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Abstract

Sedimentation equilibrium (analytical ultracentrifugation) is one of the most inherently suitable

methods for the determination of average molecular weights and molecular weight distributions of

polymers, because of its absolute basis (no conformation assumptions) and inherent fractionation

ability (without the need for columns or membranes and associated assumptions over inertness).

With modern instrumentation it is also possible to run up to 21 samples simultaneously in a single

run. Its application has been severely hampered because of difficulties in terms of baseline

determination (incorporating estimation of the concentration at the air/solution meniscus) and

complexity of the analysis procedures. We describe a new method for baseline determination

based on a smart-smoothing principle and built into the highly popular platform SEDFIT for the

analysis of the sedimentation behavior of natural and synthetic polymer materials. The SEDFIT-

MSTAR procedure – which takes only a few minutes to perform - is tested with four synthetic

data sets (including a significantly non-ideal system) a naturally occurring protein (human IgG1)

and two naturally occurring carbohydrate polymers (pullulan and λ–carrageenan) in terms of (i)

weight average molecular weight for the whole distribution of species in the sample (ii) the

variation in “point” average molecular weight with local concentration in the ultracentrifuge cell

and (iii) molecular weight distribution.

Introduction

The molecular weight (Da) or equivalently the ‘molar mass’ (g/mol) is one of the most

important parameters defining a polymer, although it is not trivial to measure, particularly

for polydisperse systems. Sedimentation equilibrium (SE) in the analytical ultracentrifuge is

a well established method for obtaining the molecular weights of polymers1,2. It has an

absolute basis (not requiring calibration standards or markers, or assumptions over

conformation) and has an inherent fractionation ability, without the need for columns or

membranes and associated assumptions over inertness. It is also not hampered by
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contamination through large supramolecular particles. With the use of multi-hole rotors and

multi-channel cells, it is now possible to run up to 21 samples simultaneously in a single

run. One drawback which has held back its wide application is that the procedures for data

capture and analysis previously available have not made the method the easiest to apply2.

For studies on proteins and other molecules with well-defined molecular weights the last

two decades has seen the development of powerful software procedures for the analysis of

optical records from sedimentation equilibrium, taking advantage of on-line scanning of uv/

visible optical records (absorption/ fluorescence) or the on-line capture using a charge-

coupled device (CCD) camera of the higher precision data yielded in the form of fringe

displacements by the Rayleigh interferometric system. A characteristic feature of the

analysis of protein interactions by SE is the direct fit of the measured signal profiles with a

few discrete terms of Boltzmann exponentials, each corresponding to a different species of

free protein or protein complex, and often linked in their amplitude by mass action law for

reversibly interacting system. As recently reviewed3, advanced strategies for SE analysis,

such as implemented in the multi-method analysis platform SEDPHAT4, include the global

fitting of many SE signal profiles acquired at different loading concentrations, different rotor

speeds, and different data acquisition with models that create constraints through implicit

mass conservation and different interaction models, yielding binding affinities and

stoichiometries5.

The analysis of polymers with a quasi-continuous distribution of molecular weight – or

suspensions of mixtures with a diverse distribution of molecular weight – poses different

problems. In contrast to the quasi-discrete problem of protein interactions, where often the

buoyant molar mass values and therefore the exponents of the Boltzmann terms for each

species are known a priori, here the buoyant molecular weights are unknown and their

averages and their entire distribution is estimated from the evaluation of the exponential SE

profiles. This problem is further exacerbated by the steep rising of concentration profiles

near the cell base, and the shadow of the cell base that leaves a fraction of material

undetected and to be extrapolated. Conventional methods of estimating average molecular

weights from extrapolation of Rayleigh fringe concentrations or uv/visible absorbancies to

the base of the ultracentrifuge cell6 can lead to serious error particularly if the position of the

bottom of the cell is poorly defined. A different approach was therefore introduced7

involving an operational point average molecular weight known as the M* function: this

approach offered a significant advantage over conventional methods which involved

concentration extrapolation to the cell base, since the M* function is a less sensitive function

of radial position, permitting a more accurate evaluation of the (apparent) weight average

molecular weight Mw,app for the macromolecular components in the solution. This

procedure was initially built into a Wang Desktop calculator, extended into a mainframe

FORTRAN algorithm8 and then into a QUICKBASIC version for PC9. Besides providing a

method of obtaining Mw,app the MSTAR programs also provided estimates of the local or

point weight average molecular weights Mw,app(r) as a function of radial position (r) in the

ultracentrifuge cell8,9. The “app” signifies that the values obtained are apparent values,

which will, at real solute concentration, be affected by thermodynamic non-ideality.

Conventionally an “ideal” value is obtained by extrapolation of either Mw,app or Mw,app(r) to
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zero concentration, although at sufficiently low concentrations Mw,app ~ Mw and Mw,app(r) ~

Mw(r).

A limitation to the accuracy with which Mw (and Mw(r)) could be evaluated was the

procedure employed to estimate the meniscus concentration, a long-standing problem with

the analysis by fringe optics of sedimentation equilibrium data (see, e.g., ref. 6). Although

for absorption optics this involved an extrapolation and an evaluation of the baseline or

background absorbance of non-sedimenting species – and does not create too much

difficulty, for Rayleigh interference – where the optical records are of the solute

concentration relative to a reference position, conventionally taken as the air/solution

meniscus10 – this involved either a rather complex mathematical manipulation of the data

followed by an ill-conditioned extrapolation of two functions, based on a method of Teller et

al11 – the so-called intercept over slope method7 or a separate experiment involving

synthetic boundary cells12. We now present a completely new version of the program which

(i) interfaces into the widely used SEDFIT platform for sedimentation analysis of

macromolecules (ii) provides a much more rigorous method of obtaining the baseline and

meniscus concentration for the Rayleigh interference optical system and (iii) provides an

estimate for the distribution of molecular weight. We now describe the relevant theory

behind the M* function, followed by a description of the algorithm, correcting for non-

ideality where appropriate and then examples are given based on simulated data (single, two

solute, data error and a significantly non-ideal system), a monodisperse protein preparation

(human IgG1) a fractionated “standard” polysaccharide (pullulan P400) and an

unfractionated polysaccharide (λ–carrageenan).

