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Abstract

The coupling of electronic medical records (EMR) with genetic data has created the potential for implementing reverse
genetic approaches in humans, whereby the function of a gene is inferred from the shared pattern of morbidity among
homozygotes of a genetic variant. We explored the feasibility of this approach to identify phenotypes associated with low
frequency variants using Vanderbilt's EMR-based BioVU resource. We analyzed 1,658 low frequency non-synonymous SNPs
(nsSNPs) with a minor allele frequency (MAF)<<10% collected on 8,546 subjects. For each nsSNP, we identified diagnoses
shared by at least 2 minor allele homozygotes and with an association p<<0.05. The diagnoses were reviewed by a clinician
to ascertain whether they may share a common mechanistic basis. While a number of biologically compelling clinical
patterns of association were observed, the frequency of these associations was identical to that observed using genotype-
permuted data sets, indicating that the associations were likely due to chance. To refine our analysis associations, we then
restricted the analysis to 711 nsSNPs in genes with phenotypes in the On-line Mendelian Inheritance in Man (OMIM) or
knock-out mouse phenotype databases. An initial comparison of the EMR diagnoses to the known in vivo functions of the
gene identified 25 candidate nsSNPs, 19 of which had significant genotype-phenotype associations when tested using
matched controls. Twleve of the 19 nsSNPs associations were confirmed by a detailed record review. Four of 12 nsSNP-
phenotype associations were successfully replicated in an independent data set: thrombosis (F5,rs6031), seizures/
convulsions (GPR98,rs13157270), macular degeneration (CNGB3,rs3735972), and Gl bleeding (HGFAC,rs16844401). These
analyses demonstrate the feasibility and challenges of using reverse genetics approaches to identify novel gene-phenotype
associations in human subjects using low frequency variants. As increasing amounts of rare variant data are generated from
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modern genotyping and sequence platforms, model organism data may be an important tool to enable discovery.
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Introduction

Electronic medical record (EMR) systems store an increasing
amount of clinical, laboratory and biometric data generated by
health care systems. These data offer opportunities to explore risk
factors for diseases, the inter-relationships among disease entities,
and determinants of treatment response in large populations of
individuals [1]. EMR data integrated with DNA repositories can
also be utilized to identify genetic contributions to human disease
risk and treatment response [2-7]. The spectrum of disease entities
collected in EMRs has also enabled large-scale bioinformatics
approaches such as Phenome-Wide Association Study (PheWAS),
which searches in a disease-agnostic fashion for associations
between common polymorphisms and hundreds of clinical
diseases, identified using billing codes [8,9]. The success of
PheWAS approaches for common variants suggests that similar
EMR-based approaches may identify associations with low
frequency or rare variants [4,10,11].

PLOS ONE | www.plosone.org 1

Experimental model systems such as mouse models have been
successful in assigning functionality to genes through the use of
reverse genetics approaches, which identify phenotypes associated
with a known genetic lesion [12,13]. Structured data derived from
mouse studies are increasingly available through large coordinated
efforts such as the Knock-out Mouse Project (KOMP) [14] and the
Mouse Phenome Database [15]. These data sources provide a rich
resource for generating biologically-relevant clinical hypotheses
based on observations of model organisms that can now be tested
in a real life setting using large EMRs coupled with DNA
repositories, such as the Vanderbilt BioVU resource [16].

Rare and low frequency single nucleotide polymorphisms
(SNPs) are appealing candidates to explain much of the variation
in human traits that cannot be accounted for by common
polymorphisms [17]. However, associating rare variants to disease
represents a considerable methodological challenge and remains
an area of active research [18,19]. From an epidemiological
standpoint, low frequency variants are of particular interest
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because they can be associated with large effect sizes, enabling
genetic approaches to discovery [20—22].

The coupling of EMR data with rare variant genetic data has
created the potential for implementing reverse genetics approaches
in humans, whereby the function of a gene is inferred from the
shared pattern of morbidity among homozygotes of a genetic
variant [23]. We explored the feasibility of this idea using 1,658
low frequency non-synonymous SNP (nsSNP) variants and clinical
phenotypes derived from Vanderbilt’'s EMR-based BioVU re-
source [16]. We found that, taken alone, phenotype association
data did not yield associations statistically different from chance.
To identify biologically-relevant genetic associations, we analyzed
711 nsSNPs in genes with i viwo functional genetic data reported
in the OMIM (On-line Mendelian Inheritance in Man) or the
knock-out mouse phenotype databases, both of which catalog a
partial spectrum of disease associated with loss-of-function
mutations. This approach yielded 12 candidate genotype-pheno-
type associations, four of which we replicated in an independent
data set. This approach suggests a potential for important biologic
association discovery as platforms genotyping hundreds of
thousands of rare nsSNPs are deployed across EMRs.

Materials and Methods

Ethics Statement

All data for these analyses was extracted from the Vanderbilt
DNA Databank, BioVU, which accrues DNA samples extracted
from leftover blood remaining from routine clinical testing. This
resource has been approved as non-human subjects research by
Vanderbilt’s local Institutional Review Board and the federal
Office of Human Research Protections (OHRP), and has been
described in detail previously [16,24]. Briefly, BioVU is linked to a
de-identified Electronic Medical Record (EMR) system in which
all personal identifiers have been removed, and subjects may elect
to be removed from BioVU at any time. This study was also
reviewed by the Vanderbilt Institutional Review Board and
determined to be non-human subjects research.

