumours will require treat-
ment intensification (discussed below) when using EBRT to offset
both local radioresistance and systemic metastases.

Despite these data, hypoxia-targeted therapy is still not a standard
current cancer treatment. Agents that may be useful in this context
might include the use of ADT (given the ability of androgen
suppression to improve CaP oxygenation), molecular-targeted
agents or hypoxia-targeted systemic agents.15 Importantly, as we
will see below, hypoxia can also drive genetic instability by in-
hibiting DNA repair.27 Understanding these additional conse-
quences of the hypoxic microenvironment on the development
of genetic instability may give novel treatment approaches to
combat hypoxia-associated resistance.

GENETIC INSTABILITY AND GENOMIC ASSAYS IN
LOCALIZED PROSTATE CANCER
Chromosomal instability and aneuploidy are associated with cancer
progression and adverse prognosis in CaP.28–32 Patients with tet-
raploid or aneuploid CaP tumours have increased mortality fol-
lowing radical prostatectomy when compared with patients whose
CaP tumours are diploid.30 The specific genomic events that might
link to this aspect of aggression are now being understood in the
context of abnormal gene copy number loss, gene mutation and
abnormal gene expression relating to oncogenes and tumour
suppressor genes. Hypothesis-based studies have used array com-
parative genomic hybridization (using DNA from diagnostic CaP
biopsies prior to therapy) to associate specific gene copy number
alterations with prognosis following EBRTor radical prostatectomy.
Copy number loss of the tumour suppressor genes novel human
prostate-specific, androgen-related homeobox gene (NKX3.1) or
Phosphatase and tensin homologue (PTEN) or the androgen syn-
thesis genes steroidogenic acute regulatory protein (StAR) and
hydroxysteroid (17-beta) dehydrogenase 2 (HSD17B2) are novel
and independent genomic prognostic factors (hazard ratio ranges
from 2 to 4 for failing local therapy). When associated with copy
number gain of the proto-oncogene cMYC,33–35 NKX3.1 loss was
also associated with local radioresistance. Furthermore, males who
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carry germ-line mutations in the breast cancer 2, early onset
(BRCA2) tumour suppressor gene develop aggressive CaPs (higher
GSs and increased nodal metastases) that have very poor prognosis
following surgery or RT.36,37 Surprisingly, the presence or absence
of a fusion gene between transmembrane protease serine 2 and the
ETS-related gene (TMPRSS2–ERG) fusion (found in .50% of all
CaP patients) is not prognostic.38,39

Unbiased genome-wide signatures based on DNA or RNA in-
dices have recently been developed to predict PSA recurrence in
the post-operative setting. A set of DNA-based biomarkers
(genomic evaluators of metastatic CaP) has improved utility

over the sole use of clinical recurrence nomograms (e.g. Kattan
nomogram) in the prediction of recurrence following surgery.40

Recent evidence also suggests that miRNAs may also have
prognostic value, although only a limited number of studies
have correlated genome-wide analysis of miRNA species with
differential prognosis.41–43 High levels of miR-96 were prog-
nostic of biochemical recurrence in a series of 155 radical
prostatectomies.41 Similarly, others have noted an independent
prognostic value (e.g. independent from currently utilized clin-
ical parameters of PSA, T-category and GS) for miR-191,
miR-145, miR-100 and miR-122, many of which are arranged in
genomic clusters.42,43

Table 1. Clinical studies of hypoxia assays and prognosis in localized prostate cancer

Study N T-category Assay Prognostic value and details

Turaka et al23 57 cT1–3 pO2 probe
Prognostic: lower prostate/muscle pO2 ratio
predicted early biochemical failure after
brachytherapy

Milosevic et al21 247 cT1–2 pO2 probe
Prognostic: largest study showing that
hypoxia predicted early biochemical relapse
after radiotherapy and local recurrence

Vergis et al24 201 (RT); 289 (surgery) cT1–3 IHC-VEGF, HIF-1a, OPN

Prognostic: increased expression of VEGF,
HIF-1a and, for patients treated with surgery,
OPN identified patients at high risk of
biochemical failure