Theory

Average Molecular Weights and M*

Sedimentation equilibrium for a monodisperse ensemble of thermodynamically ideal

macromolecules is characterized by the Boltzmann distribution, leading to a recorded signal

(1)

where s(r) maps the local concentration c(r) at radius r, r0 denotes an arbitrary reference

radius, ε and d denote the macromolecular signal increment and optical path length,

respectively, and s0 denotes a baseline signal offset (often given the symbol ‘E’). In Eq. 1

Mapp is an apparent molecular weight on the given partial-specific volume scale, and we use

the abbreviation

(2)

where  is the partial-specific volume, ρ the solvent density13, ω the rotor angular velocity,

R the gas constant, and T the absolute temperature1. The subscript ‘1’ in Eq. 1 indicates that

this relationship is for a single species.

For an unknown sample, informed by Eq. 1 one may examine a plot of ln(c) vs r2 for an

apparent point weight average molecular weight
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(3)

which would ideally be linear for monodisperse systems and show a positive curvature for

heterogeneous mixtures, or negative curvature for systems with thermodynamic non-ideality

Mw,app can either be evaluated across the whole radial range of data or as a function of radial

position to yield apparent point weight average molecular weights, Mw,app(r). One practical

problem arising in this approach is that one will need to know the signal offset s0, since any

incorrect values of s0 the plot ln(c) versus r2 will gain additional positive or negative

curvature. Furthermore, information can only be gained over the radial range that is optically

accessible between certain radii rlow and rup, which are at some distance from the meniscus

and bottom radii rm and rb. Therefore, Mw,app evaluated this way will not necessarily reflect

the entire contents of the loaded sample mixture, and, in particular, high molecular weight

contributions can be missed.

Addressing this problem, an operational point average molecular weight was defined as7

(4)

with the meniscus concentration cm = c(r=rm) for sector shaped solution columns. It has the

important property that the extrapolation to the bottom of the cell

(5)

yields an apparent weight-average molecular weight of all components present throughout

the solution column7. The application of Eq. 3 and Eq. 4 to noisy data with unknown

baseline offsets presents computational challenges:

First, conventional modes of analysis will require the evaluation of the baseline offset: In the

ln(c) vs r2 approach s0 needs to be explicitly known, whereas in the M* approach the

macromolecular concentration at the meniscus ca needs to be distinguished from the total

signal at the meniscus that will generally be superimposed by the offset s0, or ca = [s(ra) –

s0](εd)−1 This problem can be posed differently for absorbance or interference optical

systems8: the absorbance system may allow for an experimental estimate of s0 to be

determined, for example, from the signal close to the meniscus after a final overspeeding

phase that leads to meniscus depletion conditions, or from scans performed at a wavelength

where solute absorption is absent or minimal. Thus corrected, in absorbance the offset s0 is

usually small. By contrast, the interference optical system fundamentally only allows us to

measure fringe increments across the solution column, without an absolute reference.

Second, due to the derivative in Eq. 3, when applied to noisy data it requires the data to be

pre-smoothed to allow the determination of the numerical concentration derivative. This can

be achieved, for example, with a ‘sliding strip’ procedure8,9 in the previous software

MSTARA with a user-defined width, or with Chebyschev polynomial in the original

MSTAR FORTRAN program8, or with the Savitzky-Golay smoothing and differentiation
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method14 in SEDFIT-MSTAR. By contrast, M* has the virtue of not requiring

differentiation. In the calculation of M*, distortion of the signal and noise amplification can

occur close to the meniscus, but the fraction in Eq. 4 becomes increasingly more stable at

higher radii with the growing integral in the denominator.

Finally, it is necessary for the application of M* to extrapolate the signal to the meniscus rm

and, for the cell average molecular weight, to extrapolate M* to the bottom of the solution

column, rb. In MSTARA the extrapolation of signal to the meniscus is implemented as

linear or polynomial extrapolation14, and similarly is available as an option in SEDFIT-

MSTAR for both estimates of c(r=rm) and M*(r=rb).

The Molecular Weight Distribution c(M)

In parallel, a method has been developed for the explicit determination of the entire

molecular weight distribution, not restricted to its averages5,15-16. It is based on the idea of

direct modeling by least squares the experimental concentration distributions:

(6)

where c(M) is the unknown distribution of species with molecular weight M, each known to

sediment in Boltzmann distributions s1 of the ideal single sedimenting species (Eq. 1), and

the minimization is with regard to the sum over all signal data points si at the radii ri across

the measureable range from rlow to rup.

One key difficulty in this approach is the ill-conditioned nature of this Fredholm integral

equation, for which it can be shown that many different distributions c’(M) will invariably

exist that fit the data indistinguishably well11,12-14. However, in a Bayesian approach it is

straightforward to determine from all distributions that fit the data with statistically

indistinguishable quality the simplest distribution, for example, the smoothest distribution

with Tikhonov regularization, or the distribution with highest information entropy with the

maximum entropy regularization15-19. This approach is available in the software SEDFIT

and SEDPHAT.

A second difficulty is related to the fundamental problem that higher molecular weight

species may sediment predominantly between the highest radius rup that can be optically

accessed and the bottom of the solution column. This problem results in the c(M) method in

undetermined distributions beyond an upper limit of molecular weight, Mup. It has been

shown that this problem can be addressed by the global least squares modeling

(7)

of multiple sedimentation equilibrium profiles at different rotor speeds (with x

distinguishing experiments at different rotor speeds) in combination with implicit mass

conservation5. In Eq. 7, the baseline offset s0,x may be rotor speed dependent (termed the

‘RI noise option’ in SEDFIT-MSTAR), or, alternatively, Eq. 7 may be solved with the
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constraint that all s0,x are equal to s0. If the data are acquired under conditions that sample

both high-molecular weight fractions at low rotor speeds and low-molecular weight fractions

at high rotor speed with meniscus depletion conditions, and if total mass of soluble material

at the first rotor speed is conserved in all following experiments, then the fit of Eq. 7 can

define simultaneously the molecular weight distribution c(M), the baseline s0, and the

bottom position of the solution column rb 5. While this implicit mass conservation method is

widely used in the analysis of interacting systems (in SEDPHAT), where it leads to a drastic

reduction of unknown parameters and significant improvement of statistical accuracy of

binding parameters5,20,21, a similar benefit arises in the determination of molecular weight

distributions of non-interacting macromolecules, as illustrated in ref. 5.

