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Abstract

In this work, we have carried out the influence of temperature dependent viscosity on thin film flow of a
magnetohydrodynamic (MHD) third grade fluid past a vertical belt. The governing coupled non-linear differential
equations with appropriate boundary conditions are solved analytically by using Adomian Decomposition Method (ADM).
In order to make comparison, the governing problem has also been solved by using Optimal Homotopy Asymptotic
Method (OHAM). The physical characteristics of the problem have been well discussed in graphs for several parameter of
interest.
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Introduction

The subject of non-Newtonian fluids is popular and is an

area of active research specially in mathematics, industry and

engineering problems. Examples of non-Newtonian fluids

include plastic manufacturing, performance of lubricants, food

processing, movement of biological fluids, wire and fiber

coating, paper production, transpiration cooling, gaseous diffu-

sion, drilling mud, heat pipes etc. These fluids are described by

a non-linear relationship between stress and the rate of

deformation tensors and therefore several models have been

proposed. There are several subclasses of non-Newtonian fluids.

Third grade fluid is one of the important fluid in this category

and its equation is based on strong theoretical foundations,

where relation between stress and strain is not linear. Therefore,

in this problem, we have considered third grade fluid.

Considerable efforts have been made to study non-Newtonian

fluids for various geometrical configurations via analytical

techniques. Some developments in this direction are discussed

in [1–19]. On the other hand, the physical importance of thin

film has been highlighted by scientists and engineers. Amongst

them, Khalid and Vafai [20] studied hydrodynomic squeezed

flow and heat transfer over a sensor surface. Miladinova et al.

[21] investigated thin film flow of a power law liquid falling

from an inclined plate where it was observed that saturation of

non-linear interaction occur in a permanent finite amplitude

wave.

Similarly, Taza Gul et al. [22] investigated effects of slip

condition on thin film flow of third grade fluids for lifting and

drainage problem under the condition of constant viscosity. The

effects of various parameters on the lift and drainage velocity

profiles are also studied.

It is crystal clear that the physical problems are frequently

modeled, using non-linear differential equations. Recently, several

analytical and numerical techniques were used for solution of such

non-linear problems. In order to find analytical approximate

solutions of non-linear differential equations, researchers usually

use approximate techniques such as Homotopy Perturbation

Method (HPM) [23], Homotopy Analysis Method (HAM) [24]

and Optimal Homotopy Asymptotic Method (OHAM) [25].

OHAM is a powerful mathematical technique and has already

been applied to several non-linear problems. Marinca and

Herisanu [26] used OHAM for solving non-linear equations

arising in heat transfer problems. In another paper, Marinca [27]

applied OHAM to study steady flow of a fourth grade fluid past a

porous plate. Joneidi et al. [28] analyzed micropolar flow in a

porous channel with high mass transfer. Siddiqui et al. [29]

examined a thin film flow of non-Newtonian fluid over a moving

belt. In another study, Siddiqui et al. [30] discussed the thin film

flow of a fourth grade fluid down a vertical cylinder. Costa and

Macedonio [31] noticed that increase in velocity may produce

additional growth of local temperature. Nadeem and Awais [32]

investigated thin film unsteady flow with variable viscosity. They

analyzed the effect of variable thermo capillarity on the flow and

heat transfer. Ellahi and Riaz [33] discussed analytical solution for

MHD flow in a third grade fluid with variable viscosity. Whereas

Aksoy et al. [34] found an approximate analytical solution for flow

of a third grade fluid through a parallel plate channel filled with a

porous medium.

The main objective of this research is to study thin film flow of

MHD third grade fluid over a vertical belt under the influence of

temperature with variable viscosity. More exactly, we are

interested in showing the effects of MHD and variable viscosity
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with heat transfer in a thin film fluid flow such as silicate melts and

polymers. In these fluids, viscous friction generates a local increase

in temperature near the belt with decrease in resultant viscosity

and frequently increases the flow velocity. The governing problem

is solved using an analytical technique known as Adomian

Decomposition Method (ADM). This technique was introduced

by Adomian [35,36] for finding the approximate solutions for

linear and non-linear differential equations. Wazwaz [37,38] used

ADM for reliable treatment of Bratu-type and Rmden-Fowler

equations. For comparisons and accuracy of results, the governing

problem has also been solved by using OHAM.

