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Linkage analysis in autotetraploid species has been an historical
challenge in quantitative genetics theory and is a stumbling block
that urgently needs to be removed in the rapidly emerging genome
research on this species, such as cultivated potato. This article
presents theory of a full model of tetrasomic linkage and develops
a statistical framework for the linkage analysis. The model con-
siders both double reduction and recombination, the most essen-
tial features of tetrasomic inheritance with linked loci, whereas the
statistical method takes appropriate account of the major com-
plexities in analyzing both dominant and codominant molecular
marker data during map reconstruction in tetraploid species. These
complexities include the problems arising from multiple dosage of
allelic inheritance, the null allele, allelic segregation distortion,
mixed bivalent and quadrivalent pairing in meiosis, and incomplete
information of marker phenotype data. The theoretical analysis
established the relationship between the coefficients of double
reduction at linked loci, which is essential in the present tetrasomic
linkage analysis and in assessing the impact of double reduction on
the evolution of tetraploid populations. The statistical method,
based on the combination of theoretical analysis and a computer-
based algorithm, provided analytical tools for predicting the
maximum-likelihood estimates of the model parameters. A simula-
tion study showed the feasibility of a practical implementation of
the method, detailed the procedure of the analysis, validated the
power and reliability in the parameter estimation, and compared
the present method with those proposed in the current literature.

Understanding the genetic mechanisms of polyploidy has long
been considered an important topic of the evolutionary

biology of eukaryotes, in particular, f lowering plant species, and
for their genetic improvement (1–5). In the era of genomics,
genetic linkage maps are now or quickly becoming available for
humans and for almost all important diploid animal and plant
species, and they have provided the first milestone for genome
projects in these species. In sharp contrast, the corresponding
study of polyploid species is still in its infancy. Recently, signif-
icant research efforts have been made to develop linkage maps
for many important polyploids, such as cultivated potato, sug-
arcane, alfalfa, and sour cherry (6–10). Because of a lack of
well established theory for linkage analysis with polysomic
inheritance, these studies had been based either on the use
of single-dose (simplex) dominant markers (e.g., AFLPs and
RAPDs) that segregate in a simple 1:1 ratio in segregation of
mapping populations or use of the corresponding diploid rela-
tives as an approximation to the polyploid case. Several reasons
exist why genetic linkage analysis at a polyploid level is neces-
sary. First, meiotic processes in autopolyploids differ greatly
from those in diploids (11). This finding suggests a requirement
to take account of the distinct features of gene segregation of
autopolysomic inheritance. Second, polyploidization and subse-
quent evolution of polyploid genomes is an extremely dynamic
process (3), implying that it may not be appropriate to approx-
imate a polyploid genome directly with its diploid relative. Third,
the diploid relatives of some polyploid species may not exist.
Finally, use of more informative genetic markers such as DNA

microsatellites requires modeling the inheritance of multiplex
alleles of the polyploids.

Genetic linkage analysis in autotetraploid species has been a
theoretically difficult topic in the history of quantitative genetics
ever since the pioneering work of Fisher (12) and Mather (13).
To meet the need of genome projects of recently launched
genome studies in several polyploid species, much research has
focused on developing theory and statistical methods for con-
structing genetic linkage maps in autotetraploid species (14–18).
However, these studies have been based on various assumptions
that have avoided various degrees of complexity of the analyses,
on the one hand, but ignored some essential features of autotet-
rasomic inheritance and practical data analysis on the other. The
assumption of bivalent pairing of homologous chromosomes in
autotetrasomic meiosis, which was made in almost all currently
relevant literature (14–21), remarkably reduces the challenges in
modeling autotetrasomic linkage analysis.

