
BRCA1 Haploinsufficiency Leads to Altered Expression of
Genes Involved in Cellular Proliferation and
Development
Harriet E. Feilotter1,3, Claire Michel1,4, Paolo Uy1,4, Lauren Bathurst1,4, Scott Davey1,2,4*

1 Departments of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada, 2 Departments of Biomedical and Molecular Sciences and Oncology,

Queen’s University, Kingston, Ontario, Canada, 3 Cancer Research Institute, Queen’s University, Kingston, Ontario, Canada, 4 Division of Cancer Biology and Genetics,

Queen’s University, Kingston, Ontario, Canada

Abstract

The assessment of BRCA1 and BRCA2 coding sequences to identify pathogenic mutations associated with inherited breast/
ovarian cancer syndrome has provided a method to identify high-risk individuals, allowing them to seek preventative
treatments and strategies. However, the current test is expensive, and cannot differentiate between pathogenic variants
and those that may be benign. Focusing only on one of the two BRCA partners, we have developed a biological assay for
haploinsufficiency of BRCA1. Using a series of EBV-transformed cell lines, we explored gene expression patterns in cells that
were BRCA1 wildtype compared to those that carried (heterozygous) BRCA1 pathogenic mutations. We identified a subset of
43 genes whose combined expression pattern is a sensitive predictor of BRCA1 status. The gene set was disproportionately
made up of genes involved in cellular differentiation, lending credence to the hypothesis that single copy loss of BRCA1
function may impact differentiation, rendering cells more susceptible to undergoing malignant processes.
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Introduction

Breast cancer is one of the most common forms of cancer, and

one of the leading causes of cancer-related deaths throughout the

western world. While the majority of breast cancer cases are

sporadic, 5–10% are classified as hereditary, and are due to the

presence of a mutation in a breast cancer predisposition gene [1].

Approximately half of all hereditary breast cancers are due to a

mutation in either BRCA1 or BRCA2, and approximately 80% of

individuals with a mutation in either of these genes develop breast

cancer by the age of 70 years [2]. Because of the high risk of

cancer in individuals with these mutations, their early and

accurate identification targets them for increased surveillance

and/or protective interventions such as surgery.

However, the task of identifying carriers of BRCA mutations is

complicated by our continued lack of understanding of the specific

biological mechanisms that are impacted by mutation of either

gene. Additionally, the consistent evaluation of both BRCA1 and

BRCA2 as a gene set implies that functional assays must necessarily

be broad enough to capture activities of both proteins, an

unreasonably difficult task. Therefore, we have chosen to focus on

each of the genes as an independent problem to highlight the

approach for development of a biological assay to explore loss of a

complex protein. The work described here is focused on

measurement of loss of BRCA1 function.

Since the identification of BRCA1 almost two decades ago [3],

the molecular pathways in which BRCA1 functions and how

disruptions of these functions promote breast and ovarian

carcinogenesis remains a mystery. The human BRCA1 gene

encodes an 1863 amino-acid protein, containing two highly

conserved domains in the N- and C-terminal regions of the

protein. At the N-terminus lies a RING domain, a cysteine rich

zinc-binding motif that functions as an E3 ligase enzyme involved

ubiquitination [4]. Two tandem repeat globular domains termed

BRCT, a common feature of proteins involved in the DNA

damage repair and cell cycle control [5], lie at the C-terminus.

Functionally, BRCA1 has been implicated in a diverse array of

cellular functions, including ubiquitination [6–9], regulation of the

G1/S [10], intra-S and G2/M-phase cell cycle checkpoint control

[11–14], regulation of spindle pole body duplication[15], tran-

scription [16–19], sex chromosome inactivation [20–23] and

homologous recombination repair of double stranded DNA breaks

[24,25]. Taken together, these individual roles suggest a function

for BRCA1 in the maintenance of genomic integrity [26,27].

BRCA1 has also been suggested to a play a role in the

differentiation of breast epithelial cells, with loss of BRCA1

function leading to impaired acini formation in 3D culture and an

accumulation of less differentiated cells with altered proliferation

properties [28–31].

Current methods for the identification of BRCA1 carriers are

based on gene sequence variations. One of the inherent difficulties
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in this approach is in differentiating between clinically important

changes and benign polymorphisms in these genes. While BRCA1

mutations that result in a truncated protein can usually

unequivocally be called disease-causing, many other mutations,

termed variants of unknown significance (VUS) are more difficult

to interpret in a clinical context. Approximately 13% of BRCA1

and BRCA2 genetic tests reveal mutations identified as VUSs [32].