Basic Equations

The continuity, momentum and energy equations for incom-

pressible, isothermal and electrically conducting third grade fluid

are;

+:u~0 ð1Þ

Du

Dt
~+:Tzrgzj|B, ð2Þ

r cp
DH

Dt
~k +2 Hztr(T :L), ð3Þ

Here, r is the constant density, g denotes gravitational

acceleration, u is the velocity vector of the fluid, H defines

temperature, k is the thermal conductivity, Cp is specific heat,

L~+u,
D

Dt
~

L
Lt

z(u:+) denotes material time derivative, j is the

Figure 1. Geometry of the problem (a) Lift problem and (b) Drainage problem.
doi:10.1371/journal.pone.0097552.g001

Figure 2. Comparison of ADM and OHAM methods for lift
v e l o c i t y p r o f i l e . St ~0:1, M

2 ~0:2,b~0:6,L~0:1, Br ~0:4,
C1 ~0:212619, C2 ~{0:243971, C3 ~0:016110, C4 ~{0:0168232.

doi:10.1371/journal.pone.0097552.g002

Figure 3. Comparison of ADM and OHAM methods for lift
temperature distribution. St ~1, M

2 ~0:2,b~1:2,L~0:01, Br ~
4, C1 ~{0:9489619, C2 ~{0:000257, C3 ~{13:262703, C4 ~
{163:37897.
doi:10.1371/journal.pone.0097552.g003
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current density and T is the Cauchy stress tensor. Moreover, a

uniform magnetic field B~ 0, B0 ,0ð Þ, is applied in a direction,

perpendicular to the belt. The Lorentz force per unit volume is

given by

j|B~ 0,s B
2
0 u(x),0

� �
, ð4Þ

The Cauchy stress tensor T , is given by

T~{pIzt ð5Þ

where {pI denotes spherical stress, p is the hydrostatic pressure

and shear stress tensor t, is defined as

t~m A1 z a1 A2 z a2 A
2
1 z b1 A3

z b2 A1 A2 z A2 A1ð Þz b3 tr A
2
2

� �
A1 ,

ð6Þ

Here a
j i~1,2ð Þ ,b

j(j~1,2,3)
are the material constants and A0, A1, A2,

A3 are the kinematical tensors given by

A0 ~I

A1 ~ +uð Þz +uð ÞT ,

A2 ~
D A1

Dt
z A1 +uð Þz +uð ÞT A1 ,

A3 ~
D A2

Dt
z A2 +uð Þz +uð ÞT A2 ,

ð7Þ

Formulation of Lift Problem
Consider, a wide flat belt moves vertically upward at a constant

speed U through a large bath of third grade liquid. The belt carries

a layer of liquid of constant thickness, d with itself. For analysis,

coordinate system is chosen in which the y-axis is taken parallel to

the surface of the belt and x-axis is perpendicular to the belt.

Uniform magnetic field is applied transversely to the belt. It is

assumed that the flow is steady and laminar after a small distance

above the liquid surface layer and the external pressure is

atmospheric everywhere.

Figure 4. Comparison of ADM and OHAM methods for
drainage velocity profile. St ~0:09, M

2 ~0:1,b~0:6,L~0:01,
Br ~0:4, C1 ~{0:9489619, C2 ~{0:000257, C3 ~{13:262703, C4 ~
{163:37897.
doi:10.1371/journal.pone.0097552.g004

Figure 5. Comparison of ADM and OHAM methods for
drainage temperature distribution. St ~0:1, M

2 ~0:3,b~0:6,
L~0:6, Br ~0:3, C1 ~{1:024309, C2 ~{2:211328, C3 ~{0:002455,

C4 ~0:000389.
doi:10.1371/journal.pone.0097552.g005

Figure 6. Influence of the Brinkman number on the lift velocity
profile when St ~1,L~0:1, M2 ~0:5,b~2:0.