One of the most important features of autotetrasomic inher-
itance is the phenomenon of double reduction, i.e., sister chro-
matids can end in the same gamete as a result of homologous
chromosomes forming a quadrivalent, followed by crossing over
between the locus and spindle attachment (13). The probability
of the meiotic event is defined as the coefficient of double
reduction. Double reduction is the major biological cause of
segregation distortion in autotetrasomic linkage analysis, and the
coefficient of double reduction at any locus depends to a great
extent on its genetic distance from the centromere (11–13). It
also plays a dominant role in evolution of autotetraploid ge-
nomes (22). Bailey (11) pointed out that no theoretical basis
exists for predicting the frequency of any given mode of gamete
formation in terms of the recombination fraction between the
two loci and the two double-reduction parameters. Thus, double
reduction has been a historical problem in autotetrasomic ge-
netic linkage analysis. More recently, Wu and his colleagues
(23) attempted to integrate double reduction into linkage anal-
ysis in autotetraploids. However, their study was restricted only
to the unrealistic assumption that the two parental genotypes,
which were crossed to initiate the mapping populations, had to
differ at all four alleles at each of the two loci. With such an
assumption, the analysis becomes trivial because both double
reduction and recombination events can be resolved directly
from segregation of these alleles. This assumption concealed the
essential challenge arising from the problem. Second, their
analysis was based entirely on modeling segregation of gamete
genotypes at two such loci. In practice, the parental lines that
match such a requirement are extremely rare, and so the major
difficulties in statistically modeling real data were not properly
addressed. Thus, genetic linkage analysis of autotetraploids
remains a theoretical and methodological problem to be solved.
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In this article, we present a general theory for linkage analysis
in autotetraploid species and propose a statistical framework for
predicting double reduction and recombination frequency be-
tween two loci with tetrasomic inheritance. The theory models
both double reduction and recombination simultaneously, and
the method takes appropriate account of a series of practical
problems involved in tetrasomic linkage analysis by using dom-
inant or codominant DNA-marker data.

Theory of Autotetraploid Linkage Analysis: Model
and Notation
The theoretical analysis considers a full-sib family derived
from crossing two autotetraploid parental individuals. For
simplicity, but without loss of generality, we first consider
segregation and recombination of genes at two marker loci A
and B (with dominant or codominant inheritance). Let G1 and
G2 be the genotypes at the marker loci for the two parents.
When we are considering linked loci, it is often necessary to
specify how the alleles at different loci are grouped into
homologous chromosomes, i.e., linkage phases of the alleles.
Thus, a general presentation for an autotetraploid genotype at
the two loci can be A1B1�A2B2�A3B3�A4B4, indicating that
alleles Ai and Bi (i � 1, 2, 3, 4) locate on the same homologous
chromosome. Let the two loci be linked with recombination
frequency r.

To incorporate double reduction in the linkage analysis, we
need to consider the locations of the two linked loci relative to
the location of the centromere. Without loss of generality, we
assume the order of their map locations is the centromere, locus
A, and locus B. Because the probability of double reduction at
a locus is proportional to its distance from the centromere (11),
this assumption implies that �, the coefficient of double reduc-
tion at locus A � �, the coefficient of double reduction at locus
B. To model the gametogenesis, Fisher (12) classified the
gametes generated from an autotetraploid individual into 11
modes of gamete formation according to the occurrence of
double reduction and recombination events in meiosis but was
unable to express frequencies of these gamete types in terms of
the recombination and double-reduction parameters. After a
tedious and careful analysis on probability distribution of double
reduction and recombination events under the two-loci model,
we are able to express the probability distribution for each of the
gamete formation modes (mi) and, in turn, for each individual
gamete genotype as functions of � and r. These findings are
summarized in Table 1. It can be seen from the table that �, the
coefficient of double reduction at locus B, can be expressed in
term of a function of � and r as:

� � m1 � m2 � m5 � m6 � ���3 � 4r�2 � 2r�3 � 2r���9. [1]

This equation bridges a relationship between the coefficients
of double reduction at two linked loci, which is mediated by
the recombination frequency between them. Given that the
maximum value of the coefficient of double reduction is 1�6,
Eq. 1 also provides prediction of the largest possible recombi-
nation frequency between locus A and a locus linked to it, which
is given as

rmax �
3�1 � 4�� � �3�1 � 4��

4�1 � 4��
. [2]

Eq. 2 is useful not only for the linkage analysis discussed in the
present study but for evaluation of the extent of double reduction
in shaping the evolution of autotetraploid genomes (22).

For any given individual genotype, at the most, 136 distinct
gamete genotypes exist. A general formula for the frequency of
these gametes can be written as:

gk �
ak

108
�uk�1 � ��1�ukr�k�1 � r�2��k, [3]

where ak is a constant, such as 27, 3, 18, . . . , 2 in Table 1, uk takes
a value of 1 if the gamete is generated from double-reduction
meiosis or 0 otherwise, whereas �k � 0, 1, or 2, corresponding
to the number of recombinant chromosomes carried by the
gamete. Since, at the most, 16 different alleles exist between two
tetraploid individuals at two loci, a total of at the most 1362 �
18,496 zygote genotypes of offspring occur by crossing any two
parental individuals.