Tracking how specific BRCA1 mutations segregate with disease

within families as well as case-control studies provide the most

reliable information for classifying VUS as pathogenic or neutral.

Case control studies are made difficult, however, by the rarity of

specific mutations in the population, while segregation studies

suffer from uncertainties generated by the high likelihood of

phenocopies among the affected, and the potential for late onset

cancer in the unaffected. In cases where clinical data are not

available to classify VUS, several functional assays have been

developed to assess the effects of individual mutations on specific

BRCA1 functions, including a transcriptional activation assay

[33], phosphopeptide binding assay [34], ubiquitin ligase activity

assay [35] and an embryonic stem-cell based functional assay [36].

However these functional assays can be technically complex and

are limited to mutations in specific domains impacting particular

functions. Regardless of whether the ‘‘correct’’ function is targeted

in such assays, the requirement to assay multiple complex

biochemical functions precludes the use of this approach in the

clinical laboratory setting.

Given the pleiotropic roles of BRCA1, and the potential for

individual mutations to lead to tumorigenesis via different

mechanisms, the development of a functional assay for BRCA1

presents a significant challenge. However, because BRCA1

evidently plays a central role in many critical pathways that

converge on the maintenance of genomic integrity, we hypothe-

sized that there was a high likelihood that loss of even a single copy

of BRCA1 would have a measurable impact on the expression of

downstream genes involved in one or more of these pathways.

Indeed, BRCA1 haploinsufficiency has been shown in several

studies to alter the differentiation and proliferation pathways of

breast epithelial/progenitor cells in patients carrying a BRCA1

mutation [30,31,37].

Evidence lending support to the idea of carrier-phenotype

expression profiling comes from several studies, including small-

scale studies on BRCA1 carrier fibroblasts following exposure to

ionizing radiation (IR) [38,39]. Bellacosa et al. 2010 [40], showed

that BRCA1 carriers had altered gene expression profiles in

cultured primary breast and ovarian epithelial cells compared to

non-carriers. Another recent study [41] showed that lymphocytes

from BRCA1 mutation carriers demonstrated altered gene

expression profiles following exposure to IR, which could be used

as a prediction tool to identify BRCA1 mutation carriers. Here, we

sought to determine whether EBV-transformed lymphoblastoid

cell lines heterozygous for BRCA1 mutations could be distin-

guished from control cell lines using whole genome gene

expression profiling.

Methods

Samples
EBV-transformed lymphocytes (LCLs) were obtained through

the NIH Breast Cancer Family Registries. The 69 cell lines used in

this study included 38 control (BRCA1+/+) and 31 BRCA1

mutation carriers (BRCA1+/2). The carrier cell lines included

frameshift, missense, nonsense, and splicing mutations; a list of the

BRCA1 mutations is shown in Table 1. All LCLs used in this study

were cultured in RPMI-1640 media (Sigma Aldrich, Oakville,

ON) supplemented with non-heat inactivated 15% fetal bovine

serum (FBS) (Sigma Aldrich). All cell culture was carried out in

25 cm2 flasks (Corning, Nepean, ON) at 37uC in 5% CO2

atmosphere. Cells were split in a 2:1 ratio until the desired cell

number of 650,000 cells/ml was reached. Where noted, DNA

damage was induced through exposure to 2 Gy ionizing radiation

(IR), delivered by a 137Cs Victoreen Electrometer (Atomic Energy

of Canada, Mississauga, ON) at a dose rate of 0.52 Gy/min.

Following treatment, the cells were allowed to recover for a period

of 6 hr at 37uC in 5% CO2 atmosphere prior to extraction of total

RNA.

Ethics Statement
This work was approved by the Queen’s University Research

Ethics Board under approval #PATH-115-10. Collection and

generation of the LCL lines has been reported previously [42].