doi:10.1371/journal.pone.0097552.g006

Figure 7. Influence of the Brinkman number on the lift
temperature distribution when St ~1,L~0:1, M2 ~0:5,b~2:0.

doi:10.1371/journal.pone.0097552.g007
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Velocity and temperature fields are

u~ 0,u xð Þ,0ð Þ and H~H xð Þ ð8Þ

Using the velocity field given in Eq. (8) the continuity Eq. (1)

satisfies identically and Eq. (5) gives the following components of

stress tensor:

Txx ~{pz 2 a1 z a2ð Þ du

dx

� �2

, ð9Þ

Txy ~m
du

dx
z2 b2 z b3ð Þ du

dx

� �3

, ð10Þ

Tyy ~{pz a2
du

dx

� �2

, ð11Þ

Tzz ~{p, ð12Þ

Txz ~ Tyz ~0, ð13Þ

Incorporating Eqs. (9–13) into the momentum and energy

equations (2, 3), we get

0~

m
d2 u

d x2
z

du

dx

dm

dx
z6 b2 z b3ð Þ du

dx

� �2
d2 u

d x2

� �
{rg{s B

2
0 u,

ð14Þ

0~k
d2 H

d x2
zm

du

dx

� �2

z2 b2 z b3ð Þ du

dx

� �4

, ð15Þ

Figure 11. Effect of viscosity parameter on the lift temperature
distribution when M2 ~0:2, St ~1,b~1:2, Br ~50.

doi:10.1371/journal.pone.0097552.g011

Figure 8. Effect of Stock number on the lift velocity profile.
when M2 ~0:2,b~1:2,L~0:01, Br ~4:0.

doi:10.1371/journal.pone.0097552.g008

Figure 9. Effect of Stock number on the lift temperature
distribution when M2 ~0:2,b~1:2,L~0:01, Br ~4:0.

doi:10.1371/journal.pone.0097552.g009

Figure 10. Effect of viscosity parameter on the lift velocity
profile. when M2 ~0:2, St ~0:4,b~0:6, Br ~4:0.

doi:10.1371/journal.pone.0097552.g010
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The corresponding boundary conditions are:

u~U ,H~H0 at x~0, ð16Þ

du

dx
~0,H~H1 at x~d, ð17Þ

Introducing the following non-dimensional variables

u~
u

U
,x~

x

d
,H~

H{H0

H1 {H0

,m~
m

m0

, Br ~
m0 U2

k H1 {H0ð Þ ,

St ~
d2 rg

m0 U
, M

2 ~
s B2

0 d2

m0

,b~
b2 z b3ð ÞU2

m0 d2
,

ð18Þ

where Br is the Brinkman number , M2 is the magnetic parameter,

b is the non-Newtonian parameter and St is the Stock’s number.

For Reynold’s model, the dimensionless viscosity

m~ e{LH , ð19Þ

Using Taylor series expansion, one may represent viscosity and

its derivative as follows:

m%1{LH,
dm

dx
%{L

dH

dx
, ð20Þ

Using the above dimensionless variables into Eqs. (14–17) and

dropping out the bar notations, we obtain.

Eq. (14) has been rectified for Eq. (21, 22)

d2 u

d x2
~{L

du

dx

dH

dx
zH

d2 u

d x2

� �� �
z6b

du

dx

� �2
d2 u

d x2

� �

{ St { M
2 u~0,

ð21Þ

Figure 14. The effect of Stock number on velocity for drainage
problem when M2 ~0:2,b~1:2,L~0:1, Br ~20:0.

doi:10.1371/journal.pone.0097552.g014

Figure 15. The effect of Stock number on temperature for
drainage problem when M2 ~0:2,b~1:2,L~0:1, Br ~20:0.

doi:10.1371/journal.pone.0097552.g015

Figure 12. The effect of magnetic force on lift velocity profile
when Br ~4:0,L~0:1,b~2:0, St ~0:4.