Carnell et al18 43 cT1–3 IHC-PIMO
Not tested, but a positive correlation of PIMO
13 binding with Gleason score was
demonstrated

Boddy et al17 149 cT1–3 IHC-VEGF, HIF-1a

Not prognostic: there was a significant
correlation between HIF-1a and HIF-2a
expression, and with AR and VEGF
expression. VEGF was also significantly
related to the androgen receptor, whereas
PHD2 was inversely related to HIF-2a
expression. No significant association was
shown between HIF-1a or HIF-2a and time
to PSA recurrence

Green et al20 50 cT3 IHC
Prognostic: high VEGF expression was
associated with lower disease-specific survival

Thoms et al22 199 (T1–3); 37 (M1) cT1–T3 ELISA-OPN

Not prognostic: within localized prostate
cancers plasma OPN was not predictive of
more aggressive disease or response to
radiotherapy or hormone therapy

Weber et al25 103 cT1–3 IHC

Prognostic: high nuclear expression of
HIF-1a and low EGFR expression was
associated with a good prognosis in patients
treated with RT6ADT

Garcia-Parra et al19 14 pT2b–T3a PET-FAZA1 IHC

Not prognostic: negative 18F-FAZA
accumulation and CAIX staining in primary
prostate cancer despite documented large
lesions (up to 4 cm). HIF-1 staining was
positive and independent of Gleason score

ADT, androgen-deprivation therapy; AR, androgen receptor; CAIX, carbonic anhydrase IX; cT, clinical T-category; EGFR, epidermal growth factor
receptor; ELISA, enzyme-linked immunosorbent assay; 18F-FAZA, 18F-labelled fluoroazomycin arabinoside; HIF-1, hypoxia-induced factor 1; IHC,
immunohistochemistry; OPN, osteopontin; PET, positron emission tomography; PHD, prolyl hydroxylase enzyme; PIMO, pimonidazole; pO2, partial
oxygen concentration; PSA, prostate-specific antigen; pT, pathologic T-category; RT, radiotherapy; VEGF, vascular endothelial growth factor.
pO2, measured with pO2 electrode.
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Major research efforts have led to the development of RNA-
based signatures to better stratify patients between indolent vs
aggressive CaPs (Table 2). A 31-gene signature of biochemical
recurrence following radical prostatectomy has been reported
based on RNA expression of cell cycle progression genes;47 this
prognostic assay was also validated in the setting of recurrence
following EBRT.49,50 A 22-gene RNA expression panel has been
similarly validated across multiple independent cohorts by sev-
eral groups.45,46,51 Likewise, Wu et al48 have reported a 32-gene
RNA expression signature that is prognostic of biochemical re-
currence and metastatic disease following radical prostatectomy.
Using DNA-based indices, Taylor et al44 have shown independent
prognostic utility for six genetic clusters that are prognostic for
biochemical recurrence, independent of the GS.

Additional DNA epigenetic modifications may drive indi-
vidualized CaP biology and progression. Using high-throughput
genome sequencing and DNA methylation analyses, .147 000
cancer-associated epigenetic alterations were observed in 51 tu-
mour and 53 benign prostate samples; the specific nature of these
alterations were dependent on the presence of absence of
a TMPRSS2–ERG rearrangement.52 This observation of differen-
tial methylation events in fusion-negative tumours (based on
enhancer of zeste homologue 2 (EZH2) gene activation) explains
CaP carcinogenesis in the 50% of patients who are TMPRSS2–
ERG fusion-negative. Systematic overviews of studies for the
prognostic role of specific gene methylation (e.g. GSTPi, APC,
RAR-b, RASSF1A, PITX2, CCND2, EDNRB and HOX family of
genes) in CaP concluded that their prognostic roles are still un-
known and require further validation in large clinical cohorts.53,54

Integrating genome-, epigenome-, transcriptome- and proteome-
wide data sets to iterate a multimodal genetic test will no doubt
improve subgroup prognostication.55,56 Therefore, similar to
hypoxia assays, patient-specific indices of genetic instability may

be utilized to further define aggressive subsets of CaP for treat-
ment intensification27 (Figure 2). But is there a biological link
between genetic instability and hypoxia that leads to adverse
prognosis? We will now discuss the potential interplay between
hypoxia, DNA repair and genetic instability.