This formulation assumed complete quadrivalent pairing
among homologous chromosomes during meiosis. Much cyto-
genetic evidence shows that homologous chromosomes may
segregate due to a mixture of quadrivalent and bivalent pairings.
Luo et al. (18) showed that a general formula for the frequency
of a gamete from a bivalent pairing was given by:

g�k �
a�k
12

r� �k�1 � r�2���k. [4]

To model the mixed chromosomal pairings, we denote � for the
probability of a randomly chosen diploid gamete being from
bivalent pairing. With the assumption of a random union of
gametes from two parents, a general expression for the fre-
quency of zygote j, which is composed of gametes k and l, may
be in form of

Table 1. Probability distribution of the modes of gamete formation and gamete genotypes at
two linked loci from a quadrivalent meiosis of autotetraploid species

Gametes
(1 � i, j, k, l � 4) Frequency

Double reduction and
recombination events

Probabilities (i � 1, 2, . . . , 11)

Modes (mi) Gametes (gi)

AiBi�AiBi 4 A and B (0) �(1 � r)2 27�(1 � r)2�108
AiBj�AiBj 12 A and B (2) �r2�3 3�r2�108
AiBi�AiBj 12 A (1) 2�r(1 � r) 18�r(1 � r)�108
AiBj�AiBk 12 A (2) 2�r2�3 6�r2�108
AiBi�AjBi 12 B (1) 2(1 � �)r(1 � r)�3 6(1 � �)r(1 � r)�108
AiBj�AkBj 12 B (2) 2(1 � �)r2�9 2(1 � �)r2�108
AiBi�AjBj 6 — (0) (1 � �)(1 � r)2 18(1 � �)(1 � r)2�108
AiBi�AjBk 24 — (1) 4(1 � �)r(1 � r)�3 6(1 � �)r(1 � r)�108
AiBj�AjBi 6 — (2) (1 � �)r2�9 2(1 � �)r2�108
AiBj�AjBk 24 — (2) 4(1 � �)r2�9 2(1 � �)r2�108
AiBj�AkBl 12 — (2) 2(1 � �)r2�9 2(1 � �)r2�108

The number in parentheses denotes the number of recombinant chromosomes in the gametes; — means that
neither loci A nor B involves double reduction.
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hj � �2g�kg�l � ��1 � ���gkg�l � glg�k� � �1 � ��2gkgl

�
�2a�j
144

r� �j�1 � r�4�� �j �
��1 � ��bj

12 	 108
�uj�1 � ��1�ujr�j�1 � r�4��j

�
�1 � ��2aj

1082 �
j�1 � ��2�
jr�j�1 � r�4��j ,

where aj � akal, bj � a�kal � aka�l, 
j � uk � ul, and �j � �k �
�l. a�j, u�j, and ��j are similarly defined.

The first difficulty involved in tetrasomic linkage analysis is
that no simple one-to-one relationship usually exists between the
phenotype and the genotype of molecular markers scored in
tetraploid individuals. Three reasons for this exist. First, a
multiple dosage of an allele cannot be distinguished from a single
dosage on the basis of the gel band pattern. Second, some alleles
may not be revealed as the presence of a corresponding gel band,
i.e., the null alleles (24). Third, dominance may mask the
presence of recessive alleles. We have developed the relationship
between marker phenotypes and genotypes at a single tetraploid
locus and pointed out that as many as six genotypes could exist
for one phenotype (18). Thus, the probability of zygote pheno-
type i can be expressed in the different forms of the model
parameters �, �, and r.

fi��, �, r� � �
g�i

hg �
�2

144 �
g�i

a�gr��g �1 � r�4���g

�
��1 � ��

12 	 108 �
g�i

bg�
ug�1 � ��1�ugr��g�1 � r�4���g

�
�1 � ��2

1082 ag�

g �1 � ��2�
gr�g�1 � r�4��g

� �2xi0�r� � ��1 � ��xi1��, r� � �1 � ��2 xi2��, r�

[5]