doi:10.1371/journal.pone.0097552.g012

Figure 13. The effect of magnetic force on lift temperature
distribution when Br ~4:0,L~0:1,b~2:0, St ~0:4.

doi:10.1371/journal.pone.0097552.g013
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d2 H

d x2
z Br

du

dx

� �2

{LH
du

dx

� �2

z2b
du

dx

� �4
" #

~0, ð22Þ

u~1,H~0 at x~0, ð23Þ

du

dx
~0,H~1 at x~0, ð24Þ

Solution of Lifting Problem
The OHAM solution. In order to solve the system of

equations (21–24), we define the linear, non-linear functions and

source terms respectively as follows:

L1 (x)~
d2 u

d x2
, N1 xð Þ~{L

du

dx

dH

dx
zH

d2 u

d x2

� �

z6b
du

dx

� �2
d2 u

d x2
{ M

2 u, G1 xð Þ~{ St ,

ð25Þ

L2 (x)~
d2 H

d x2
, N2 xð Þ

~ Br
du

dx

� �2

{LH
du

dx

� �2

z2b
du

dx

� �4
" #

, G2 xð Þ~0,

ð26Þ

Now, OHAM is applied to non-linear coupled ordinary

differential Eqs. (21, 22) and Eqs. (25, 26) as follows:

1{p½ � L1 xð Þz G1 (x)½ �{ H1 pð Þ L1 xð Þz N1 xð Þz G1 (x)½ �~0,

1{p½ � L2 xð Þz G2 (x)½ �{ H2 pð Þ L2 xð Þz N2 xð Þz G2 (x)½ �~0,

ð27Þ

We consider u xð Þ,H xð Þ, H1 pð Þ, H2 pð Þ as the following.

H1 pð Þ~p C1 z p2
C2 , H2 pð Þ~p C3 z p2

C4 ,u xð Þ

~ u0 xð Þzp u1 xð Þz p2 u2 xð Þ,

H xð Þ~H0 xð ÞzpH1 xð Þz p2 H2 xð Þ, ð28Þ

Substituting u xð Þ,H xð Þ, H1 pð Þ, H2 pð Þ, L1 xð Þ, L2 xð Þ, N1 xð Þ,
N2 xð Þ, G1 xð Þ, G2 xð Þ from Eq. (28) into Eq. (27) and after some

simplifications based on power of p-terms, we get the following.

Zero components:

p0 : { St z
d2 u0

d x2
~0,

d2 H0

d x2
~0, ð29Þ

Figure 17. Drain temperature distribution for various values of
viscosity parameter when M2 ~0:2,m~1:0b~0:6, Br ~50:0.

doi:10.1371/journal.pone.0097552.g017

Figure 18. The influence of non-Newtonian parameter b on
v e l o c i t y f o r d r a i n a g e p r o b l e m w h e n

M2 ~0:5, St ~1,L~0:01, Br ~50:0.

doi:10.1371/journal.pone.0097552.g018

Figure 16. Drain velocity for various values of viscosity
parameter when M2 ~0:2,m~0:4b~1:2, Br ~4:0.

doi:10.1371/journal.pone.0097552.g016
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First components:

p1 : St z C1 St zM C1
d u0

dx
zLC1

d u0

dx

d H0

dx
{

d2 u0

d x2
{ C1

d2 u0

d x2

z C1 LH0
d2 u0

d x2
{12b C1

d u0

dx

� �2
d2 u0

d x2
z

d2 u1

d x2
~0

{ Br C3
d u0

dx

� �2

zH0 Br C3 L
d u0

dx

� �2

{4b Br C3
d u0

dx

� �4

{
d2 H0

d x2
{ C3

d2 H0

d x2
z

d2 H1

d x2
~0: ð30Þ

Solving Eqs. (29, 30) along with boundary conditions (23, 24),

we get the term solutions as fallows.