Study population

A total of 8,546 subjects who had previously been genotyped at
Vanderbilt University Medical Center (VUMC) were used in the
analysis. The subjects belonged to three cohorts identified from
BioVU, a de-identified collection of DNA samples extracted from
discarded blood and linked to de-identified EMRs [16]. Two
cohorts were assembled as part of the Vanderbilt Genome
Electronic medical Records (VGER) project within the electronic
Medical Records and genomics (¢MERGE) network [2]. The first
VGER cohort (VGER-660) was comprised predominantly of
EMR-defined white European ancestry subjects (N =3,174), and
the second (VGER-1M) was comprised predominantly of EMR-
defined black African American subjects (n=1,558). These
cohorts were selected for genotyping using phenotype selection
algorithms that identified individuals with normal cardiac
conduction or type 2 diabetes (and their controls) [5,25]. Subjects
in the third cohort were selected from BioVU by an ongoing study
(Vanderbilt Electronic Systems for Pharmacogenomic Assessment;
VESPA) examining the genomics of drug response [26] (n = 3,940;
Table S1). The largest VESPA studies are examining antibiotic
responsiveness (n = 2,476 subjects) and transplant patients (n =921
subjects). Race assignment was determined using STRUCTURE
[27]: European ancestry (EA) was defined as subjects with a >90%
probability of being in the CEU cluster, and African ancestry (AA)
was defined as subjects with a >90% of being in the YRI cluster,
using HapMap populations as references.
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SNP selection

Genotype data were acquired on one of three genotyping
platforms: the Illumina Human660W-Quadvl_A genotyping
platform (VGER-660), the Illumina HumanlM-Duo (VGER-
IM), or the Illumina Omnil_QUAD (VESPA). Each dataset was
separately cleaned using the quality control pipeline developed by
the eMERGE Genomics Working Group [28]. This entailed
identifying gender mismatches, identifying SNPs failing concor-
dance with HapMap, batch effects, and identification of duplicate
and related individuals. After quality control analyses, the data sets
were merged. The merged data set contained genotype informa-
tion on 1,545,817 SNPs present on one or more of the genotyping
platforms.

An overview of the SNP selection process is shown in Figure 1.
Non-synonymous SNPs (nsSNPs) that had a MAF less than 10% in
both EA and AA populations and had more than 10 minor allele
homozygotes were selected for analysis. nsSSNPs with less than 10
minor allele homozygotes were excluded to reduce statistical biases
associated with very small sample sizes. A total of 1,658 nsSNPs
met these initial inclusion criteria. The mean MAF was
5.3%*.3.1% (SD) and 4.7%=*3.2 (SD) for EAs and AAs,
respectively. The median number of subjects with genotype data
available for a given nsSNP was 4,750%£2,097 (SD). Of the 1,658
nsSNPs initially identified, 440 were located in genes with disease
associations in the OMIM database, 555 were in the KO mouse
data set. In total, 711 nsSNPs were located in 591 genes found in

1,545,817 SNPs from 8,546 subjects

Initial SNP selection:
nsSNPs with a MAF<10% and >10 HZ
(n=1,658)

—

100 genotype-permuted SNPs in genes with OMIM/KO
data sets generated mouse data

(n=711)
v v

Preliminary candidate screen:
SNPs with diagnosis codes
similar to OMIM/KO

Comparison of the
number of significantly
associated diagnoses

‘1’ phenotypes
No difference between (n=25)
real and permuted data ‘1,

Statistical testing with
matched controls:
SNPs with p<0.05

(n=19)

\

Record review for phenotype
confirmation
(n=12 SNPs)

Figure 1. Overview of the nsSNP selection process. There was no
difference in number of diagnoses significantly associated with the
1,658 nsSNPs when compared to genotype-permuted data. Hence, a
nsSNP selection strategy that compared to diagnoses to those reported
in either OMIM or the KO Mouse data was used. A multi-step selection
and review process identified 12 candidate nsSNPs.
doi:10.1371/journal.pone.0100322.g001
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either the OMIM or the KO mouse data set and 284 nsSNPs were
in both.

Clinical data extraction

Clinical diagnoses, symptoms and problems for each subject
were extracted from the Vanderbilt University Medical Center
(VUMC) Synthetic Derivative, a de-identified image of the
Vanderbilt EMR [16]. Diagnoses were derived from ICD-9 and
physician-maintained problem lists. Problem lists were manually
reviewed to correct misspellings and expand abbreviations and
diagnoses were then mapped to their corresponding ICD-9 code
using text matching. There were 13 instances where a new clinical
code was created (e.g. AV nodal re-entry tachycardia) in order to
capture the diagnosis with specificity (these codes can be found in
Table S2). Cancer diagnoses were not included in these analyses as
the molecular phenotypes described in the Mouse Phenotype
database could not be easily mapped to a specific cancer type.
After extraction and mapping of problem list entries, there were
8,275 unique clinical codes. In this study, we did not use the
predefined list of PheWAS phenotypes but created a new one, as
doing so allowed the most appropriate mapping of diagnoses
experienced in the individuals [8]. De novo creation of aggregations
based on those phenotypes in patients with rare nsSNPs
theoretically enhanced our sensitivity to create potential unfore-
seen aggregations with rare nsSNPs that may not be found in the a
priort PheWAS codes. These were aggregated into 1,609 groups of
related codes (see Table S2 for ICD-9 groupings).