Cell culture and gene expression profiling controls
To assess the characteristics of our samples prior to transcrip-

tome analysis, we determined the kinetics of arrest and recovery

(0–18 h) across a range of IR doses (0–4 Gy). In all cases, cells

were exposed to Cell Proliferation Labeling Reagent (Amersham

Biosciences, Baie d’Urfe, Canada), according to the manufacturers

instructions, for 1 hour prior to harvest. A dose of 2 Gy followed

by 6 hours of recovery was the minimum dose and maximum

recovery time at which we observed a uniform G1-S arrest, as

assayed by loss of the early S phase cells from 2 dimensional flow

cytometry profiles. This dose/recovery scheme was used through-

out the study. For all microarray experiments, two parallel cultures

were generated and one was treated with 2 Gy IR, 6 hours prior

to harvest. Only cell lines showing proliferation in untreated cells,

G1 checkpoint arrest following IR, and producing high quality

RNA were used for microarray analysis.

Gene expression profiling
RNA from each of the 69 cell lines was extracted using

TRIZOL Reagent following the manufacturer’s recommendations

(Invitrogen, Burlington, ON). RNA was purified using the RNeasy

MinElute Cleanup Kit (Qiagen, Mississauga, ON). RNA quality

was assessed by Agilent 2100 Bioanalyzer (Version B.02.02). RNA

with an integrity number of at least 7 was amplified and labeled

using the Agilent Low RNA Input Linear Amplification kit

(Agilent, Santa Clara, CA). Labeling reactions were performed

with 250 ng total RNA, along with the Agilent Spike-in RNA mix,

using Cy3-CTP and Cy5-CTP for control (-IR) and experimental

(+IR) RNA, respectively (Perkin Elmer, MA, USA). Amplified

RNA was quantified using the NanoDrop ND-1000 (NanoDrop

Technologies, DE, USA) and the concentration of cRNA and the

specific dye activity were calculated. Samples with a specific dye

activity greater than 8 pmol/ml were selected for hybridization to

arrays. Pairs of cRNA (unirradiated versus irradiated) were

hybridized to Agilent Whole Human Genome Oligo 4x44K GE

arrays as per the product protocol. Image acquisition and analysis

were done using an Agilent Microarray Scanner, Model G2565BA

and Agilent Feature Extraction software v9.1 set to default settings.

Raw data has been submitted to the NCBI GEO database

(Accession Number GSE19541.)

Data analysis: Non supervised clustering
(NSC) analysis was done using the PAM method [43] as a

software add-on within Microsoft Excel. Heat maps of the final

classifiers, normalized by chip, were constructed using the Genesis

software package [44]. Pathway analysis was performed using the

BRCA1 Profiling

PLOS ONE | www.plosone.org 2 June 2014 | Volume 9 | Issue 6 | e100068



Ingenuity software package (www.ingenuity.com). Identification of

radiation responsive genes was done using SAM [45].

For NSC analysis, a total of 43,338 features were used in the

analysis. 38 features that had gene label values that could not be

interpreted by the analysis software were eliminated from the

dataset prior to analysis. Normalization, where used, is described

in the relevant sections of the Results.

Comparisons between microarray and qPCR data were

calculated as follows: For microarray data, log (2) ratios between

the values for each sample was compared to the average of all cell

lines. For qPCR samples, DCt values were calculated for each

target gene relative to the GusB control, and DDCt values were

calculated relative to the DCt value of WT19998 as a control. Fold

changes were calculated individually versus the average of all cell

lines for which data were available. Average values were calculated

independently for each of the BRCA1 haploinsufficient and WT

cell lines.

Results

Basal gene expression levels can be used to distinguish
BRCA1+/+ from BRCA1+/2 cells

Following the generation of whole transcriptome expression

data from each of the logarithmically growing cell lines, we sought

to determine whether gene expression values differed in BRCA1+/2

versus BRCA1+/+ lines. We used a nearest shrunken centroids

analysis approach to analyze the data [43]. Data were analyzed

either with no prior normalization, or following median normali-

zation (per chip). These two approaches to analysis yielded similar

and extensively overlapping results. However, the use of raw data

tended to emphasize highly expressed genes, while the application

of normalization algorithms permitted the identification of addi-

tional genes of interest that were expressed at lower levels.

Therefore, we focused on the normalized datasets, although some

genes unique to the non-normalized analysis were included in our

final model.

Table 1. List of BRCA1 mutations used in this study.