With regard to the computational implementation, SEDFIT-MSTAR solves Eq. 6 and Eq. 7

as a linear least squares problem, which arises after discretization of the distribution c(M)

into typically 50 – 100 molecular weight grid points, and from which all unknowns can be

determined simultaneously in an algebraic operation employing normal equations22. It

should be noted that this includes the simultaneous optimization of both the exponential

amplitudes and all baseline terms. This deviates fundamentally from the traditional

sequential approach where first baselines are fixed, to be followed by the analysis of the SE

gradient. The c(M) distribution at a reference radius r0 is normalized to units of (uniform)

loading signal c0(M)dM that correspond to the estimated contributions to the SE profile,

through analytical integration of Eq. 1 for sector-shaped solution columns. Typically the

analysis takes on the order of 1 sec with current personal computers.

Unfortunately, the solution of Eq. 7 strictly as a linear least squares problem prohibits the

additional consideration of radial-dependent baseline offsets s(r) (‘TI noise’) from multi-

speed global SE analysis. Such radial-dependent baseline offsets are commonly determined

as a byproduct of direct boundary modeling of families of concentration profiles in

sedimentation velocity23. While they can never be independently determined from a single

concentration profile in SE, their consideration in the analysis of SE at multiple rotor speeds

is complicated by the translation Δx of the radial-dependent features due to differential rotor

stretching (which creates the non-linear constraint s(r + Δx,1) = s(r + Δx,2) etc.). Although

baseline profiles s(r) including rotor stretching can be routinely evaluated in the global SE

analysis of interacting systems5,24. This is due to the description of the macromolecular

concentration profiles governed by non-linear concentration parameters, which allows

modified algebraic methods for the similar but translated baseline profile s(r + Δx) 5. Along

the same path, a potential future extension of SEDFIT-MSTAR may allow the consideration

of radial-dependent baselines through treatment of the distribution as a family of non-linear

parameters, although likely incurring significantly higher computational time.

On the other hand, dependent on the range of rotor speeds covered, and other experimental

details such as the elasticity of the window cushion material25 the details of the radial-

dependent noise may not necessarily remain identical after changing rotor speeds5. In any

event, for interference optical data acquisition the experimental determination and

minimization of radial dependent baseline features, for example, through pre-aging of cell

assemblies and recording of water blanks will be the method of choice. These considerations
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and the magnitude of the residual baseline uncertainty will also pose a limit on the useful

concentration range for different types of studies in sedimentation equilibrium.

The removal of TI noise can also be effected experimentally, for interference data, by taking

a series of scans immediately at the start of the run, averaging same, and subtracting this

averaged set of radial values from the final (usually averaged) data set at equilibrium26. This

routine has been followed for all the experimental data reported here.

An executable form of the SEDFIT-MSTAR program can be obtained from the authors on

request, or can be downloaded from https://sedfitsedphat.nibib.nih.gov/software/default.aspx

or from https://www.nottingham.ac.uk/ncmh/unit/method.html#Software. A brief tutorial

with screenshots and further information on its practical application can be obtained from

www.analyticalultracentrifugation.com and via the SEDFIT-L forum (https://list.nih.gov/

cgi-bin/wa.exe?SUBED1=SEDFIT-L&A=1).

Relationship between c(M) and M* - Exponential Smoothing

Even though the motivation and computational approach of M* is very different from c(M) –

the former being a data transformation to derive cell average molecular weights, and the

latter attempting a low-resolution explicit representation of the molecular weight distribution

in a direct least-squares fit – there is a high degree of synergy from the combined application

of both.

First, from the vantage point of M* the c(M) method can be regarded as a highly

sophisticated method to smooth and extrapolate the data, and to estimate the baseline

signals. To this end, we have implemented in SEDFIT-MSTAR the direct fit of the data with

Eq. 6 or Eq. 7. Even disregarding the specific form of c(M), with regard to the extrapolation

of the signal to the meniscus for ca, the exponential superposition represents a special case

of polynomial extrapolation (with infinite number of polynomials) that takes advantage of

our specific knowledge of the expected functional form of the concentration distribution. As

opposed to the polynomial extrapolation based on a trusted region close to the meniscus or

cell base, here we use as the basis for extrapolation the entire solution column. Therefore,

c(M) is an excellent method for determining baseline offsets, precisely because it takes

advantage of data from the entire solution column and provides a best-fit baseline estimate

on a least-squares basis.

Second, in addition to extracting these quantities from the c(M) fit, one can apply the M*

transformation Eq. 4 to the c(M) fit of the data, i.e. to the integral ,

with a result denoted in the following as M*c(M). These transformations of the c(M) fit to the

raw data are shown as red lines in Panels (b) and (c) in Figures 1-3 and 5-7. This not only

honors the information on s0 and cm, but also produces a model for M*(r) across the entire

solution column. Specifically, by design, this M*c(M) distribution will provide a natural

extrapolation of M* to the bottom of the solution column. This extrapolation improves on

the standard polynomial fit by taking into account the information from the entire solution

column.
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Third, when the best-fit model of c(M) is transformed in the ln(c) vs r2 plot, it provides a

smooth fit of the noisy raw ln(c) vs r2, data from which point averages as a function of

signal Mw,app(c), or radius, Mw,app(r) can be easily determined across the entire solution

column, provided the c(M) model yields an adequate fit of the data in the raw data space.

Even though a fit of a transform will usually distort the statistics of the data errors, because

the c(M) fit takes place in the original data space, it will have more appropriate weights than

a fit and differentiation in the ln(c) domain.

In the implementation of SEDFIT-MSTAR, it is possible to switch from the M*

representation of the data to the c(M) representation showing the raw sedimentation profiles,

inspect the quality of fit of c(M) to the raw data and the residuals, and also to study the low-

resolution molecular weight distribution c(M) directly. For example, multi-modal

distributions may be resolved from suitable data. This can provide more insight in the

molecular weight distribution, but in conjunction with information from M* gains

robustness. For example, the M* perspective does not depend on regularization, and it may

be advantageous when empirically applied to data with thermodynamic non-ideality.