Identifying Candidate Associations

In order to identify genotype-phenotype associations, we
generated a list of all diagnoses present in two or more of the
homozygotes for the minor allele for each nsSNP. Any problem
that appeared on more than 5% of these lists across all nsSNPs was
excluded, as this was typically caused by rarely used diagnosis
codes for which just 1 or 2 cases present among the minor allele
homozygotes would give a strong association p-value. For each
common diagnosis, a two-sided Fisher’s exact test was used to
compare the proportions of affected minor allele homozygotes to
affected common allele homozygotes. The heterozygotes were not
used in the analysis to simplify the analysis and prevent a loss of
power associated with model misclassification if the wrong
association model was chosen (e.g., additive instead of recessive
or dominant). A composite list of all diagnoses with an a prior:
Fisher’s exact p-value less than 0.05 was then generated for each
nsSNP.

To estimate the number of significant nsSNP-phenotype
associations expected by chance, permutation testing was
employed. We generated 100 randomized data sets by taking
the 1,658 nsSNPs and permuting the link between the genotypes
and phenotypes (i.e. the genotype values for a nsSNP were
randomly redistributed across all patients while keeping their
phenotypes intact). We then compared the number nsSNPs having
diagnoses with a Bonferroni-corrected Fisher’s exact p-value<<0.05
using the actual genotype data to the numbers of significant
diagnoses associated with each of 100 randomized data sets. We
also compared the average number of diagnoses associated with an
nsSNP with a p<<0.05.

Based on the permutation analyses, we found that real and
randomized genetic data could not be distinguished on the basis of
statistical outliers. Hence, we restricted all subsequent analyses to
the 711 nsSNPs in the OMIM or the KO mouse data sets. These
711 nsSNPs first underwent a human review comparing the
phenotypes from the KO mouse and OMIM databases to the
composite diagnosis list from the minor allele homozygotes.
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nsSNPs that were associated with diseases arising from a
pathophysiological mechanism and organ system distribution that
was comparable to the known function of the gene were selected
for further review. nsSNPs were also included if the disease
mechanism in the homozygotes appeared to be opposite of that
described, as this could occur if an nsSNP was associated with a
gain-of-function mutation. For 686 of the 711 nsSNPs, the
candidate associations were deemed inconsistent with the KO
mouse and OMIM databases. In all, 25 nsSNPs were selected for
further evaluation.

Association testing using matched controls and EMR
validation

To more rigorously test each of the 25 nsSNPs identified above,
we developed a clinical phenotype definition using composites of
diagnosis codes that best approximated the phenotype descriptions
in the OMIM and KO mouse databases (Table S3). For example,
the PTAFR gene is associated with infection susceptibility including
streptococcal infections [29,30]. Hence, phenotypes comprised of
ICD-9 codes for streptococcal-associated diseases including
respiratory infections, streptococcal infections, sepsis, sinusitis
and meningitis were defined. A significant association with at
least one of these phenotypes was required in order for the nsSNP
to be considered to be associated with the phenotype. In instances
where numerous possible clinical presentations were possible
based the phenotype description of the KO mouse, the phenotype
was defined to incorporate the diagnoses observed during the
initial nsSNP review. For example, CLECIB was associated with
abnormal blood vessel morphology in mice. The initial case review
identified elevated rates of intracranial hemorrhage among the
minor allele homozygotes for an nsSNP in this gene. Hence, this
phenotype was specifically evaluated.

Univariate exact logistic regression comparing minor allele
homozygotes to common allele homozygotes was used to test
associations. The common allele homozygotes were a random
sample individually matched to the minor allele homozygotes on
age strata (0-4 years, 5-19 years, 20-44 years, 45-60 years and 60+
years) gender, race and data set. Binomial power calculations
assuming P(disease in cases) = 30%), P(disease in controls)=10%,
number of cases =25, alpha=0.05 and beta =0.80 showed that
800 controls were needed per nsSNP. Depending upon the
availability of matched controls, between 800 and 1,800 matched
controls were selected per nsSNP. All nsSNPs that failed to show a
statistical association (defined as a p-value less than 0.05) with at
least one phenotype were not considered for further review. Of the
25 nsSNPs, 19 had significant associations.