HYPOXIA AND GENOMIC INSTABILITY IN
PROSTATE CANCER: A NOVEL
THERAPEUTIC TARGET?
One model of interaction between the CaP tumour micro-
environment and CaP genomics is that hypoxic tumour cells have
down-regulated DNA repair function (e.g. decreased capacity for
the repair of DNA double strand breaks; DSBs) in addition to any
genetic instability due to oncogene activation or tumour suppressor
gene inactivation.14,27 Such repair-deficient hypoxic tumour cells
could adapt to low oxygen levels and acquire an aggressive
“mutator” phenotype leading to treatment resistance and metas-
tases.27 For example, there are two major pathways of DSB repair:
non-homologous end-joining (NHEJ; active throughout the cell
cycle) and homologous recombination (HR; requiring a homolo-
gous chromosome available only during S and G2 phases of the cell
cycle).57 Hypoxia causes decreased transcription and translation of
a series of HR and NHEJ genes, including Rad51, BRCA1, BRCA2
and DNA–protein kinase catalytic subunit (DNA-PKcs). Further-
more, functional studies using isogenic cells have reported hypoxia-
induced NHEJ and HR defects.15,16,58–60 As a consequence, despite
lower levels of initial DSB formation following ionizing radiation
(IR) in hypoxic tumour cells, hypoxia-induced defects in DSBs
repair increased the level of unrepaired DSBs and chromosomal
aberrations at the first mitosis post-irradiation.27,59 If even a frac-
tion of these hypoxic mutant tumour cells survive subsequent cell
division, unstable genetic mutants could undergo clonal selection.

Hypoxia induces activation of common fragile sites throughout
the genome (i.e. chromosomal regions prone to breakage) and

Table 2. DNA- and RNA-based prognostic signatures for localized prostate cancer

Signature (DNA
or RNA)

Signature
development

cohort

Outcomes
predicted

Validation in
separate cohorts

(yes/no)

Evaluated in other
treatment

modality cohorts
References

DNA-based CNAs for
NKX3.1, PTEN, cMYC,
StAR

Pre-radiotherapy BCR No Yes: surgery
Zafarana et al35;
Locke et al33,34

DNA-based CNA
clusters (6 clusters)

Post-surgery recurrence BCR No No Taylor et al44

RNA 22-gene
expression signature

Post-surgery recurrence M, PCSS, OS Yes (two cohorts) No
Cooperberg
et al45; Erho
et al46

RNA 31-gene
expression signature

Post-surgery recurrence
post-TURP recurrence

BCR, PCSS Yes (three cohorts)
Yes (conservatively
managed and
radiotherapy)

Cuzick et al47

RNA 32-gene
expression signature

Post-surgery recurrence BCR, M Yes (one cohort) No Wu et al48

BCR, biochemical recurrence; cMYC, proto-oncogene cMYC; CNA, gene copy number; M, metastases; NKX3.1, novel human prostate-specific,
androgen-regulated homeobox gene; OS, overall survival; PCSS, prostate specific-cancer survival; PTEN, phosphatase and tensin homolog; TURP,
transurethral resection of the prostate.
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down-regulation of DSB repair has been implicated as an
underlying mechanism to this chromosomal fragility.61 The
compromise in DSB resolution in hypoxic cells and the resulting
increase in chromosome aberrations is a “perfect storm” towards
genomic instability in tumour cells that adapt and continue to
proliferate under low oxygen conditions.27 Hypoxia can also lead
to a decrease in function of other DNA repair pathways, including
that of mismatch repair (MMR), nucleotide excision repair and
the Fanconi anaemia (FA) pathway.62–65 The parallel reduction in
various DNA damage repair pathways can all potentially con-
tribute to the acquisition of aggressive tumour phenotypes.27