When applied to the analysis of multiple sedimentation equilibrium data sets from the same

sample acquired at multiple rotor speeds, the combination of M* with c(M) can be

particularly powerful, especially if mass conservation and ideal sedimentation can be

assumed. In this case, the global c(M) fit can serve to provide a single consistent

interpretation of multiple individual M* transforms, which otherwise may be difficult to

mutually reconcile and potentially result in different extrapolations and cell-average

molecular weight estimates. An illustration of this with a pauci-disperse protein system has

been given in Fig 2 of ref. 5, where a multi-modal distribution was obtained from the global

multi-speed analysis, but not in any of the single speed analyses. For the global analysis the

question arises whether the baseline can be assumed to be rotor-speed independent or not. In

SEDFIT-MSTAR, the data analysis can be carried out with both assumptions and the chi-

squares of the c(M) fit can be compared. If a significant improvement in the quality of fit is

achieved with rotor-speed dependent offsets s0,x (Eq. 7, ‘RI noise’ option on) as compared

to a fit with a single constant offset s0 (‘RI noise’ option off), then the analysis with

individual offsets is justified. For interference optical data, the baseline cannot be expected

to remain the same, as noted above.

In the implementation of this combined approach in SEDFIT-MSTAR, it is possible to

either accept the results from the c(M) fit in the M* transformation, or override specific

aspects, for example, to accommodate known baselines or meniscus concentrations. As

outlined above, when globally analyzing data from multiple rotor speeds, the user can define

whether they have a common baseline offset, or potentially different offsets at the different

rotor speeds.

Hinge point-method for evaluation of Mw,app

SEDFIT-MSTAR also evaluates the apparent point weight average molecular weight Mw,app

(r) as a function of radial position r using Savitzky-Golay smoothing and differentiation

applied to Eq. 3 as noted above. It also allows for the evaluation of the same parameter

avoiding transformation of the data with the logarithm6:
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(8)

Either Eq 2 or Eq 5 can be used to define the molecular weight at the “hinge point” in the

radial distribution – this is the radial position at which the local concentration (s(r) – so) is

equal to the initial cell loading concentration (in signal units). Hence Mw,app(r) at the hinge

point will equal the weight average molecular mass of the whole distribution. Using for

example Eq. 8:

(9)

SEDFIT-MSTAR provides the facility for obtaining the hinge point by evaluating the initial

loading concentration from the conservation of mass equation:

(10)

For non-sector-shaped channels (as found in the commonly used multi-channel centerpieces

(3 pairs of channels) the evaluation of the loading concentration presents difficulties for

which there is no solution extant. However, by superimposition of early and late scans an

empirical estimate of this parameter can be made, enabling the application of the ‘hinge

point method’ described above.

Thermodynamic non-ideality

Thermodynamic non-ideality derives from macromolecular co-exclusion phenomena and, if

the macromolecule is a polyelectrolyte, there will also be a contribution from any

unsuppressed macro-ion charges, so all estimates for Mw and Mw(r) {and also the

distribution c(M) vs M, and Mz values} are apparent values (Mw,app, Mw,app(r), Mz,app(r)

etc). The charge contribution can be suppressed by working in a solvent of sufficient ionic

strength (see, for example, ref. 27). Although for proteins at loading concentrations

~1mg/ml or less the effects of non-ideality are usually very small, for some polymers –

particularly those with a high affinity for the solvent (such as polysaccharides in aqueous

solvent), even at the lowest concentrations that can be used in a sedimentation equilibrium

experiment (for polymers realistically ~ 0-2-0.3 mg/ml with the longest cell path-length

(20mm) that can currently be employed), these effects can still be significant. Table 2 of ref.

28 for example gives a comparison of how Mw,app underestimate the true values for a series

of polysaccharides at a loading concentration of 0.2mg/ml. If working at these low loading

concentrations the approximations Mw ~ Mw,app or Mz ~ Mz,app are not valid, the

conventional way of dealing with this situation is to perform a series of measurements at

different loading concentration and extrapolate back to zero concentration where these

effects tend to vanish. The form of the extrapolation can be linear or non-linear. For

obtaining Mw,app using procedures that do not involve an integration, such as Eq. 8, there is

a simple relation relating Mw,app and Mw at dilution solution:

11
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where B is the second thermodynamic virial coefficient (ml. mol. g−2). Mw,app values

evaluated according to Eq. 8 at the hinge point conform to this relation and a simple linear

extrapolation of 1/Mw,app plotted versus loading concentration c yields the reciprocal of the

true Mw from the intercept at c=0. At higher concentrations the extrapolation may not be

linear and an extra virial term in c2 may be required. Furthermore, for evaluations involving

an integral transformation such as Eq.4 to obtain the whole cell distribution Mw there may

also be a speed-dependent enhancement of the non-ideality effects. Fujita29,30 gave the

following approximate relation (see also ref. 6), leading to a larger effective value for B and

also departure from a linear form of the extrapolation28,31:

(12)

where λ = k. (rb
2 – rm

2)/2 with k defined by Eq. 2.

So although Mw,app from Eq.4 can generally be obtained to a higher precision than from the

point average Mw,app evaluated from Eq. 9 at the hinge point – and without assumptions

over conservation of mass - the non-ideality effect will be greater. SEDFIT-MSTAR

therefore includes both methods of Mw,app evaluation.

Application to simulated and real data

To illustrate the operation of SEDFIT-MSTAR we consider seven diverse examples, the first

four of them based on simulated data (single solute, a mixture of two components, a mixture

of two components with data error and a dataset with significant non-ideality. Simulated

data was generated and where indicated normal random error added using custom-written

plug-ins within the general software and graphical package pro Fit™ (Quantum Soft,

Uitekon am See, Switzerland). Our routine level of normal random error is ±0.005 fringe

(see, for example, ref 26). In practice ‘real’ data sets will not, unlike simulated data sets,

start from perfectly defined positions for the solution meniscus and the cell base: we

therefore also consider the effects of systematic errors in these on the molecular weight

evaluation. We also consider a significantly non-ideal system, with and without local

random error of ±0.005 fringe. For our practical examples we consider the characterization

of a monodisperse protein preparation (immunoglobulin IgG1) and two polysaccharides (a

fractionated but still polydisperse preparation of pullulan and an unfractionated preparation

of λ-carrageenan) are given.