After statistical testing, the electronic records of the minor allele
homozygotes for the 19 nsSNPs were reviewed by a clinician to
confirm that their clinical records supported their diagnoses
inferred from the ICD-9 codes and problem lists. This review was
used to ascertain whether any conditions comprising one of the
phenotype definitions may have been previously ruled out or may
have a known etiology that would preclude an underlying genetic
explanation. For instance, an ICD-9 code for joint pain in a
patient for which a clinical record review indicated that the patient
had an ankle fracture would not be considered a possible
manifestation of gout. If clinical record review indicated that the
ICD-9 codes did not support a diagnosis related to the function of
the nsSNP, the nsSNP was excluded from further analysis,
resulting in exclusion of 7 of the 19 SNPs.

Replication analyses

Of the 12 candidate nsSNPs, 10 were available in an EMR-
derived replication cohort that underwent genotyping using the
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Table 1. Population characteristics.

Total Subjects (n) 8645

No. males (%) 4079 (47.2)
No. females (%) 4566 (52.8)
No. European Ancestry (%) 6002 (69.4)
No. African American (%) 1734 (20.1)
No. other races (%) 909 (10.5)
Mean (std) age of last available diagnosis (years) 52 (18)
Mean (std) duration of EMR follow-up (years) 7 (5)

doi:10.1371/journal.pone.0100322.t001

Ilumina Infinium Exome BeadChip. The replication set con-
tained 19,599 EAs and 1,993 AAs over the ages of 30 years old
who were genotyped as part of broad-based genotyping initiative
at Vanderbilt. Quality control procedures for the Exome chip data
have been previously described [31]. In brief, quality control was
performed by VANGARD (Vanderbilt Technologies for Ad-
vanced Genomics Analysis and Research Design) and samples
were analyzed in conjunction with over 32,000 other BeadChip
samples. After clustering, samples were then evaluated for
heterozygous consistency rate between duplicated samples and
HAPMAP samples, gender mismatches, Mendelian errors, dupli-
cate identification and exclusion of subjects more closely related
than half-siblings. Data were filtered for a sample and genotype
call rate>99% and deviation for Hardy Weinberg equilibrium
(p>0.001). Phenotype data was based strictly on ICD-9 codes with
cases defined as subjects with 1 or more codes and controls defined
as those subjects with no related codes. Only those phenotypes
with an association p-value<<0.05 in the original analyses and with
>50 cases in the replication set were evaluated. EAs and AAs were
analyzed separately using an additive multivariable genetic model
adjusting for age, gender and 3 principal components. A
replication p-value<<0.05 was considered statistically significant.

Data analysis and external data sources

All quality control analyses of nsSNP genotyping data were
performed using PLINK v1.07 [32]. Principal components were fit
using EIGENSTRAT [33]. All post quality-control statistical
analyses were performed using SAS v9.3 (SAS Institute, Cary,
NC). Gene-disease associations were downloaded from OMIM
(http://omim.org/). Phenotype information for knock-out (KO)
mouse models was downloaded from the mouse genome
informatics resource (http://www.informatics.jax.org). These data
sources were current as of 6/24/2012.

Results

Permutation analyses

8,546 subjects who had previously undergone SNP genotyping
were used in this study (Table 1). Approximately 70% of the study
population was EAs. The mean age of their most recent clinical
encounter was 52 years and an average of 7 years of clinical data
was available for each subject. Two approaches to identifying
candidate genotype-phenotype associations were used, as outlined
in Figure 1. For the first approach, a preliminary review of
phenotypes that were associated with the minor allele homozy-
gotes for the 1,658 low MAF nsSNPs identified a number of
compelling patterns of disease associations. For instance, the
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associations between the nsSNP (rs33947968) in the Myo34 gene
encompassed a clinical disease spectrum that would suggest that
this nsSNP contributes to cardiopulmonary disease (Table S4).
However, similarly compelling phenotypic patterns were seen in
reviews of associations derived from genotype-randomized data,
suggesting that these associations were likely due to chance.
Consistent with this notion, the number of the 1,658 nsSNPs with
clinical associations with a Bonferroni-adjusted p<<0.05 was
similar between the real (n=188 nsSNPs) and 100 genotype-
randomized data sets (median n = 194, inter-quartile range = 184-
204), as was the average number of diagnoses associated with a
nsSNP with an unadjusted p<0.05 (n=19.2 for real data vs. a
median of 20.0 [IQR 19.8-20.1] for permuted sets). In addition, a
role for Myo34 in cardiopulmonary disease is not consistent with its
known biology, as expression of this gene is restricted to the ear
and known mutations cause deafness [34]. Based on these results,
we concluded that a completely agnostic approach to candidate
nsSNP identification would result in a very high likelihood of
biologically-implausible, false positive associations.

SNP-phenotype associations using KO mouse and OMIM

data

In order to identify biologically-plausible gene-phenotype
assoclations, we restricted subsequent analyses to 711 of the
1,658 nsSNPs located in genes with functions described in the
OMIM or KO mouse data sets. Of these 711 nsSNPs, the minor
allele homozygotes for 25 had diagnosis codes (with an association
p<<0.05) consistent with the known function of the gene containing
the SNP. Six of these nsSNP-phenotype clusters were excluded
because the genotypes were not significantly associated (p>0.05)
with disease in analyses using matched controls. The medical
records for each minor allele homozygote for the remaining 19
nsSNPs were reviewed to confirm that their clinical data supported
their coded data. Seven of the 19 nsSNPs were excluded after this
review because the clinical records suggested a disease etiology
that was not consistent with the known physiology of the gene. For
example, while there was a statistically significant increase in chest
pain among homozygotes for an nsSNP in DNAH5, a gene
associated with respiratory ciliary disorders and bronchiectasis, the
chest pain was generally attributed to external/traumatic causes
rather than intrinsic lung disease. (See Table S5 and Table S6 for
details of the 13 nsSNPs excluded in these steps).