� �2�
l�0

4

ci10lrl�1 � r�4�l

� �
k�0

1 � ��1 � �� �
l�0

4

ci2klrl�1 � r�4�l��k�1

� ��1�k

� �
k�0

2 � �1 � ��2�
l�0

4

ci3klrl�1 � r�4�l��k�1 � ��2�k

� yi0��, r� � �
k�0

1

yi1k��, r��k�1 � ��1�k

� �
k�0

2

yi2k��, r��k�1 � ��2�k [6]

� �
l�0

4 � �2ci10l � ��1 � ���
k�0

1

ci2kl�
k�1 � ��1�k

� �1 � ��2�
k�0

2

ci3kl�
k�1 � ��2�k� 	 rl�1 � r�4�l

� �
l�0

4

zil��, ��rl�1 � r�4�l [7]

In Eq. 5 ¥g�i indicates the sum over the frequencies of all those
genotypes g that are compatible with the same phenotype i. It
will become clear in the next section of statistical analysis that
the offspring phenotype probability is expressed alternatively by
Eqs. 5–7.

Statistical Analysis
Maximum Likelihood Estimation of the Model Parameters. In the
model above, the unknown parameters are �, �, and r. The
statistical analysis predicts these model parameters based on P1

and P2, the phenotype scored on the two parents, and O � (o1,
o2, . . . , on), the phenotype records of a random sample of n
offspring individuals from the parental lines. Let G � (g1, g2 . . . ,
gn) be the genotypes of the offspring individuals, respectively.
The likelihood function of the parameters 	 � (�, �, r) given
P1, P2, and O can be written as:

L�	�P1, P2, O�

� Pr
P1, P2, O�	�

� Pr
P1, P2�	�Pr
O�P1, P2, 	� � Pr
O�P1, P2, 	�

� �
G1,G2

Pr
G1, G2�P1, P2, 	� Pr
O�G1, G2, P1, P2, 	�

� �
G1,G2

Pr
G1, G2�P1, P2� Pr
O�G1, G2, 	� [8]

In the likelihood function, the probability Pr{G1, G2�P1, P2} can
be calculated easily from various parental genotypes G1 and G2,
which are compatible with the given phenotypes P1 and P2. Thus,
the analysis is focused on the probability Pr{O�G1, G2, 	}, which
is also the likelihood function Lg(G1, G2, 	�O). We assume that
the offspring phenotype is randomly sampled from a multino-
mial distribution with probability parameters given by fi, then the
likelihood function has a form of

Lg�G1, G2, 	�O� � Pr
O�G1, G2, 	�

� � n
n1n2 · · · nM

� f 1
n1 f 2

n2 · · · f M
nM, [9]

where ni (i � 1, 2, . . . , M) is the number of individuals with the
ith phenotype class in the sample. The logarithm of the likeli-
hood is thus

ln�Lg�G1, G2, 	�O�� � C � �
i�1

M

ni ln�fi�. [10]

The derivatives of the function with respect to the unknown
parameters �, �, and r are

�

��
ln�Lg�G1, G2, 	�O��

� �
i�1

M ni

fi

�

��
fi � �

i�1

M ni

fi

�

��
�

k�0

2

�k�1 � ��2�kxik

� �
i�1

M

ni �
k�0

2 xik�k�1 � ��2�k

fi

�

��
ln�xik�k�1 � ��2�k�

� �
i�1

M

ni �
k�0

2


ik

�k � 2��

��1 � ��
[11]
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�

��
ln�Lg�G1, G2, 	�O��

� �
i�1

M ni

fi

�

��
fi

� �
i�1

M

ni� �
k�0

1 yi1k�k�1 � ��1�k

fi

�

��
ln�yi1k�k�1 � ��1�k�

� �
k�0

2 yi2k�k�1 � ��2�k

fi

�

��
ln�yi2k�k�1 � ��2�k��

� �
i�1

M

ni��
k�0

1

�i1k�k � �� � �
k�0

2

�i2k�k � 2�������1 � ���

[12]