Simulation 1: single solute (no error)

As a point of reference and test for the correctness of the computations we first simulated

noise-free data for a single solute. This is based on a Rinde32 type of simulation for a

macromolecule of reduced molecular weight σ = kM = 2.000 (with k defined as in Eq. 2).

For a solution density of 1.000 g/ml, partial specific volume of 0.600 ml/g, rotor speed of

17,000 rpm and temperature of 293.15 K this corresponds to a molecular weight of 38,450

Da.

The radial position of the meniscus is at 6.90 cm and the base is at 7.15 cm. The true

concentration at the meniscus in Rayleigh fringe units, cm (traditionally known as the “Ja
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value”- see ref. 6) is 0.108. The output consists of the signal plot a plot of log concentration

versus radial displacement squared (r2) with fit (Figure 1a), the M* versus r plot (with fit

and extrapolation to r=rb) (Figure 1b) a plot of the local or point weight average molecular

weight Mw,app(r) vs radial position r, or equivalently a plot of Mw,app(r) vs concentration

c(r) (Figure 1c). Values of Ja = 0.108 and Mw,app = 38,450 Da (from M*(cell base) =

Mw,app) and from the hinge point method are correctly returned. The point average

molecular weight plot (Mw,app(c) versus the corresponding local concentration in the

ultracentrifuge cell, c or c(r)) reproduces this value also, and shows perfect monodispersity.

Figure 1d shows the estimated molecular weight distribution, again consistent with a

monodisperse preparation of M = 38,450Da.

Simulation 2: mixture of two solutes (no error)

The second simulation illustrates the effect of polydispersity, for clarity conducted in the

absence of noise. Again based on Rinde, comprising an equal amount (by weight) of

monomer, σ1 = 1.333 (M1 = 25,630 Da) and dimer, σ2=2.667 (M2 = 51,260 Da). Solvent and

sedimentation parameters are as in the first simulation, but with a radial position of the

meniscus at 6.90 cm and the cell base at 7.10 cm. The true Ja value = 0.639. Figure 2a

shows the log concentration versus r2 plot, with the best-fit straight line (red) deviating from

the data, as expected, due to the polydispersity. This is reflected also in the gradient of M*

versus r (Figure 2b), and the M*c(M) distribution (red line in Figure 2b) that is based on the

best-fit least-squares fit of the raw simulated c(r) data with the c(M) model Eq. 5. As can be

discerned from Figure 2b, the same M*c(M) distribution allows the extrapolation to the cell

base at r=rb. Figure 2c shows the Mw,app(c) vs concentration plot together with the c(M)-

based best-fit (red line). From the SEDFIT-MSTAR analysis of the raw data, values of Ja =

0.65 and Mw,app = 38,450 are returned, again in excellent (Ja) and exact (Mw) agreement

with the true values. The hinge method also yields the same value for Mw, and finally the

c(M) vs M plot (Figure 2d) also successfully resolves the two components, returning

accurately the molecular weights (25,630 Da and 51,260 Da) and their relative proportions.

Simulation 3: mixture of two solutes with ±0.005 fringe random error

Next, we studied the effect of random errors in the raw data on the different aspects of the

analysis. Simulation parameters were identical to simulation 2, and corresponding results are

shown in Figures 3a-d. As may be discerned from Figure 3c, the Savitzky-Golay filter

sufficiently suppressed the random noise in the derivative of Mw,app. As expected M* is

sensitive to the noise mainly close to the meniscus position, with increasing precision

towards the base of the cell due to the accumulative effect of the integral in Eq. 3. The

biggest impact of the noise in the data is on the c(M) distribution: while it still serves as an

excellent fit to both the M* and Mw,app values, the information on the true distribution

degrades and the Tikhonov regularization returns a single broad distribution as the simplest

distribution consistent with the noisy simulated c(r) data. This is by design, and required to

avoid over-intepretation of the data, but, as illustrated here, leads to distributions that do not

necessarily reflect the details of the true distribution. Nevertheless, the values of Ja= 0.65,

and Mw,app =38,500 are returned, again in excellent agreement with the true values. An

identical value for Mw,app is also returned from the hinge point method.
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We also explored a ‘worst case’ scenario, in which the meniscus position is in error by

±0.007 cm and the cell base position by ±0.005 cm: this returns Ja = 0.65 and Mw = 38,700

an error of less than 1% from the true value.

Simulation 4: A significantly non-ideal system (with and without random error)

For our final simulation we look at a single solute system which shows significant non-

ideality at a level comparable to that found in such a system where the molecular species

under study for example is highly extended. The simulation is for a single solute, σ1 = 3 (M1

= 40,000 Da, rotor speed = 24721 rpm), Ja value = 0.1276: baseline offset = 0, with 2BMwc

= 0.144. This non-ideality is higher than that for most polysaccharides in dilute solution and

greater than that for a bronchial mucin glycoprotein28 (Mw = 6 × 106 Da at c = 0.2mg/ml). It

is equivalent to the non-ideality of a typical globular protein (ovalbumin, M= 44,000 Da) at

a high concentration (~20mg/ml). The position of the meniscus is at 6.90 cm and the cell

base is at 7.10 cm.

Figure 4a shows the log concentration versus r2 plot, with the best-fit straight line (red)

deviating from the data, as expected, due to the non-ideality. This is reflected also in the

strong downward gradient of M* versus r (Figure 4b), and the point average plot (Figure

4c).