ID Mutation Class Test

12928 c.4689C.G N

13135 c.66_67delAG F

13416 c.5263insC F

13537 c.3607C.T N Y

14023 c.2071delA F Y

14643 c.1175_1214del F Y

14663 c.4327C.T N

14703 c.2834_2836delGTAinsC F

14832 c.2475_2476delC F

14834 c.1016insA F

15268 c.5263insC F

15285 exon13ins6kb O

15736 c.191G.A M Y

15737 IVS1-22A.G O

16236 c.2561insGC F

17082 c.66_67delAG F Y

17653 c.5263insC F

18318 c.3756_3759delGTCT F

18700 IVS9-2A.C S

19018 c.4327C.T N

21303 c.66_67delAG F

22893 c.1175_1214del F Y

24262 c.851ins7 F

25453 c.2934T.G N

26842 c.4327C.T N

26950 c.3695_3699del5 O Y

27129 exon13 dup F

27131 c.4484G.T M Y

27348 c.66_67delAG F

27636 c.3607C.T N

33139 c.66_67delAG F

Class abbreviations are N: Nonsense; F: Frameshift; M: Missense; S: Splicing; O: Other. Test indicates the samples present in the test set; all other samples were used in
the training set.
doi:10.1371/journal.pone.0100068.t001
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We divided our samples into training (53 samples) and test (16

samples) randomly. Using the normalized data set, we observed

the minimum training set error (6%, 3/53 samples) over a

relatively wide range of shrinkage co-efficients (1.85–2.86),

representing 288 to 23 genes, respectively. When this model was

tested on the test set (8 wild type and 8 carriers), the accuracy was

95% (15/16), with a single misclassification of a control sample.

Table 2. List of genes identified as predicting BRCA1 carrier status.

Gene Notes Predictive Value PCR Validated

PXDN 1 4.246558229

JAKMIP2 4 2.147236883

MMP7 2 2.062558949

CSRP2 1 1.797239311

CD24 1 1.75716275

LFNG 2 1.706805758

ENPP2 2 1.705982587

FOXP1 1 1.503455224

PWWP2 1 1.478776571

PRLR 4 1.383493041

IFNA5 4 1.228390716

FCGRT 1 0.997556344

IFNA4 1 0.99182988

IFIT3 2 0.89448872

SERPINF1 2 0.886742073

IGHD 3 0.84862378

IFIT1 2 0.788035184 Yes

ZBED3 2 0.786498412

IFIT2 2 0.736255901

USP18 3 0.727615739

IFI44L 2 0.689378004

SOX4 2 0.471075432

MX2 3 0.468182764

MX1 3 0.462444907

HLA-DMB 3 20.378283622

DUSP23 2 20.860935628

GLDC 2 20.878929021

ZBTB38 2 20.89526144

BCR 2 21.004874472

LAG3 3 21.068210822

IL18BP 2 21.173050671

UBD 3 21.174178777

TNS4 4 21.474875288

SLC16A10 4 21.558340909

PLA2G4A 1 21.62075284

CYP1B1 2 21.779383571

FAM79B 1 21.900252217

IFNG 4 21.97628822

IGHG1 1 22.110861375 Yes

FYN 1 22.114129327

CXCR3 1 22.203429664 Yes

TBX21 1 22.66823647 Yes

ETV7 2 22.720734937

The genes identified using the shrunken centroids analysis approach are listed. The list contains a total of 43 genes.
Notes: 1 means both from short list; 2 means both from long lists; 3 means raw only; 4 means normalized only.
doi:10.1371/journal.pone.0100068.t002
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Modeling using the raw data was also effective, although it

exhibited a slightly lower accuracy in the independent test set, and

utilized a much larger number of genes in the predictor. The

minimum training set error was 11% (6/53), and accuracy on the

independent test set was 88% (14/16), with 2 control samples

incorrectly classified, including the one that was previously

misclassified using the model from the normalized data. The

raw data model was accurate over a narrower range of shrinkage

coefficients (1.35–1.65), representing 785 to 367 genes, respec-

tively.

To generate a list of the most consistent predictive genes for

biological analysis, we first selected genes that were identified by

both approaches using the most stringent shrinkage coefficients (a

total of 13 gene features). We then added genes that were ranked

higher (by either model) than the lowest ranking of those identified

by both approaches. In many cases, such genes were identified by

both approaches if the shrinkage coefficients were relaxed to the

lowest value that minimized training set error. A total of 17 genes

were added by this approach. Finally, carrying out these

approaches in both datasets (normalized or not) identified some

genes were only identified in the raw (7 genes) or normalized (6

genes) data sets. The end result was a list of 43 genes, summarized

in Table 2.