�

�r
ln�Lg�G1, G2, 	�O��

� �
i�1

M ni

fi

�

�r
fi � �

i�1

M

ni�
l�0

4 zi1rl�1 � r�4�l

fi

�

�r
ln�zi1rl�1 � r�4�l�

� �
i�1

M

ni�
l�0

4


il

�l � 4r�
r�1 � r�

, [13]

where 
ik � xik�k(1 � �)2�k�fi is the conditional probability of
individuals with the ith phenotype having k gametes from meiosis
with bivalent chromosome pairing, �ijk � yijk�k(1 � �)j�k�fi is the
conditional probability of individuals of the ith phenotype with k
double-reduction gametes, and 
ik � zikrk(1 � r)4�k�fi, the proba-
bility of individuals of the ith phenotype with k recombinant
chromosomes. Set Eqs. 11–13 to be zero, the maximum-likelihood
estimates (MLEs) of the parameters can be calculated as:

�̂ �
1

2n �
i�1

M

ni�2
i2 � 
i1� [14]

�̂ � �
i�1

M

ni �
j�1

2 �
k�0

j

k�ijk	�
i�1

M

ni �
j�1

2

j �
k�0

j

�ijk [15]

r̂ �
1

4n �
i�1

M

ni �
j�1

4

j
ij. [16]

This procedure represents a version of the EM algorithm for
achieving the MLEs of the model parameters (25) in the present
context. The algorithm starts with a given set of arbitrary values
of the unknown parameters �, �, and r; uses these values as
estimates of the parameters to calculate the conditional proba-
bility, 
ik, �ijk, and 
ik (the expectation step); and these proba-
bilities are then incorporated into Eqs. 14–16 to calculate the
new estimates of �, �, and r, respectively (the maximization step).
These two steps are iterated until the sequence of the likelihood
function given by Eq. 9 converges.

The second challenge of the linkage analysis is to calculate the
expected frequencies of phenotypes of offspring from any given
pair of parental genotypes. It is obviously impractical to carry out
the calculation manually. We developed a computer-based al-
gorithm that automates calculation of cijkl, the constant coeffi-
cients in Eqs. 5–7 for fi, the ith phenotype frequency. The

algorithm is detailed and illustrated in Supporting Text, which is
published as supporting information on the PNAS web site. With
cijkl and parameter values, the terms 
ik, �ijk, and 
ik can be
worked out easily and, in turn, this statistical algorithm can be
programmed accordingly.

The likelihood analysis discussed above can be carried out for all
possible pairs of parental genotypes that are compatible with their
given phenotypes. For a given marker phenotype, at the most, six
possible genotypes exist at a locus, 36 possible configurations of
these genotypes are at two loci for one individual, and 36 
 36 �
1,296 possible configurations exist for a pair of parental genotypes.
However, to combine two one-locus genotypes into one two-locus
genotype one must take into account the linkage phase of alleles at
the two loci. The number of possible different linkage phases
depends on the number of distinct alleles at each locus and increases
exponentially with the number of loci under consideration. In a
two-locus system of tetrasomic inheritance, an individual genotype
may have a maximum of 24 distinct linkage phases, and a pair of
individuals may have a maximum of 24 
 24 � 576 distinct
linkage-phase configurations. Therefore, the number of pairs of
parental genotypes, which need to be considered in this statistical
analysis, could be as large as 1,296 
 576 � 764,496! It is certainly
possible by use of a fast computer, but computationally inefficient,
to predict the most likely parental genotypes from all these possi-
bilities. We have developed a statistical method for predicting the
probability distribution of all possible parental genotype pairs at a
dominant or codominant marker locus on the basis of their own and
their progeny’s phenotypes scored at that locus (17). This method
enables the number of all possible parental genotype pairs, the most
probable genotype pair, and the MLEs of the coefficient of double
reduction to be estimated at each individual locus. Simulation study
and analysis of 74 offspring of a tetraploid potato cross-
demonstrated that the most likely parental genotypes were pre-
dicted usually with a probability value of �90%. To reduce com-
putational demand in searching over all possible two-locus parental
genotypes, we suggest use of the single-locus method to determine
the most likely parental genotypes at each of the linked loci. Then
we focus on these predicted one-locus genotypes in searching for
the most likely phase of the linked alleles and, thus, the most likely
parental genotypes at the linked loci. This may reduce the compu-
tational demand dramatically.