Note the failure of the smart-smooth procedure to obtain a satisfactory fit of c(M) to the raw

data (Figure 4d). This can be used as a diagnostic of the presence of significant non-ideality

whose effects are unopposed by the presence of polydispersity (which causes upward

curvature in a positive exponential way). When this is observed the radial region for the

c(M) based baseline analysis is restricted to a narrow data range close to the meniscus

(maximal range that still leads to an adequate fit) to solely predict the baseline (Figure 4d)

With this baseline, M* can be calculated, and traditional polynominal extrapolation to the

cell base can be used to obtain Mw,app (red line in Figure 4b). The hinge point estimation

also successfully reveals Mw,app as before (Figure 4c). The expected Mw,app = 34,950 Da

(based on Eq. 11). From Fig 4b, a lower value is obtained ~ (28,000±500) Da, consistent

with Eq. 12. From Fig 4c and the hinge point however, the estimate for Mw,app ~

(34,000±500), close to the expected value. For the same simulation with random error of

±0.005 fringe, similar values are returned for Mw,app of (29,000±2,000) from the M*

extrapolation method and (35,000±3,000) from the hinge point method respectively (see

insets to Figures 4b and 4c).

Application to IgG1

A preparation of the chimeric human/murine IgG. known as “Cetuximab” or “Erbitux”33

was studied (a gift of Professor R. Jefferis, University of Birmingham). Its amino-acid

sequence molecular weight is 145,782 Da. This antibody possesses two N-linked

glycosylation sites and with covalently attached carbohydrate its total monomer molecular

weight is ~ 150,000 Da. The preparation we studied had been shown to be purely

monomeric by sedimentation velocity in the analytical ultracentrifuge. For the sedimentation

equilibrium experiment using Rayleigh interference optics, the solvent was 0.1 M phosphate
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buffered saline at pH 7.0, which had a density of 1.00452 g/ml and a partial specific volume

of 0.731 ml/g. A rotor speed of 13,000 rpm was employed at a temperature of 20 °C. The

sample had been dialysed against the solvent for 6 h and sample (at a loading concentration

of 1.0 mg/ml) and solution and dialysate respectively were placed in the sample and

reference sectors of the inner pair of channels in a multi-channel cell with sapphire

windows. SEDFIT-MSTAR yields the results shown in Figure 5. Figure 5a shows a ~ linear

plot of the log concentration versus r2, consistent with a monodisperse species. The M* plot

shown in Figure 5b yields a value for the apparent weight average molecular weight Mw,app

of (148000 ± 2000) Da. Figure 5c shows the corresponding Mw,app(c) versus c(r) plot, with

an estimate for the hinge point Mw,app of ~147,500 Da at a radial position 6.06cm. As is

typical for experimental data with more correlated noise and other unavoidable low-level

imperfections, smoothing of these data prior to differentiation results in stronger non-

random features in the Mw,app(c) data especially at lower radial positions and smaller

concentration values.

Even though the resolution of c(M) (Figure 5d) is not very high, it displays a single peak at

Mw,app ~ 148,000 Da and is consistent with a single species. Notably, the c(M) method when

considered as ‘exponential smoothing’ provides a single consistent ‘best-fit’ interpretation

of both M*(r) and Mw,app(c) (red lines in Figures 5b and 5c). All Mw,app values returned are

slightly below the “ideal” value of ~150,000 Da, the slight difference due to some

thermodynamic non-ideality at c=1.0mg/ml. The slight positive slope in the Mw,app(c) versus

concentration plot is suggestive of a weak self-association (although our variously computed

values for the whole distribution Mw,app do not directly reflect this fact), and this is currently

the subject of further study.

Application to pullulan P400

Pullulan P400 is one of a set of narrowly fractionated polysaccharide standards first

prepared and characterized (using sedimentation equilibrium) by Kawahara & coworkers34

and then commercially produced as calibration standards for the size exclusion

chromatography of polysaccharides. Pullulan P400 is listed as having a weight average

molecular weight Mw ~ 400,000 g/mol and we analysed a commercial sample from Polymer

Laboratories (Sample Batch number 20907-2) dialysed against phosphate-chloride buffer

(pH=6.8, I=0.1) and loaded into a 12mm path length cell at a concentration of 2 mg/ml, with

dialysate in the reference sector. The sample was run at a rotor speed of 5000 rpm,

temperature of 20.0°C and equilibrium solute distributions recorded using Rayleigh

interference optics. A value for the partial specific volume = 0.602 ml/g 34 was used in the

analysis. Figures 6a-d show the results. The value obtained for P400 of from the M*

extrapolation of Mw,app of (400,000±5,000) g/mol is in agreement with the commercially

stated “standard” value and the findings of Kawahara et al34. The hinge point method also

gives a value close to this (395,000±10,000).

Interestingly, the c(M) vs M plot reveals two peaks. One (main peak) with an estimated

weight average molecular weight of ~ 450,000 g/mol and another, partially resolved peak

appearing at low molecular weight (<20,000 g/mol) (Figure 6d). When c(M) is integrated

across the entire distribution, a weight-average Mw of ~ 400,000 is obtained in exact
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agreement with the extrapolated M* value, as is the M*c(M) distribution shown as red line in

Figure 6b. Furthermore the bimodal nature of c(M) corresponds well to the profile from

sedimentation velocity via application of least squares g*(s) procedure of SEDFIT35 (Figure

6d – inset). Using the extended Fujita approach36 for conversion of the sedimentation

coefficient distribution to a molecular weight distribution (assuming a conformation for the

polymers – in this case a random coil), the main peak from the SV data is estimated to have

an overall weight average molecular weight consistent with the value derived from c(M).

Thus whilst information as concerns the presence of a lower weight component is yielded

from the c(M) vs M plot, the estimates of the mass and proportion of the individual ‘peaks’

displayed is approximate only.

Application to λ-carrageenan

For our final example we have chosen an unfractionated polysaccharide, λ-carrageenan (a

gift from Dr. T. Foster, University of Nottingham, School of Biosciences). This was

dissolved in deionised distilled water (with the assistance of heating in a microwave for 30

seconds) and then dialysed for ~24 hours against phosphate-chloride buffer (pH=6.8, I=0.1)

and loaded into a 12mm path length cell at a concentration of 0.3 mg/ml, with dialysate in

the reference sector. The sample was run at a rotor speed of 4000 rpm, temperature of

20.0°C and equilibrium solute distributions recorded using Rayleigh interference optics. A

value for the partial specific volume = 0.53 ml/g was used in the analysis. Figures 7a-d show

the results, yielding a value for Mw,app of (310,000±10,000) g/mol which after allowance for

non-ideality is in excellent agreement with the value obtained using SEC-MALS37. The

hinge point method gives a value in good agreement (300,000±20,000) the extra noise/

imprecision a consequence of working at very low loading concentration (0.3 mg/ml).