To graphically examine the contribution of these candidates to

the classification scheme, we used the GENESIS software package

to generate a heat map of expression level of these 43 genes across

the cell lines tested (Fig. 1). Samples are arranged by BRCA status

at the top, with relative expression values at the right. As expected,

clustering revealed distinct expression patterns in the training set.

More importantly, this clustering was clearly recapitulated in the

independent test set, indicating the classification results are

consistent across the 43 gene profile, rather than being driven

by a small number of genes within this set.

Genes predicting BRCA1 status indicate defects in
interferon-regulated transcriptional pathways in BRCA1
haploinsufficient cells

To further understand the underlying biology leading to the

classification scheme, we used the Ingenuity Pathway Analysis

(IPA) application to explore the networks linking the genes in our

predictor. IPA constructs optimal interaction networks that

contain a maximum of 35 genes/proteins, and returns a graphical

interaction network, as well as a calculated probability score. The

probability score for any given network takes into account a

number of factors, including the number of molecules on the input

list that appear in the final pathway relative to random molecules

in the database. The probability score for a network is calculated

Figure 1. Heat map showing classification in training and test sets using the SC approach. Samples from the training set presented on the
left (53) and those from the test set are presented to the right (16). BRCA1 status is indicated at the top of the heat map; BRCA1+/2 (0), BRCA2/2 (1).
Genes used in the predictor are listed at the right. These genes were sorted according to relatedness using the GENESIS program, and a dendrogram
of relatedness is presented at the left of the figure. Samples that were mis-classified are indicated by arrows at the top of the figure. Misclassification
arrows missing (as noted), remove red to green bar at top, colour code the samples to identify carriers and controls.
doi:10.1371/journal.pone.0100068.g001
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using a right-tailed Fisher’s Exact Test [46]; and see www.

ingenuity.com.

We developed a network based on the 43 gene consensus list

(Fig. 2). The network is designated as relating to ‘‘Hematological

System Development and Function,’’ with a calculated p-value of

10226. Of the 35 genes/complexes reported in this pathway by

IPA, 20 are in our input list of 43, and an additional 9 components

represent complexes containing these genes. The disease/disorder

states identified as associated with the most genes in the 43 gene

consensus list were cancer (26 genes, p = 5610232761026) and

inflammatory response (22 genes, p = 5610232761026). The

molecular and cellular functions associated with the most input

genes were cellular growth and proliferation (26 genes, p = 5610-

3–2610-6) and cellular development (23 genes, p = 5610-3–26
10-7). The physiological system development and functions

associated with the largest numbers of input genes were

hematological system development and function (21 genes,

p = 5610-3–1610-7), and immune cell trafficking (15 genes,

p = 5610-3–1610-7).

An alternative approach to determining the function of genes

that are differentially regulated in cells derived from BRCA1

carriers is though Gene Ontology analysis. Outputs from those

analyses were in general agreement with the Ingenuity-based

analysis, with the top GO Process terms identified including

regulation of proliferation (12 genes: CD24, CXCR3, FOXP1,

FYN, IFIT3, IFNA4, IFNA5, IFNG, MMP7, PLA2G4A,

SERPINF1, SOX4,) and differentiation (10 genes: CD24, CSRP2,

ETV7, FOXP1, IFNA4, IFNA5, IFNG, SOX4, TBX21, UBD.)

In addition, other common GO process terms found among this

list were the regulation of apoptosis (11 genes, CD24, CXCR3,

FYN, IFIT2, IFIT3, IFNG, MX1, PRLR, SOX4, TNS4, UBD),

cytokine-mediated signaling (10 genes: IFNA5, IFNA4, IFIT1,

IFIT2, IFIT3, USP18, MX1, MX2, HLA-DMB, IFNG), type 1

interferon-mediated signaling (8 genes: IFIT1, IFIT2, IFIT3,

IFNA4, IFNA5, MX1, MX2, USP18), response to virus (8 genes:

TBX21, MX1, MX2, IFIT1, IFIT2, IFNA4, IFNA5, IFI44L), and

immune response (6 genes: PXDN, ENPP2, FCGRT, IGHD,

IFI44L, IGHG1).