Information and Power of the MLE. The likelihood-based analysis
described previously provides a framework for calculating the
asymptotic variance–covariance matrix of the MLEs of the
model parameters and for predicting statistical power for testing
the significance of double reduction at locus A or�and genetic
linkage. Let G1 and G2 be the most likely parental genotype
searched, and �̂, �̂, and r̂ be the MLEs of �, �, and r, respectively.
The likelihood-ratio test statistics for testing significance of
double reduction and linkage are given by

G�
2 � 2
ln�Lg�G1, G2, �̂, �̂, r̂�O� � ln�Lg�G1, G2, �̂, � � 0, r̂�O��

[17]

Gr
2 � 2
ln�Lg�G1, G2, �̂, �̂, r̂�O� � ln�Lg�G1, G2, �̂, �̂, r � 0.5�O��,

[18]

respectively. In ref. 26, it was shown that these test statistics have
an approximate large-sample noncentral chi-square distribution
with 1 df, and the noncentrality parameters in the present
context are, respectively:

�� � 2n�
i�1

M

fi��̂, �̂, r̂� ln� fi��̂, �̂, r̂�

fi��̂, 0.0, r̂�� [19]
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�r � 2n�
i�1

M

fi��̂, �̂, r̂� ln� fi��̂, �̂, r̂�

fi��̂,�̂,0.5�
�. [20]

Thus, the power for the statistical test at a given significance level
� is given by the probability

�x � Pr
�1,�x

2 � �1
2����, [21]

where x � � or r corresponds to the test for double reduction or
linkage, respectively. �1,�

2 denotes a random variable with a non-
central chi-square distribution with 1 df and the noncentrality
parameter �, and �1

2 (�) is the 1 � � percentile of a central chi-square
distribution, also with 1 df. The expectation of the second deriva-
tives of the likelihood function with respect to the model parameters
x and y, �xy

2 � E[(�2��x�y) ln(Lg(G1, G2, 	�O)], can be expressed as
the simplified forms of

��
2 �

�n
�2�1 � ��2 ��

i�1

M 1
fi
��

j�0

2

j�ij�2

� 4�2� [22]

��
2 �

�n
�2�1 � ��2 �

i�1

M 1
fi
� �

j�1

2

�j�1 � ��2�j �
k�0

j

�j � ���ijk�2

[23]

�r
2 �

�n
r2�1 � r�2 ��

i�1

M 1
fi
��

j�0

4

j�ij�2

� 16r2� [24]

���
2 �

�n
��1 � ����1 � ��

�
i�1

M 1
fi
�
j�0

2

j�ij �
k�0

j

�k � j���ijk [25]

��r
2 �

�n
��1 � ��r�1 � r� �

i�1

M 1
fi
���

j�0

2

j�ij���
j�0

2

j�ij� � 8�r� [26]

��r
2 �

�n
��1 � ��r�1 � r� �

i�1

M 1
fi
�
j�0

2

j�ij �
k�0

j

�k � j���ijk, [27]

where �ij � �j(1 � �)2�jxi(j�1), �ijk � �k(1 � �)j�kyijk, and �ij �
rj(1 � r)4�jzij, with xij, yijk, and zij being defined in Eqs. 5–7,
respectively. The simplified forms can be derived by use of
the formulae illustrated in Supporting Text. Thus, the asymp-
totic variance–covariance matrix of the MLEs of �̂, �̂, and r̂ is
given by:
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[28]

Simulation Examples. For illustration of the theoretical analysis
and statistical method developed in the present study, we
simulated a full-sib family of 200 individuals from crossing two
autotetraploid genotypes AA�BB�BB�OB and CA�DA�EC�
EO, where O denotes a ‘‘null allele’’ or a recessive allele. For a
given simulated value of �, the simulated values of � and r were
independently chosen, but the values of � were determined from
Eq. 1 for given � and r. Six sets of simulation parameters were
considered and tabulated as the first four columns of Table 2.