Of the twelve nsSNPs that advanced through all steps of the
selection process, the mean MAF was 6.3% and 5.0% in EAs and
AA, respectively, and the mean number of homozygotes for each
nsSNP was 36 (Table 2). Two nsSNPs (FRC(C4 and PLCG2) were
predicted to be damaging by PolyPhen-2 [35] analysis and one
encoded a nonsense mutation (7AARI). The phenotypes for 1 and
5 of the 12 nsSNPs were described only in the OMIM or KO
mouse databases, respectively, and the other 6 were described in
both databases (Table S3). Results of association testing with
matched controls are shown in Table 3 and the problem lists for
these SNPs are shown in Table S7.

Replication analyses

The significant associations for 10 of the 12 nsSNPs were
evaluated using an additive genetic model in an independent data
set. Replicated associations were observed for 4 of the 10 genes
(Table 4): GNGB3 (macular degeneration in EAs, OR=1.2 [1.0—-
1.4], p=0.03), F5 (stroke in AAs, OR=1.4 [1.0-1.9], p=0.04),
GPR98 (convulsions in AAs, OR=1.9 [1.1-3.3], p=0.02) and
HGFAC (GI bleeding in EAs, OR=1.2 [1.0-1.4], p=0.02). The
association of GI bleeding with HGFAC [36] in humans has not
been described.
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Discussion

In the present study, we evaluated the feasibility of identifying
gene-phenotype associations using low MAF nsSNPs in conjunc-
tion with data extracted from the VUMC BioVU resource, an
integrated collection of genotype and EMR data. We found that
an agnostic approach based strictly on statistical outliers identified
a number of nsSNPs with clinically interesting patterns of disease
associations, but permutation analyses suggested that these
associations were likely due to chance. To circumvent this
problem, we used i vivo functional genomic data to identify
clinically-relevant candidate gene-phenotype associations. Our
approach incorporated a clinical/biological review process that
identified biologically plausible candidate phenotypes associated
with 12 nsSNPs. Of the 10 candidates nsSNPs evaluated in
replication analyses, 4 nsSNPs had significant associations: CNGB3
(macular degeneration in EAs), F5 (stroke in AAs), GPR98
(convulsions in AAs) and HGFAC (GI bleeding in EAs).

We restricted our analyses to minor allele homozygotes, as these
subjects would be expected to manifest the deleterious effects of a
nsSNP variant if the mode of genetic action is either additive or
recessive [37]. We tested the hypothesis that a review of clinical
codes shared among individuals homozygous for a nsSNP by an
expert clinician would identify clinical disease patterns that would
suggest a common predisposing genetic lesion. When the clinical
review was conducted without a prior: knowledge of the function of
the gene, we observed that there were a number of false positive
leads, which were due to the fact that a number of clinical codes
often co-occur within a patient and, thus, can create a
constellation of associations that would suggest that the homozy-
gous carriers had a functional genetic lesion. For instance, patients
with a cardiac valvular disorder may also have a number of
specific and non-specific related cardiac codes such as “Cardiac
complications”, “Heart failure” and “Cardiac dysrhythmias”.
Hence, these codes may cluster, giving the impression that it is
associated with a heavy burden of cardiac disease. T'o mitigate
these false positive associations, the clinical review was conducted
with knowledge about the i vivo function of the gene, as reported
in the OMIM or KO mouse data sources. While one strength of
this approach was the identification of candidate nsSNPs with
strong biological plausibility, using the data described in the KO
mouse and OMIM resources presented challenges as many
cataloged mutations cause complete loss-of-function associated
with extreme, multi-organ phenotypes that are not easily
translated into plausible clinical manifestations. Furthermore, in
KO mice, many of the mutations were associated with embryonic
lethality, or the phenotypic characterization was restricted to early
embryonic anomalies [38]. Many phenotypes were also charac-
terized at the molecular or cellular level, which posed similar
translational challenges. The EMR data was also restricted to
binary disease data, which prevented us from analyzing previous-
ly-reported quantitative phenotypes (e.g. LDL levels) known to be
affected by some of these genes. While we observed some instances
where the homozygotes had a set of coded symptoms that might
be expected based on the function of the gene, a further review of
the clinical records demonstrated that these symptoms were
attributable to causes unrelated to the function of the gene.
Overall, these challenges severely limited the utility of this general
approach. Indeed, only four replicable associations were identified
among 711 nsSNPs evaluated, resulting in only a 0.5% success
rate.