The genetic instability in hypoxic cells would at first seem a
complex phenotype to target with standard or molecularly tar-
geted therapies. Any clinical approach would require careful as-
sessment of the tumour microenvironment and genomic status
(using assays mentioned in previous sections) to incorporate both
hypoxia and genomic assessment as part of a standard of care.
However, the repair-defective phenotype might just be the un-
doing of the hypoxic resistance phenotype, providing an oppor-
tunity to specifically target hypoxic tumour cells and improve the
therapeutic index.27 Hypoxic tumour cells can be directly targeted
using cytotoxic agents that induce DNA damage only under low
oxygen; these include the bioreductive drugs, tirapazamine and

apaziquone.66,67 A newer drug, TH-302 (a 2-nitroimidazole trig-
gered hypoxia-activated cytotoxin) directly decreases the hypoxic
fraction in xenografts of varying histology and is undergoing
Phase II–III clinical trials in combination with chemotherapy.68

Additional targeting of hypoxic subregions can be achieved by
targeting HIF-1-dependent transcription or targeting the unfolded
protein response, which controls gene translation under cellular
stress (e.g. targeting the mechanistic target of rapamycin
(mTOR) signalling pathway).69–71

One could also target the faulty DNA repair and genetic instability
in hypoxic cells using the concept of “contextual” synthetic le-
thality.72 “Genetic” synthetic lethality is a concept first developed
using yeast genetics in which mutations in two genes (e.g. gene A
and gene B) result in cell death, while a mutation in only one gene
(e.g. either gene A or gene B) results in cell viability.73 This
concept has been successfully used to target tumours deficient in
HR (e.g. BRCA1- or BRCA2-deficient ovarian cancer, breast
cancer and CaPs) by the additional inhibition of the poly (ADP-
ribose) polymerase (PARP1) protein.74 PARP1 normally functions
in single-strand break and base-excision repair, and its inhibition is
synthetically lethal when the HR pathway is also compromised.
Similarly, PARP1 inhibition can be toxic to the HR defects associated
with hypoxic cells; hence the concept of “contextual” synthetic

Figure 2. Combining genomics and hypoxia assays to drive personalized prostate cancer medicine. Genomic signatures (DNA, RNA,

epigenetic or miRNA-based) could be combined with hypoxia assays (using imaging such as positron emission tomography–

fluoroazomycin arabinoside or intrinsic/extrinsic markers in situ) to triage patients with low probability of systemic metastases to

local treatment alone and patients with high probability of metastases to local treatment plus systemic treatment (e.g. combined

modality therapy). Systemic treatments could include those shown in Figure 1 that are currently used for metastatic disease,

hypoxia-specific cytotoxins or novel agents designed to target abnormal signalling or DNA repair pathways based on susceptibility

biomarkers. ADT, androgen-deprivation therapy; EBRT, external beam radiotherapy; PARP1, poly(ADP-ribose) polymerase; TIC,

tumour initiating cell.
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lethality.72,75 We have shown in principle that PARP1 inhibition can
preferentially kill repair-defective hypoxic tumour clonogens, while
sparing normal tissues that maintain their DNA repair capability.
Other contextual synthetic lethal approaches could be the inhibition
of DNA polymerase-b in MMR-deficient hypoxic cells or inhibition
of the ataxia telangiectasia mutated (ATM) kinase in hypoxic cells
that have defective FA pathway function.8,75,76