Table 2 tabulates the means and standard errors (in brackets) of
the MLEs based on 100 repeated simulations. The MLEs were
searched from all possible linkage phases for each of all possible
parental genotypes based on the phenotype data of the parents and
their offspring. It can be seen that the model parameters were
predicted adequately by the corresponding MLEs. We calculated
empirical powers for testing significance of double reduction and
linkage as a proportion of the corresponding significant tests over
the repeated simulation trials, and these were denoted as �� and �r
respectively. It showed that the likelihood-ratio statistic had a power
of 100% for detecting linkage in all these simulated populations.
However, the statistical power for testing double reduction was
decreased as expected when bivalent pairing accounted for a high
proportion (i.e., 75%) of meioses or when it occurred at a low
frequency (i.e., � � 0.05). Table 3 lists the top 10 most likely
parental genotypes, the MLEs of � and r, and the corresponding
log-likelihood value from the first single data set from simulation
with � � 0.05, � � 0.1, and r � 0.1. It indicated that the true parental
genotypes were diagnosed as the most likely genotypes, which was
as many as e(689.31–679.33) 
 22,026 times more likely than the second
most possible prediction of the genotypes. To demonstrate the
present algorithm in resolving different linkage phases of parental
genotypes, we investigated distribution of values of the likelihood of
all the possible linkage phases of the most likely parental genotypes.
Fig. 1, which is published as supporting information on the PNAS
web site, illustrated change in the likelihood values over change in

Table 2. Simulated parameters and means and standard errors (in parentheses) of their MLEs

� � � r �̂ �̂ �̂ r̂ �� �r p1 p2

0.00 0.10 0.14 0.10 0.002 (0.001) 0.1024 (0.0027) 0.1375 (0.0018) 0.0985 (0.0025) 1.00 1.00 1.00 1.00
0.25 0.10 0.14 0.10 0.259 (0.009) 0.1028 (0.0030) 0.1390 (0.0024) 0.0994 (0.0023) 1.00 1.00 1.00 1.00
0.50 0.10 0.14 0.10 0.510 (0.013) 0.1085 (0.0042) 0.1434 (0.0033) 0.0993 (0.0027) 1.00 1.00 1.00 1.00
0.75 0.10 0.14 0.10 0.748 (0.016) 0.1094 (0.0051) 0.1443 (0.0041) 0.1020 (0.0027) 0.98 1.00 1.00 1.00
0.50 0.05 0.10 0.10 0.489 (0.015) 0.0534 (0.0032) 0.1049 (0.0025) 0.1052 (0.0026) 0.95 1.00 1.00 1.00
0.50 0.10 0.12 0.05 0.506 (0.010) 0.1041 (0.0034) 0.1229 (0.0030) 0.0501 (0.0018) 1.00 1.00 1.00 1.00

�, �, �, and r (r̂) are simulated values (or MLEs) of the proportion of bivalent pairing, the coefficients of double reduction and recombination frequency
between two linked loci. �� and �r represent the empirical statistical power for testing significance of double reduction and genetic linkage. p1 and p2 are
frequencies of correct diagnosis of the linkage phase of two parental genotypes.

Table 3. The top 10 most likely parental genotypes at the two
linked loci (G1 and G2), the maximum likelihood estimates of �
and r which were calculated at these genotypes, and the
log-likelihood values (L)

G1 G2 � r L

1 AA�BB�BB�OB CA�DA�EC�EO 0.0102 0.1132 �679.33
2 AA�BB�BB�OB CA�DA�EC�EA 0.0837 0.1804 �689.31
3 AA�AB�BB�BB CA�DA�EC�EO 0.3376 0.1372 �709.83
4 AA�BB�BB�OB CA�DO�EC�EO 0.3431 0.2305 �710.45
5 AA�BB�BB�OB CA�DA�EC�EC 0.0496 0.3923 �718.72
6 AA�BO�BB�OB CA�DA�EC�EO 0.2307 0.1861 �719.99
7 AA�BB�BB�OA CA�DO�EC�EO 0.4120 0.2601 �724.81
8 AA�BB�BB�OA CA�DA�EC�EO 0.2465 0.2759 �726.74
9 AA�BB�OB�OB CA�DA�EC�EO 0.0628 0.1450 �729.50

10 AA�BB�BB�OO CA�DA�EC�EA 0.1205 0.2981 �729.83
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the MLEs of r, which were calculated at these linkage phases. It
showed that the true linkage phases were distinguished without
ambiguity from the remaining possibilities regardless of varying
proportions of bivalent pairing in the simulated autotetrasomic
meiosis.

Discussion
Theoretical analysis of a full model of genetic linkage in au-
totetraploid species that considers double reduction and recom-
bination has been a challenging problem in the history of genetic
linkage studies (11–13) and an important topic in the era of
genome research in autotetraploids (14–18). Taking advantage
of advances in modern statistics, computational technology, and
molecular biotechniques, the present study addresses a series of
key problems in such an analysis.