Zero term solution:

u0 (x)~
1

2
(2{2x St z x2

St ),H0 (x)~x, ð31Þ

First term solution:

u1 (x)~
C1

24

24 M2 {8 M2 St {96b S3
t

� �
x

{ 12 M2 {12LSt {144b S3
t

� �
x2

z 4 M2 St {8LSt {96b S3
t

� �
x3

{ M2 St {24b S3
t

� �
x4 ,

2
666664

3
777775

H1 (x)~
Br C3

60

3LSt
2 {15 St

2 {20b S4
t

� �
xz 30 St

2 z60b S4
t

� �
x2

{ 20 St
2 z10LSt

2 z80b S4
t

� �
x3

z 5 St
2 z10LSt

2 z60b S4
t

� �
x4 { 3 St

2 z24b S4
t

� �
x5

z 4b S4
t

� �
x6

2
666664

3
777775,

ð32Þ

The second term solution for velocity and temperature are too

bulky, therefore, only graphical representations up to second order

are given.

The series solutions of velocity profile and temperature

distribution are

u(x, Ci )~ u0 xð Þz u1 xð Þz u2 xð Þ,

andH x, Cið Þ~H0 (x)zH1 (x)zH2 (x)
ð33Þ

The arbitrary constants Ci ,i~1,2,3,4 are found out by using

the residual

R~L u x, cið Þ½ �zN u x, cið Þ½ �zG u x, cið Þ½ �: ð34Þ

For velocity profile and temperature distribution the arbitrary

constants are mentioned in graphs.

The constants C1, C2 C3 C4 can also be obtained from

Collocation and Ritz methods.

The ADM solution. The inverse operator L{1 ~
ÐÐ

du, of

the ADM on the second order coupled Eqs. (21,22) is used:

u xð Þ~AxzBz St

x2

2
z L

{1
M

2 u
� 	

{6b L
{1 du

dx

� �2
d2 u

d x2

" #

zL
du

dx

dH

dx
zH

d2 u

d x2

� �
,

ð35Þ

H xð Þ~ExzF{ Br L
{1 du

dx

� �2

z Br LL
{1 H

du

dx

� �2

{2 Br b L
{1 du

dx

� �4

,

ð36Þ

The series solutions of Eqs. (35, 36):

X?
n~0

un~AxzBz St

x2

2
z M

2
L

{1
X?
n~0

un

 !
{6b L

{1
X?
n~0

An

" #

zLL
{1

X?
n~0

Bn

" #
zLL

{1
X?
n~0

Cn

" #
,

ð37Þ

X?
n~0

Hn~ExzF{ Br L
{1

X?
n~0

Dn

" #
z Br LL

{1
X?
n~0

En

" #

{ Br b L
{1

X?
n~0

Fn

" #
,

ð38Þ

The Adomian polynomials An , Bn , Cn , Dn ,En and Fn , for Eqs.

(37, 38) are defined as

X?
n~0

An~
du

dx

� �2
d2 u

d x2

� �
, ð39Þ

X?
n~0

Bn~
du

dx

� �
dH

dx

� �
, ð40Þ

X?
n~0

Cn~H
d2 u

d x2

� �
, ð41Þ

X?
n~0

Dn~
du

dx

� �2

, ð42Þ

ð32Þ
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X?
n~0

En~H
du

dx

� �2

, ð43Þ

X?
n~0

Fn~
du

dx

� �
,
4

ð44Þ

The components of Adomian polynomials are derived from

Eqs. (39–44) as:

A0 ~
d u0

dx

� �2
d2 u0

d x2
, B0 ~

d u0

dx

d H0

dx
, C0 ~H0

d2 u0

d x2
,

D0 ~
d u0

dx

� �2

, E0 ~H0
d u0

dx

� �2

, E0 ~
d u0

dx

� �4

,

ð45Þ

A1 ~
d u0

dx

� �2
d2 u1

d x2
z2

d u0

dx

d u1

dx
, B1 ~

d u1

dx

d H0

dx
z

d u0

dx

d H1

dx
,

C1 ~H1
d2 u0

d x2
zH0

d2 u1

d x2
,

D1 ~2
d u0

dx

d u1

dx
, E1 ~H1

d u0

dx

� �2

z2H0
d u1

dx

d u0

dx
,

F1 ~4
d u0

dx

� �3
d u1

dx
,

ð46Þ

The series solutions of Eqs. (37, 38) are derived as:

u0 z u1 z u2 z:::~AxzBz St

x2

2
z

M
2

L
{1 u0zu1zu2z:::ð Þ{6b L

{1
A0z A1 z A2 z:::½ �z

LL
{1

B0 z B1 z B2 z:::½ �zLL
{1

C0 z C1 z C2 z:::½ �,

ð47Þ

H0 zH1 zH2 z:::~ExzF{ Br L
{1

D0 z D1 z D2 z:::½ �

z Br LL
{1

E0 z E1 z E2 z:::½ �

{2 Br b L
{1

F0 z F1 z F2 z:::½ �,

ð48Þ

The velocity and temperature components are obtained by

comparing both sides of Eqs. (47, 48):

Components of the lift problem up to second order are:

u0 xð Þ~AxzBz St

x2

2
, ð49Þ

H0 xð Þ~ExzF , ð50Þ

u1 xð Þ~M
2

L
{1 u0½ �{6b L

{1
A0½ �zLL

{1
B0½ �zLL

{1
C0½ �, ð51Þ

H1 xð Þ~{ Br L
{1

D0½ �z Br LL
{1

E0½ �{2 Br b L
{1

F0½ �, ð52Þ

u2 xð Þ~ M
2

L
{1 u1½ �{6b L

{1
A1½ �zLL

{1
B1½ �zLL

{1
C1½ �,ð53Þ

H2 xð Þ~{ Br L
{1

D1½ �z Br LL
{1

E1½ �{2 Br b L
{1

F1½ �, ð54Þ

subject to the boundary conditions

u0 0ð Þ~1,
d u0

dx
1ð Þ~0, un 0ð Þ~0,

d un

dx
1ð Þ~0,n§1, ð55Þ

H0 0ð Þ~0,H0 1ð Þ~1,Hn 0ð Þ~0,Hn 1ð Þ~0,n§1, ð56Þ

Using boundary conditions from Eqs. (55, 56) into Eqs. (49–54),

we obtain

u0 xð Þ~ 1

2
2{2 St xz St x2
� �

, ð57Þ

H0 xð Þ~x, ð58Þ

u1 xð Þ~ { M
2 z

M2 St

3
z4b S

3
t

� �
x

z
M2

2
z

LSt

2
{6b S

3
t

� �
x2

z {
M2 St

6
z

LSt

3
z4b S

3
t

� �
x3

z
M2 St

24
{4b S

3
t

� �
x4 ,

ð59Þ
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z
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4
t
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x5 z {

2

15
b Br S

4
t

� �
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ð60Þ

Due to lengthy calculations, the analytical results have been

given up to first order but they have been shown graphically up to

second order.

Formulation of Drainage Problem
Under the same assumptions as in the previous problem, we

consider a film of non-Newtonian liquid draining down the

vertical belt. The belt is stationary and the fluid drains down the

belt due to gravity. The gravity in this case is opposite to the

previous case. The coordinate system is selected same as in the

previous case. Assuming that the flow is steady and laminar,

external pressure is neglected whereas the fluid shear forces keep

gravity balanced and the thickness of the film remains constant.

Boundary conditions for the drainage problem are

u~0, at x~0,
du

dx
~0, at x~d, ð61Þ

Using non-dimensional variables, the boundary conditions for

drainage problem become

un 0ð Þ~0, and
dn

dx
1ð Þ~0, n§0, ð62Þ

For temperature distribution, the boundary conditions are same

as given in Eq. (56).

Solution of Drainage Problem
The OHAM solution. From Eqs. (21, 22), the linear, non-

linear functions and source term (in drainage case), it is opposite

due to gravity) are respectively defined as

L1 ~
d2 u

d x2
, N1 ~{L

du

dx

dH

dx
zH

d2 u

d x2

� �
z6b

d u0

dx

� �2
d2 u

d x2

{ M
2 u, G1 ~ St,

ð63Þ

L1 ~
d2 u

d x2
,

N1 ~ Br
du

dx

� �2

{LH
du

dx

� �2

z2b
du

dx

� �4
 !