Discussion and perspectives

In the present work, we have developed an efficient and reliable approach for the

sedimentation equilibrium analysis of virtually all polymer systems across a wide range of

molecular weights – monodisperse, polydisperse and realistically non-ideal, and a high

degree of confidence can be placed on the whole distribution weight average molecular

weights computed. Our approach integrates the previously separate approaches of

derivative-based and integral-based data transforms, which require various smoothing and/or

extrapolation produces to determine distribution averages, with direct distribution fitting

approaches which is a model-based least-squares fit of the data but is usually ill-conditioned.

We found the combination provides a single consistent interpretation that offers information

in parallel on different levels of detail. Running of the algorithm takes only a few minutes,

in contrast to the time required previously to analyse sedimentation equilibrium data for

polymers, and obviating the difficult and inconvenient procedures for obtaining adequate

baselines encountered in earlier studies2,12. A new method (MultiSig) for obtaining accurate

values for the baseline offset (E) in fringe optics via multi-exponential fitting has recently

been published26. MultiSig returns the mean of 20 estimates using a Monte-Carlo type

approach. Our currently described procedure we have found to return a precision very

similar indeed to the individual estimates yielded by MultiSig. Thus a high degree of
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confidence can now be placed upon the whole-cell weight-averaged molecular weight (Mw)

values computed. There are some important perspectives deriving from this work:

1. Solvent density. The assumption is made that this is constant throughout the solution

column. In the case of the inclusion of dense solutes like caesium salts then a short column

is advised (and measurements made at least two rotor speeds to check for possible effects),

otherwise the redistribution will need to be taken into account (the extreme case being

isopycnic density gradient equilibrium where a density gradient is deliberately set up – see

e.g., refs 6 and 28).

2. The non-ideality simulation we quoted was for a strongly non-ideal single solute system:

the virtue of having two methods for extracting Mw,app – one, more precise but more

affected by non-ideality, the other (hinge-point) less precise but less affected by non-

ideality. When non-ideality is suspected an extrapolation to c=0 is required to obtain Mw:

this extrapolation is facilitated by the use of multi-channel cells. In the case of single solute,

an extrapolation of the point average Mw,app(r)’s is possible – as shown in Figure 4c: a good

practical example is turnip yellow mosaic virus38. For polydisperse systems such a

procedure can lead to an underestimate of Mw because of redistribution of the molecular

species of different molecular weight in the solution – unless ultra-short columns are used

(see ref 39). Although polydisperse non-ideal systems are almost impossible to simulate

because of the complex non-linear way the separate virial coefficients Bk (and products

BkMk) for each affect the fundamental equations of sedimentation equilibrium40, it actually

helps linearise the extrapolation to c=0 to give Mw, since the effects of polydispersity

(upward curvature in the concentration versus radial displacement plots) counteracts either

partially or in some cases known as “pseudo-ideal” almost completely the effects of non-

ideality (downward curvature). A good example of this behavior is for λ-carrageenan

(Figure 7). Although for proteins at loading concentrations ~1mg/ml or less the effects of

non-ideality are usually very small (the example of non-ideality given in Fig 4 is equivalent

to a globular protein like ovalbumin at a concentration of ~ 20 mg/ml, which is 150x the

minimum concentration needed for a sedimentation equilibrium experiment), for some

polymers – particularly those with a high affinity for the solvent (such as polysaccharides in

aqueous solvent), even at the lowest concentrations that can be used in a sedimentation

equilibrium experiment (for polymers realistically ~ 0.3 mg/ml with a long path-length

(20mm) cell), these effects can still be significant, and this is the case for λ-carrageenan

(Figures 7a-d) – the quasi-linear plot of ln(signal) versus r2 and the near flat plot of

Mw,app(r) vs c(r) is symptomatic of pseudo-non-ideality where the effects of polydispersity

(causing upward curvature in both plots) are counteracted by the downward curvature

caused by non-ideality. In such cases a conventional extrapolation of Mw,app (or 1/Mw,app)

versus c to c=0 is necessary. Non-ideality will also be apparent from the residuals of the

best-fit c(M) model to the raw data, with the raw data showing less curvature than the best-

fit model.

3. With broad molecular weight distributions there is still the risk that a proportion of the

higher molecular weight material is lost from optical registration at the cell base. If such a

problem is suspected then experiments performed at least two different equilibrium speeds

should be used and compared. SEDFIT-MSTAR allows the comparison of profiles at
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different speeds. This comparison can either be conducted in sequential analyses, or a single

self-consistent interpretation can be achieved in a global analysis of data at multiple rotor

speeds. The success of a global analysis will depend on the localisation of the base of the

solution column, which can be treated as an adjustable fitting parameter within reasonable

limits. If the self-consistent multi-speed extension of SEDFIT- MSTAR is successful, as can

be assessed by the root-mean-square deviations of the global versus the individual single

fits, c(M) with higher resolution can potentially achieved. This approach was demonstrated

previously for discrete, ideal protein mixtures in ref. 5, and we will further explore this

strategy in the context of M* analysis of polymers in future work.

4. The procedure for taking an average of the final scans and subtracting an average of the

initial scans, should be followed, and Ang & Rowe26 for example provide a useful protocol

for doing this.

5. In recently published work41 a complementary approach to sedimentation equilibrium

analysis of polydisperse systems has been presented, with a focus on point average

molecular weights at specific radial positions. The ‘MultiSig’ algorithm – based on a multi-

exponential approach – (a) yields profiles of (reduced flotational) molecular weights (i.e. σ

values) and returns all three of the principal averages (number-, weight- and z) to a good

precision (b) yields profiles of c(σ) vs s - i.e. c(M) vs M if all components have a common

partial specific volume – profiles which are shown by simulations using realistic error levels

and by experiment to reflect the presence of multiple components or of continuous

distributions. MultiSig does at the moment give a somewhat ‘coarse-grained’ (i.e. limited

data pair sets) output over a modest range in σ, and is slow to run (~30 minutes for optimal

resolution), but these limitations can readily be overcome by the use of greater compute

power.