The clinical review was also used in an effort to detect genetic
pleiotropy. In particular, we were interested in identifying nsSNP
variants that perturb broad underlying physiological mechanisms.
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Such variants would be expected to distribute their effects across a
broad clinical spectrum, resulting in multiple weak statistical
associations with a number of mechanistically related phenotypes.
Hence, our lists of diagnoses evaluated included those that
occurred at rates modestly higher than would be expected by
chance (i.e. those with p<<0.05) in order to increase our sensitivity
for detecting pleiotropy. An example of a pleiotropic nsSNP that
we identified was in the F) gene which encodes a clotting factor
known to be associated with thrombosis [39,40] and was
associated with modestly elevated rates of spontaneous abortions,
DVTs and strokes. Interestingly, the nsSNP in /5 that we observed
(rs6031) is not the well-characterized F5 Leiden mutation found
among EA subjects. This nsSNP (rs6031) was predominantly
found in AAs, none of which carried the F5 Leiden mutation.

We selected nsSNPs with MAFs below 10% in both EA and AA
subjects. We hypothesized that nsSNPs maintained at low frequencies
across both ancestries were more likely to be located within regions
under negative evolutionary selection pressure and could be
associated with relatively strong genotype/phenotype associations.
Our data, however, are not consistent with this hypothesis, as the
replicable associations that we observed, such as convulsions and an
nsSNP in GPRY8, were typically seen within a single racial group.
Our hypothesis would have suggested that the associations would be
persistent across races. Hence, it is more likely that the SNPs had low
frequencies across races due to factors other than selection pressure.
As an alternative approach to SNP selection, we could have selected
SNPs which were predicted to be damaging using predictive software
[41,42], which may have given a higher proportion of significant and
replicable of SNP associations.

Of the four genes that we identified that had replicable
phenotypic associations, three, including /5 described above, have
been previously reported. Variants in GNGB3 have been associated
with achromatoplasia and juvenile macular degeneration [43-45].
GPR98 has been associated with febrile seizures in humans and
knock-out mice develop audiogenic seizures [46—48]. HGFAC
(hepatocyte growth factor activator) encodes a proteolytic enzyme
that cleaves and activates hepatocyte growth factor [49]. Mice
deficient in this gene demonstrate a decreased capacity to repair
injured intestinal epithelium®®. We observed that an nsSNP
variant in this gene was associated with a clinical code for GI
bleeding, suggesting that this variant may be impairing endothelial
repair mechanisms.

A benefit of using EMR-derived data for this type of genetic
analysis is that the study population may either carry a high risk
genetic background or have experienced environmental challenges
that allow a phenotype to be expressed. For instance, the HGFAC
knock-out mouse did not have an observable GI endothelial
phenotype until challenged with a caustic agent [36]. Similarly,
patients may seek healthcare at a tertiary care center such as
VUMC because they had the requisite exposures to unmask the
phenotype. Hence, an EMR-based study population may be
enriched in extreme phenotypes.

While EMR data is a rich resource for hypothesis generation
and testing, there are challenges to its use in this type of analysis.
As compared to targeted epidemiological studies or clinical trials,
phenotypes entered into the EMR are often not concisely defined
and the degree and extent of clinical ascertainment are variably
affected by the reason a patient is seeking clinical care. For
instance, a patient whose only records available are those from a
particular clinical specialty may have limited information pertain-
ing to diseases outside of that specialty. The direction of this bias
would tend to underestimate prevalence rates. This bias is
compounded by the fact that not all of the data captured in an
EMR is amenable to extraction using coded data, and others may

PLOS ONE | www.plosone.org
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require more advanced methods, such as natural language
processing [50], which often require modifications to solve
particular problems. For instance, a record review of the F5
mutation homozygotes revealed that 5 of the 13 (38%) women had
a history of spontaneous abortions. Only 3 of 13 (23%) were
identified using ICD-9 codes and problem lists. It is also difficult to
gauge the clinical severity of a problem strictly from easily-
extractable coded data. This limitation tends to lead to non-
differential misclassification and attenuates statistical associations.
The data sets that we analyzed were not expressly curated for the
phenotypes that were evaluated. Hence, the differential disease
compositions of the data sets could account for our low replication
rates. For instance, there is human and mouse data supporting a
role for PTAFR gene variants and susceptibility to invasive
streptococcal infections [29,30]. While a nsSNP in this gene was
associated with infections consistent with streptococcus in our initial
data evaluation, these associations were not replicated. This could
be due to a different pattern of infections between the data sets.
Alternatively, the initial analysis was based on a comparison of
homozygotes, and thereby did not assume a specific mode of genetic
inheritance. While this association was not replicated using an
additive model, when we used a recessive genetic model, we found
that the PTAFR variant was associated with acute sinusitis infection
and upper respiratory infections (data not shown), suggesting that it
may be acting through a recessive mode of action.

A final limitation of this study was the relatively small sample
size of the study population, which limited the power to detect
assoclations, especially when evaluating low frequency variants.
This limitation was likely an important reason as to why a purely
statistical approach to identifying genotype-phenotype associations
did not perform better than chance. Hence, a large sample size
would likely have allowed us to identify a reduced set of genotype-
phenotype associations using only statistical criteria. This has been
the true with pheWAS approach, in general, which has shown
robust phenotype replication and discovery when studies are
adequately powered [9,11].