Of interest, clinicians may already be combatting genetic in-
stability and hypoxia in CaP with the combined use of ADT and
RT.8 This combination has led to improved overall and CaP-
specific survival in high-risk and locally advanced CaP.8 The use
of neoadjuvant ADT (150mg per day of bicalutamide) was
shown to improve CaP oxygenation (based on pO2 measure-
ments) prior to RT.77 Furthermore, three recent studies have
suggested that ADT treatment reduces expression and function
of the NHEJ and other DNA repair pathways, supporting the use
of DNA-PKcs inhibitors in combination with ADT as a novel
treatment for CaP.78–80 Any approach that tries to increase cell
kill in hypoxic cells using contextual synthetic lethality or
alterations in DNA repair will require assays that can measure
the function of NHEJ, HR, MMR and FA proteins in situ to
ascertain the fraction of hypoxic cells within a tumour that may
be repair deficient. These uses of the predictive biomarkers in
addition to pharmacodynamic biomarkers that confirm drug
activity in vivo will be required for maximal impact of the use of
this targeted approach in combination with RT, surgery or
chemotherapy.81

A CAVEAT: THE PROBLEM OF PROSTATE
CANCER MULTIFOCALITY AND STEM
CELL SUBPOPULATIONS
CaP is unique in that it is a multifocal cancer with clonal sub-
populations that have varied histological and molecular abnor-
malities that could relate to differential outcome. Heterogeneity
exists both within and between patients. The vast majority of
prostatectomies have more than one malignant focus within a
prostate gland, which can be subcategorized by differential
genomics based on PTEN, c-MYC and NKX3.1 gene abnor-
malities, therefore containing CaP foci with differential prog-
nostic information.34,82 It is now well appreciated that tumours
with identical GSs may exhibit profound genetic heterogeneity
within a single prostate gland.44 It is also unclear whether
a focus that is being assayed will potentially fail treatment
owing to local radioresistance or because it initially harboured
a lethal metastatic clone. Anatomically distinct tumour metas-
tases can be derived from a single progenitor clone;83–85 a concept
elegantly proven in renal cancer, whereby single needle biopsies
did not predict the genetic heterogeneity within the primary tu-
mour nor distant metastases for an individual patient.86 Studies
using circulating tumour cells and circulating cell-free DNA, RNA
and miRNA, after improvements in assay specificity and sensi-
tivity, could be useful as a means to detect the most aggressive
features of CaP within so-called, “liquid biopsies”, as a function of
staging, prognosis and treatment response.87–89

These findings must be also placed into the context of CaP tu-
mour initiating cells (TICs), which constitute that subfraction of
cells, which must be sterilized by RT to prevent tumour cell
repopulation after treatment (i.e. treatment failure).90,91 Pre-
clinical studies suggest that CaP TICs may have increased bio-
logical growth under hypoxia and exist as a radioresistant
hypoxic niche.92–94 However, rigorous studies are required to
delineate the exact TIC markers that will differentiate this
subpopulation for specific genomic studies as this relates to
individualized prognosis.95,96 Finally, subtumoural heteroge-
neity in cancer metabolism (e.g. both acute and chronic
hypoxia co-exist within a tumour and lead to significant gra-
dients of oxygen consumption) could also confound quanti-
tation and summary statistics for assaying the fraction of
tumour hypoxia from one patient to another.14 Intraprostatic
heterogeneity must therefore be adequately “sampled” across
multiple foci and TIC subpopulations with genomic or hyp-
oxia assays, such that the most aggressive and key features of
tumour progression and/or prognosis are not missed.

CONCLUSIONS
A robust understanding of the interplay between hypoxia and
genomics in the context of tumour heterogeneity is required to
facilitate precision medicine for CaP. We must embrace these
complexities if we are to target the most aggressive cases of CaP
to improve cure rates (Figure 2). The genome-wide RNA- and
DNA-based prognostic signatures developed and validated on
post-treatment radical prostatectomy specimens must now
be validated using pre-RT biopsies. The enormous reduction
in cost and materials required for whole-genome and whole-
transcriptome sequencing will further detail the genomics of
CaP. Hypoxia-based assays must include functional assessment
of DNA repair pathways if the concept of contextual synthetic
lethality is to be acted upon within the clinic. Arranging the
marriage between these biological end points will highlight key
features of aggressive CaP variants that will best explain het-
erogeneous clinical outcome and provide novel treatments to
offset both local and systemic resistance.
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