Figure 2. Graphical representation of the interactions of a subset of the genes identified by both the NSC and SVM approaches. A
total of 22 genes were input into the Ingenuity pathway analysis program, and 11 are represented in this 35 gene output pathway. A detailed key to
the analysis output can be found at https://analysis.ingenuity.com/pa/info/help/help.htm; which includes the following: Direct (solid lines) and
indirect (dashed lines) Interaction; Inhibitory (bar at line end), Activating (arrow at line end) or Undefined (no line end) Binding; Regulation via
Expression (E), Transcription (T) and Protein-protein interaction (P-P); Gene functions including Transcription regulators (wide ovals), cytokines
(squares), complexes (double circles), enzymes (tall diamonds), and non-classified (circles).
doi:10.1371/journal.pone.0100068.g002
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Validation by qPCR
To ensure technical reproducibility, we validated a subset of the

most highly predictive genes using qPCR. RNA was prepared

from the indicated control and carrier cell lines, and subjected to

TaqMan assay for the indicated target genes. Data were graphed

along with the gene expression microarray data obtained in the

original experiment. As presented in Fig. 3, CSCR3, TBX21 and

IFIT1 all reproducibly show consistency between microarray and

qPCR based approaches in terms of overall average values across

multiple samples, as well as a generally consistent trend between

individual samples. Of the 5 genes tested in this way, 4 were shown

to recapitulate the microarray data in the followup qPCR assays

(Table 2).

Differential response to radiation does not distinguish
BRCA1+/+ from BRCA1+/2 cells

Given the association of BRCA1 with the DNA damage

response, we also attempted to determine whether we could

generate a molecular classifier to distinguish BRCA1 mutant

heterozygotes from wild type cells following exposure of cells to IR.

Analysis was performed using nearest shrunken centroids,

essentially as above, except that expression for each gene was

calculated relative to its own expression level in a parallel

unirradiated sample. Training set error was minimized (9%) at a

single shrinkage coefficient, 1.44, representing 144 genes. How-

ever, in this case, the predictive value of the model on the

independent test set was poor. Only 5 of 16 samples (31%) were

correctly predicted with multiple errors in both control and carrier

prediction.

To optimize the modeling, the data were filtered to remove low

expressing genes, which can cause difficulty in analysis. Using the

19850 genes with highest average expression level in control

samples, analysis was repeated. Again, a single shrinkage

coefficient, 1.57, representing 76 genes, was found, which

minimized the training set error (15%). Analysis of the indepen-

dent test set yielded an accuracy of only 5 of 16 samples.

It was unclear whether the failure to generate a predictor with

this dataset was because the IR treatment had not had the desired

effect, or whether activation of the DNA damage response did not

differentiate between BRCA1 wildtype and haploinsufficient cells.

To determine whether the IR treatment had actually had the

desired effect on DNA repair and checkpoint pathways, we

identified the radiation-responsive genes in wild type cells, and

compared these to other published datasets [45,47,48]. Using

SAM [45], with a defined false-discovery rate of 1.5%, we

identified 2643 up-regulated genes (SAM score .1.26), and 3631

down-regulated genes (SAM score ,21.16), under the conditions

described above. While a complete description of these results is

beyond the scope of this manuscript, about half of previously

reported radiation-responsive genes were recapitulated in our data

set, suggesting appropriate activation of radiation response

pathways following our treatment [Table 3].

Given this, we conclude that response to IR is unlikely to yield a

functional discriminator for BRCA1 haploinsufficiency, and

hypothesize that manifestation of the defect in radiation response

may require loss of the second BRCA1 allele.

Discussion

Our results identify a set of dysregulated genes in unperturbed

EBV-transformed lymphocytes carrying heterozygous BRCA1

mutations. The identity of the genes in our model is consistent

with the hypothesis that cells with a reduced amount of functional

BRCA1 are less differentiated than non-mutant control cells. In

Figure 3. Comparison of qPCR and gene expression microarray
results. Distribution of relative target expression levels between BRCA1
mutation carrier and non-carrier cell lines. Dashed lines represent mean
relative expression values of each group (BRCA1 mutation carriers and
non-carriers). Relative expression levels determined by microarray (black
lines) and qRT-PCR (grey lines), for CXCR3, TBX21 and IFIT1.
doi:10.1371/journal.pone.0100068.g003
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addition, we have shown that subjecting the same cell lines to 2 Gy

IR results minimal ability to discriminate cells carrying a BRCA1

mutation from those that do not. This suggests that BRCA1

haploinsufficiency does not cause global changes in the DNA

damage response at low doses, but does not preclude such changes

at higher doses. Alternatively, the DNA damage defects in BRCA1

mutant cell lines may only be seen after loss of the wild type

BRCA1 allele. These findings together have significance for

development of a functional assay for BRCA1 carriers, as well as

for understanding the biology behind BRCA1-dependent breast

cancers.