, G2 xð Þ~0

ð64Þ

OHAM is applied to non-linear coupled ordinary differential

Eqs. (63, 64) as

1{p½ � L1 xð Þz G1 xð Þ½ �{ H1 pð Þ L1 xð Þz N1 xð Þz G1 xð Þ½ �~0,

1{p½ � L2 xð ÞzG2 xð Þ½ �{ H2 pð Þ L2 xð Þz N2 xð Þz G2 xð Þ½ �~0, ð65Þ

We consider u xð Þ,H xð Þ, H1 pð Þ, H2 pð Þ as the following

H1 pð Þ~p C1 z p2 C2 ,

H2 pð Þ~p C1 z p2 C4 ,

u xð Þ~ u0 xð Þzp u1 xð Þz p2 u2 xð Þ,

H xð Þ~H0 xð ÞzpH1 xð Þz p2 H2 xð Þ,

ð66Þ

Substituting u xð Þ,H xð Þ, H1 pð Þ, H2 pð Þ, L1 xð Þ, N1 xð Þ, G1 pð Þ,
L2 xð Þ, N2 xð Þ and G2 xð Þ from Eq. (66) into Eq. (65) we have the

following components of velocity and temperature.

Zero components:

p0 : St z
d2 u0

d x2
~0,

d2 H0

d x2
~0, ð67Þ

First components:

p1 : { St{ St C1zM C1
d u0

dx
zL C1

d u0

dx

d H0

dx
{

d2 u0

d x2
{C1

d2 u0

d x2

zL C1 H0 xð Þ d
2 u0

d x2
{12b C1

d u0

dx

� �2
d2 u0

d x2
z

d2 u1

d x2
~0,

{ Br C3
d u0

dx

� �2

zLBr C nolimits3 H0 xð Þ d u0

dx

� �2

{4b Br C3
d u0

dx

� �4

{
d2 H0

d x2
{ C3

d2 H0

d x2
z

d2 H1

d x2
~0,

ð68Þ

Solving Eqs. (67, 68) with boundary conditions (61, 62), we get

u0 (x)~
1

2
2x St { x2

St

� �
,H0 (x)~x, ð69Þ

u1 xð Þ

~
C1

24

8 M2 St z96b S3
t

� �
xz 144b S3

t {12LSt

� �
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z 8LSt {4 M2 St z96b S3
t

� �
x3

z M2 St {24b S3
t

� �
x4

2
664

3
775,

H1 xð Þ

~
Br C3

60

3 S2
t L{15 S2

t {40b S4
t

� �
xz 30 S2

t z120b S4
t

� �
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{ 20 S2
t z160b S4

t z10 S2
t L

� �
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z 5 S2
t z120b S4

t z10 S2
t L

� �
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{ 48b S4
t z3 S2
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666664
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ð70Þ
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Like previous problem, results up to first order terms haven

been obtained.

ADM solution. Using ADM on Eqs. (21, 22), the Adomian

polynomials in equations (45, 46) for both problems are same

whereas the different velocity components are obtained as:

Components of the Problem
The boundary conditions of first and second components for

drainage velocity profile are same as given in Eq. (56). Also, the

boundary conditions for temperature distribution are same as

given in Eq. (57) but solution of these components is different,

depends on the different velocity profile of drainage and lift

problems. Due to lengthy analytical calculation, solutions up to

first order terms are included whereas the graphical representa-

tions up to second order terms are given. Using boundary

conditions (62) and (56) into Eqs. (49–54), the components,

solution are obtained as:

u0 (x)~
1

2
2x St { x2

St

� �
, ð71Þ

H0 (x)~x, ð72Þ
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3
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3
t
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x3 z {

M2 St

24
zb S

3
t

� �
x4 ,

ð73Þ
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ð74Þ

Results and Discussion

The effect of Stock number St magnetic parameter M2,

Brinkman number Br non-Newtonian parameter b and viscosity

parameter L in lifting and drainage problems together with the

physical interpretation of the problem have been discussed in

Figs. 1–20. Fig. 1 shows the geometry of lift and drainage

problems. A comparison of the ADM and OHAM solutions is

shown in Figs. 2–5 for various values of physical parameters. It is

found from these figures that ADM and OHAM solutions are in

good agreement. Figs. 6 and 7 provide variation of velocity and

temperature distribution for different values of Brinkman number.