In summary, we explored an intensive, clinically-oriented
approach to identify biologically-plausible gene-phenotype associ-
ations using an EMR linked to genetic data. As EMR data
resources mature and genotyping data continues to become
increasingly available, approaches such as ours may facilitate the
identification of the specific genetic underpinnings of numerous
clinical conditions. Our analyses also demonstrate the large
potential for identifying compelling, but likely spurious associa-
tions that arise when working with high-dimensional, correlated
phenotypic data sets. Hence, future approaches that integrate
biological data into the discovery process will be critical to identify
valid and clinically meaningful gene-disease associations.

Supporting Information
Table S1 Subcohorts in the VESPA study.

DOCX)

Table $2 ICD-9 groupings.
DOCX)

Table S3 Phenotype definitions.
DOCX)

Table S4 Diagnoses associated with SNP rs33947968 in
the Myo3A4 gene.
(DOCX)

Table S5 Association testing results for SNPs excluded
during the review process.

(DOCX)

June 2014 | Volume 9 | Issue 6 | €100322



Table S6 SNPs excluded based on record review.

(DOCX)
Table S7 Shared diagnosis lists for the 12 selected
SNPs.
(DOCX)
References

1. Frankovich J, Longhurst CA, Sutherland SM (2011) Evidence-based medicine in

the EMR era. N Engl J Med 365: 1758-1759. doi:10.1056/NEJMp1108726.

. McCarty CA, Chisholm RL, Chute CG, Kullo IJ, Jarvik GP, et al. (2011) The

eMERGE Network: a consortium of biorepositories linked to electronic medical
records data for conducting genomic studies. BMC Med Genomics 4: 13.
doi:10.1186/1755-8794-4-13.

. Bielinski SJ, Chai HS, Pathak J, Talwalkar JA, Limburg PJ, et al. (2011) Mayo

Genome Consortia: a genotype-phenotype resource for genome-wide association
studies with an application to the analysis of circulating bilirubin levels. Mayo
Clin Proc 86: 606-614. doi:10.4065/mcp.2011.0178.

. Denny JC, Crawford DC, Ritchie MD, Bielinski SJ, Basford MA, et al. (2011)

Variants near FOXEI are associated with hypothyroidism and other thyroid
conditions: using electronic medical records for genome- and phenome-wide
studies. Am J Hum Genet 89: 529-542. doi:10.1016/j.ajhg.2011.09.008.

. Kho AN, Hayes MG, Rasmussen-Torvik L, Pacheco JA, Thompson WK, et al.

(2012) Use of diverse electronic medical record systems to identify genetic risk for
type 2 diabetes within a genome-wide association study. J Am Med Inform Assoc
19: 212-218. doi:10.1136/amiajnl-2011-000439.

. Delaney JT, Ramirez AH, Bowton E, Pulley JM, Basford MA, et al. (2012)

Predicting clopidogrel response using DNA samples linked to an electronic
health record. Clin Pharmacol Ther 91: 257-263. doi:10.1038/clpt.2011.221.

. Ramirez AH, Shi Y, Schildcrout JS, Delaney JT, Xu H, et al. (2012) Predicting

warfarin dosage in European-Americans and African-Americans using DNA
samples linked to an electronic health record. Pharmacogenomics 13: 407-418.
doi:10.2217/pgs.11.164.

. Denny JC, Ritchie MD, Basford MA, Pulley JM, Bastarache L, et al. (2010)

PheWAS: demonstrating the feasibility of a phenome-wide scan to discover
gene-disease associations. Bioinformatics 26: 1205-1210. doi:10.1093/
bioinformatics/btq126.

. Denny JC, Bastarache L, Ritchie MD, Carroll RJ, Zink R, et al. (2013)

Systematic comparison of phenome-wide association study of electronic medical
record data and genome-wide association study data. Nat Biotechnol.

doi:10.1038/nbt.2749.

. Hebbring SJ, Schrodi SJ, Ye Z, Zhou Z, Page D, et al. (2013) A PheWAS

approach in studying HLA-DRBI1*1501. Genes Immun 14:
doi:10.1038/gene.2013.2.

187-191.

. Pendergrass SA, Brown-Gentry K, Dudek S, Frase A, Torstenson ES, et al.

(2013) Phenome-wide association study (PheWAS) for detection of pleiotropy
within the Population Architecture using Genomics and Epidemiology (PAGE)
Network. PLoS Genet 9: ¢1003087. doi:10.1371/journal.pgen.1003087.

. Manis JP (2007) Knock out, knock in, knock down—genetically manipulated

mice and the Nobel Prize. N Engl J Med 357: 2426-2429. doi:10.1056/
NEJMp0707712.

. Anholt RRH, Mackay TFC (2004) Quantitative genetic analyses of complex

behaviours in Drosophila. Nat Rev Genet 5: 838-849. doi:10.1038/nrg1472.

. Austin CP, Battey JF, Bradley A, Bucan M, Capecchi M, et al. (2004) The

Knockout Mouse Project. Nat Genet 36: 921-924. doi:10.1038/ng0904-921.