Apart from the potential clinical significance of a rapid

functional tool to identify BRCA1 heterozygous mutation carriers,

our model provides intriguing data about the biological effect of

haploinsufficiency of this protein. TBX21 is one of the key genes

we identified as down-regulated in BRCA1+/2 LCLs compared to

wildtype cells. It has been shown to act as a master regulator for T

cell development, particularly via a mechanism involving inter-

feron c [49]. This finding is consistent with published work

showing defective T cell lineage in BRCA1 null mice [50], and that

BRCA1 is involved in the development of the breast in mouse and

human systems [28,51]. In addition, breast tumors arising in

BRCA1 carriers have been shown to have increased expression of

several stem cell markers [52]. Consistent with this, we found that

BRCA1+/2 cells exhibited down-regulation of numerous interfer-

on-regulated genes, including IFIT1, IFIT2, IFIT3, HERC5, and

USP18. While neither IFNb or IFNc were identified in our

predictive models for BRCA1 status, IFNa is a component of the

optimal SVM-based predictor, further supporting the idea that

interferon signaling in general may be deregulated under

conditions of BRCA1 haploinsufficiency.

Initial studies of LOH in the breast tumours of BRCA1 carriers

reported a rate of 75% (75/101) of LOH of the wild type allele

[53-56]. More recently, quantitative allelotyping has demonstrated

a significant degree of variability in the extent and direction of

LOH in breast tumours [57]. In some cases, normal tissue shows

LOH of the wild type BRCA1 allele, and tumor tissue shows loss of

the mutant allele.

In addition to the LOH studies, it is well established that

complete loss of BRCA1 in sporadic cancer is a very rare event

[58,59]. While this may reflect a different mechanism for BRCA1

inactivation in sporadic cancers, such as gene silencing, it may also

be that BRCA1-dependent oncogenesis is initially associated with

haploinsufficiency during development. This may be exacerbated

by the additional cancer-driving effects of homozygous BRCA1 loss

in the late stages of carcinogesis contributing to the overall

aggressiveness of BRCA1-dependent tumours. In such a model,

BRCA1 would function as both a gatekeeper (early event due to

haploinsufficiency leading to reduced differentiation) and a

caretaker (later effect which requires complete loss of function,

contributing to aggressiveness through effects on maintenance of

genomic stability). Such a dualistic role might explain the

bewildering lack of consistency of the LOH studies in BRCA1-

related tumours to date.

This model of BRCA1 function may also explain our results that

showed a relative lack of predictive power for discriminating

BRCA1 carriers from wild type cells following irradiation. In

contrast to previous finding using irradiated fibroblasts [38,39],

our results from LCLs demonstrated that IR did not accentuate

differences between wild type and BRCA1 mutation carrying cells.

It is possible that these different results reflect fundamental

differences in the radiation response between lymphocytes and

fibroblasts.

The best model we generated was made using unirradiated cells.

This is significant because it suggests that the best predictor may

be achievable without the use of complicated irradiation protocols.

Our model was 100% accurate in predicting the test set. There

were a total of 8 samples in the training set that were not properly

classified. Pooling of the test and training sets gave an overall

sensitivity of 84% and a specificity of 92%. The ability to predict in

an independent test set suggests that the model is robust and will

likely be reproducible in further validation studies.

The accurate identification of BRCA1 mutation carriers is an

important challenge in disease management. Given the size of the

gene, the heterozygous state of individuals at risk, and multiplicity

of functions ascribed to the protein, it is also a significant challenge

to develop a comprehensive functional assay for BRCA1. The

results of this study indicate that BRCA1 mutation carriers may be

identified using a functional assay based on altered gene-

expression profiles in non-cancerous cells. Furthermore, the ability

of this assay to predict BRCA1 status in unperturbed cells suggests

that it can potentially be adapted to a simple peripheral blood-

based assay. Future work will focus on determining whether the

gene expression patterns seen here can be observed in fresh blood

samples as well, as this would be a condition of using a variant of

this assay in a clinical screening setting. In addition, future work

will also focus on whether the functional data from this assay can

be applied to classifying VUS alterations in BRCA1; regardless of

its utility as a screening tool, such a finding would add significant

clinical value by appraising the likelihood of any VUS contributing

to disease risk.
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