These two approaches (MultiSig and SEDFIT-MSTAR) are thus seen to be complementary:

the latter being a specialised technique for characterising whole cell Mw values; the former

for defining distributions and interactions, in a range of mono, oligo- and polydisperse

systems. We are currently exploring the possibility of providing an easy interface between

SEDFIT-MSTAR and MultiSig.

6. Combination with sedimentation velocity data. Sedimentation velocity in the analytical

ultracentrifuge – performed in the same instrumentation as sedimentation equilibrium – has

a greater resolving power of components, although yields primarily sedimentation

coefficient and sedimentation coefficient distributions and to obtain molecular weight

distributions of polydisperse systems requires assumptions/ knowledge of conformation or

calibration using another technique. In an earlier paper30 we described a procedure for

obtaining the distribution of molecular weight for a polymer based on extension of an earlier

method by Fujita for transforming a sedimentation coefficient distribution from

Sedimentation velocity into a molecular weight distribution. The original Fujita method30

had been based on the assumption that the polymers adopted a random coil conformation.

The Extended Fujita method36 covers molecular weight distributions of polymers for any

conformation type including spheres and rods and conformations between the extremes of

spheres, rods and coils. For its application, knowledge of the weight average sedimentation
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coefficient s20,w for at least one value of the weight average molecular weight Mw is

required for calibration. Obtaining the weight average s20,w – and the distribution thereof -

has been routine for over a decade now through regular application of SEDFIT to

sedimentation velocity data16. It is now fair to say that estimation of Mw is also routine using

the application of SEDFIT-MSTAR to sedimentation equilibrium data for polymer solutions

of wide ranging polydispersities and non-idealities.
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Fig. 1.
SEDFIT-MSTAR output for analysis on a simulation of a sedimentation equilibrium

experiment for a single solute of molecular weight 38,450 Da (a) log concentration lnc(r)

versus r2 plot, where r is the radial distance from the centre of rotation (open squares); and

linear regression to highlight deviations from linearity arising from polydispersity and/or

non-ideality (red line); (b) M* versus r plot (open squares) and fit based on the M*

transformations of the c(M) fit of the raw data (red line): the value of M* extrapolated to the

cell base = Mw,app, the apparent weight average molecular weight for the whole distribution.

Retrieved value for Mw,app = 38,450 Da; (c) point or local apparent weight average

molecular weight at radial position r (open squares) plotted against the local concentration

c(r) for different radial positions: red line is the fit based on the equivalent transformation of

the c(M) fit of the raw data (d) molecular weight distribution, c(M) vs M plot. The dot-

dashed lines show the position of the hinge point (in panel (a)) and the corresponding

estimation of Mw,app value (panel (c)), which also retrieves a value for Mw,app = 38,450 Da.
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Fig. 2.
As Figure 1 but for a simulated ‘perfect data’ 2-solute system, with 50% by weight of a

monomer (M1= 25,630 Da) and 50% by weight of a dimer (M2 = 51,260 Da). True Mw,app =

Mw = 38,450 Da. Retrieved Mw,app (from extrapolation of M* to the cell base, and from the

hinge point) = 38,500 Da. Fitted lines are as defined in the legend of Figure 1.
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Fig. 3.
As Figure 2 but for concentration (Rayleigh fringe displacement) data with ±0.005 fringe

random error with simulated random error. True Mw,app = Mw =38,450 Da. Retrieved Mw,app

(from extrapolation of M* to the cell base, and from the hinge point) = 38,500 Da. Fitted

lines are as defined in the legend of Figure 1.
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Fig. 4.
As Figure 1 but for a single solute system with significant non-ideality. σ = 3, rotor speed =

24,721 rpm, True Mw = 40,000 Da. Expected Mw,app = 34,950 Da (based on Eq. 11). From

Fig 4b, a lower value is obtained ~ 28,000 Da, consistent with Eq. 12. From Fig 4c and the

hinge point however (indicated by the dotted lines), the estimate for Mw,app ~ 34,000 Da,

close to the expected value. Fitted lines are (a) a linear regression, visually highlighting the

characteristic negative curvature of non-ideal data in this transformation; (b) the polynomial

extrapolation of M*. Inset Figures (b) and (c): corresponding plots for random data with ±

0.005 fringe error, yielding values for Mw,app ~ 35,000 Da (hinge method) and ~29,000 Da

(M* extrapolation). Note the failure of the smart-smooth procedure to obtain a c(M) plot due

to the failure of obtaining an adequate fit of the raw c(r) data (d). For systems of low

polydispersity this should be used as a diagnostic of the presence of significant non-ideality.

Schuck et al. Page 22

Analyst. Author manuscript; available in PMC 2015 January 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 5.
As Figure 1 but for the analysis of a monodisperse preparation of human/murine IgG1

known as “Erbitux” at a loading concentration = 1 mg/ml. True Mw ~ 150,000 Da. Retrieved

Mw (from extrapolation of M* to the cell base) = (148,000±2,000) Da, from c(M), M w,app ~

148,000 Da and from the hinge point ~ 147,500 Da. Fitted lines are as defined in the legend

to Figure 1.
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Fig. 6.
As Figure 1 but for the analysis of pullulan P400 at a loading concentration of 2 mg/ml.

True Mw ~ 400,000 Da. Retrieved Mw,app (from extrapolation of M* to the cell base –

Figure 6b) = 400,000 Da. Figure 6d shows the presence of a trailing edge of a component of

molecular weight <20,000Da, a presence comparable to that found from a corresponding

experiment using sedimentation velocity analysis (Figure 6d insert). The weighted average

of the main + minor components ~ 400,000 Da. Fitted lines are as defined in the legend to

Figure 1.

Schuck et al. Page 24

Analyst. Author manuscript; available in PMC 2015 January 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 7.
As Figure 1 but for the analysis of λ-carrageenan at a loading concentration of 0.3 mg/ml.

Mw,app (from extrapolation of M* to the cell base) = 310,000 Da. Fitted lines are as defined

in the legend to Figure 1.
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