It has been found that velocity decreases whereas temperature

inside the fluid increases by increasing Br while keeping the other

parameters fixed. In Fig. 8, we observed that velocity decreases

with an increase in the Stock number St. Physically, it is true as

increasing Stock number causes the fluid’s thickness and reduces

its flow. The effect of Stock number St on temperature distribution

has been illustrated in Fig. 9. It is observed that temperature H
increases monotonically for large values of Stock number St. The

effect of viscosity parameter L on lift velocity u is shown in Fig. 10.

It is observed that the speed of flow decreases by increasing L. The

speed of flow is actually caused by shear’s thickening and thinning

effects due to increase and decrease in viscosity parameter. A

similar situation is observed in Fig. 11 where an increase in

viscosity parameter L decreases temperature distribution. Here,

the velocity profiles are parabolic in nature and their amplitudes

depend on the magnitude of the viscosity parameter L. Variations

of the magnetic parameter M2 on lift velocity have been studied in

Fig. 12. Here, it is clear that the boundary layer thickness is

reciprocal to the transverse magnetic field and velocity decreases

Figure 19. The influence of non-Newtonian parameter b on
t e m p e r a t u r e f o r d r a i n a g e p r o b l e m w h e n

M2 ~0:5, St ~1,L~0:01, Br ~50:0.

doi:10.1371/journal.pone.0097552.g019

Figure 20. Comparison of the present results with published
work [22] when St ~0:5, M

2 ~0:1,b~0:6,L~0,a~1:0.
doi:10.1371/journal.pone.0097552.g020
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as flow progresses towards the surface of the fluid. On the other

hand, temperature profile as shown in Fig. 13 indicates that fluid

temperature increases with magnetic parameter. Fig. 14 shows

that velocity increases in drainage flow when Stock number St

increases. Physically, it is due to friction which seems smaller near

the belt and higher at the surface of the fluid. Further, it is found

from Fig. 15 that temperature profile also increases when St is

increased. Fig. 16 illustrates the effect of variable viscosity

parameter L on the drain flow. It is observed that at higher

values of viscosity parameter L, velocity of the fluid increases

gradually towards the surface of the fluid. However, it is found

from Fig.17, that an increase in viscosity parameter L causes

gradual decrease in temperature field. The effects of non-

Newtonian parameter b on drain velocity have been studied in

Fig. 18. We observed that an increase in b raises drain velocity

profile and decreases temperature profile as shown in Fig. 19.

Finally for the accuracy purpose the present results are compared

with published work in [22] in Fig. 20 and in table 1. An excellent

agreement is found.

Future Work
We intend to carry out researches in future on third grade fluid

on vertical belt regarding the following discussions:

1) Time dependent third grade fluid on vertical belt.

2) Vogel Model third grade fluid on vertical belt with slip

boundary conditions.

3) Third grade fluid on vertical belt wit surface topography.

4) Third grade fluid on vertical rotating disc with surface

topography.

Conclusion

In this work, we have investigated the thin film flow non-

Newtonian third grade fluid due to vertical belt and the fluid was

subjected to lifting and drainage. Analytical solutions of the lifting

and drainage problems have been obtained using ADM and

OHAM. It has been shown graphically that these solutions are

identical. The results for velocity and temperature have been

plotted graphically and discussed in detail. It has been observed

that these solutions are valid not only for small but also for large

values of the emerging parameters. It has been observed that in

both cases of lift problem velocity decreases while temperature

increases with increasing Brinkman number Br. However, in

drainage problem both velocity and temperature increases.
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