The present study has succeeded in modeling the distribution
of offspring genotypes at two linked loci from crossing any two
parental genotypes in terms of the coefficient of double reduc-
tion at one of the two loci and recombination fraction between
them. This analysis has filled the gap left by the pioneering works
(11–13), which was subsequently addressed but not properly
solved in more recent studies (22, 23).

This tetrasomic model of gene segregation and recombination
created a theoretical basis for the statistical method developed in
the present study, which takes appropriate account of most, if not
all, essential features of the molecular marker data in the current
construction of the genetic map of the autotetraploid species. These
features include inheritance of alleles with multiple dosages, exis-
tence of null alleles, allelic segregation distortion due to double
reduction, mixture of bivalent and quadrivalent pairings among
homologous chromosomes in meiosis, and incomplete information
of phenotype in regard to genotype. The method was built on a
combination of a computer-based approach for calculating the
conditional probability distribution of offspring phenotypes given
their parental phenotypes and the EM algorithm for calculating the
MLEs of the model parameters. In addition, the likelihood-based
method provides a prediction of the most likely parental genotypes
at linked loci, a direct evaluation of the statistical power for
detecting significance of double reduction and linkage, and calcu-
lation of the asymptotic variances and covariances of the MLEs.
Simulation examples demonstrated the feasibility of implementing
the algorithm to analyze practical data, validated the adequacy of
parameter estimation under various models of chromosomal pair-
ing, and showed a sharp resolving power in diagnosing the most
likely parental genotypes and their linkage phases from a large
number of possible rivals. Moreover, the present method offers
appropriate modeling of both bivalent and quadrivalent chromo-
somal pairing during autotetraploid meiosis, distinguished sharply
from the methods that appeared in almost all recent literature and
considered bivalent pairing only (14–21). These methods cannot be
used to cope with complexities in patterns of gene segregation and

recombination due to double reduction. For instance, a total of 41
possible offspring phenotypes exist for the simulated parental
genotypes in the present simulation study when double reduction is
taken into account, but this number reduces to 36 if only bivalent
pairing is assumed. Thus, these methods are seriously limited in
analyzing data in practice.

The present study involved a pairwise approach, but the theo-
retical analysis of the study has built a key stepping stone for the
analysis of multiple loci. In practical implementation, we may either
implement the least-squares method that was originally developed
by Stam (27) for joining the pairwise loci linkage analysis into
reconstruction of multiple loci linkage maps in diploids and ex-
tended to the tetraploid case (18) or use the hidden Markov chain
model first proposed by Lander and Green (28) to construct genetic
linkage maps of multiple loci in diploid species. Integration of the
present study into the least-squares method is straightforward for
the estimates of recombination frequencies between all pairwise
loci, and the corresponding likelihood values are all required for
joining the pairs of linked loci into linkage maps. On the other hand,
the present probabilistic model of gene segregation and recombi-
nation at two linked loci may be readily converted into the transition
probabilities of the Markov chain process, a key component of the
hidden Markov chain model analysis. However, the major challenge
of the hidden Markov chain model-based multiple loci analysis lies
in the computational demand in searching over the huge number of
all possible orders of multiple loci and linkage phases at these loci.
It is no longer appropriate to investigate all these alternatives
exclusively. An effective approach is to treat this question as a
combinatorial optimization problem, which can be solved by im-
plementing the simulated annealing algorithm (29) to search for
optima of the multiple loci likelihood function of discrete variables
of the linkage orders and phases.

Double reduction has been recognized as a significant factor
in evolution of breeding structure (30), in maintenance of genetic
polymorphism (1), and in affecting persistence of recessive
deleterious mutations (31) in polyploid populations. More re-
cently, Butruille and Boiteux (22) stressed its role in determining
gametophytic selection–mutation equilibrium based on a single-
locus model of double reduction and pointed out the need to
incorporate recombination into the system. The multilocus
model allows not only the extent of effect of double reduction on
the genome to be assessed but also enables a joint effect of
double reduction and recombination to be investigated. The
model proposed here has thus created such an opportunity to
address these evolutionary questions in addition to its central
utility in genetic map construction in autopolyploid species.
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