. Maddatu TP, Grubb SC, Bult CJ, Bogue MA (2012) Mouse Phenome Database

(MPD). Nucleic Acids Res 40: D887-894. doi:10.1093/nar/gkr1061.

. Roden DM, Pulley JM, Basford MA, Bernard GR, Clayton EW, et al. (2008)

Development of a large-scale de-identified DNA biobank to enable personalized
medicine. Clin Pharmacol Ther 84: 362-369. doi:10.1038/clpt.2008.89.

sirulli ET, Goldstein DB (2010) Uncovering the roles of rare variants in
common disease through whole-genome sequencing. Nat Rev Genet 11: 415—
425. doi:10.1038/nrg2779.

. Cooper GM, Shendure J (2011) Needles in stacks of needles: finding disease-

causal variants in a wealth of genomic data. Nat Rev Genet 12: 628-640.
doi:10.1038/nrg3046.

. Bansal V, Libiger O, Torkamani A, Schork NJ (2010) Statistical analysis

strategies for association studies involving rare variants. Nat Rev Genet 11: 773~
785. doi:10.1038/nrg2867.

. Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH (2006) Sequence variations

in PCSKY, low LDL, and protection against coronary heart disease. N Engl ] Med
354: 1264-1272. doi:10.1056/NEJMo0a054013.

. Jenkins RB, Xiao Y, Sicotte H, Decker PA, Kollmeyer TM, et al. (2012) A low-

frequency variant at 8q24.21 is strongly associated with risk of oligodendroglial
tumors and astrocytomas with IDH1 or IDH2 mutation. Nat Genet 44: 1122—
1125. doi:10.1038/ng.2388.

. Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, et al. (2012) A

mutation in APP protects against Alzheimer’s disease and age-related cognitive
decline. Nature 488: 96-99. doi:10.1038/nature11283.

. Do R, Kathiresan S, Abecasis GR (2012) Exome sequencing and complex

discase: practical aspects of rare variant association studies. Hum Mol Genet.

PLOS ONE | www.plosone.org

Integrating EMR and Functional Genetic Data

Author Contributions

Conceived and designed the experiments: JDM DMR JCD. Performed the
experiments: JDM. Analyzed the data: JDM. Contributed reagents/
materials/analysis tools: SLV PEW JTD QSW LB. Wrote the paper: JDM.

24.

26.

27.

28.

30.

31.

32.

33.

34.

36.

38.

39.

40.

41.

42.

tember 2012.

Pulley J, Clayton E, Bernard GR, Roden DM, Masys DR (2010) Principles of
human subjects protections applied in an opt-out, de-identified biobank. Clin
Transl Sci 3: 42-48. doi:10.1111/j.1752-8062.2010.00175.x.

. Denny JC, Ritchie MD, Crawford DC, Schildcrout JS, Ramirez AH, et al.

(2010) Identification of genomic predictors of atrioventricular conduction: using
electronic medical records as a tool for genome science. Circulation 122: 2016
2021. doi:10.1161/CIRCULATIONAHA.110.948828.

Bowton E, Field JR, Wang S, Schildcrout JS, Van Driest SL, et al. (2014)
Biobanks and electronic medical records: enabling cost-effective research. Sci
Transl Med 6: 234cm3. doi:10.1126/scitranslmed.3008604.

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure
using multilocus genotype data. Genetics 155: 945-959.

Zuvich RL, Armstrong LL, Bielinski SJ, Bradford Y, Carlson CS, et al. (2011)
Pitfalls of merging GWAS data: lessons learned in the eMERGE network and
quality control procedures to maintain high data quality. Genet Epidemiol 35:
887-898. doi:10.1002/gepi.20639.

. Lingappa JR, Dumitrescu L, Zimmer SM, Lynfield R, McNicholl JM, et al.

(2011) Identifying host genetic risk factors in the context of public health
surveillance for invasive pneumococcal disecase. PLoS ONE 6: ¢23413.
doi:10.1371/journal.pone.0023413.

Cundell DR, Gerard NP, Gerard C, Idanpaan-Heikkila I, Tuomanen EI (1995)
Streptococcus pneumoniae anchor to activated human cells by the receptor for
platelet-activating factor. Nature 377: 435-438. doi:10.1038/377435a0.
Mosley JD, Van Driest SL, Larkin EK, Weeke PE, Witte JS, et al. (2013)
Mechanistic Phenotypes: An Aggregative Phenotyping Strategy to Identify
Disease Mechanisms Using GWAS Data. PLoS ONE 8: ¢81503. doi:10.1371/

journal.pone.0081503.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, et al. (2007)
PLINK: a tool set for whole-genome association and population-based linkage
analyses. Am J] Hum Genet 81: 559-575. doi:10.1086/519795.

Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis.
PLoS Genet 2: €190. doi:10.1371/journal.pgen.0020190.

Walsh VL, Raviv D, Dror AA, Shahin H, Walsh T, et al. (2011) A mouse model
for human hearing loss DFNB30 due to loss of function of myosin ITIIA. Mamm
Genome 22: 170-177. doi:10.1007/500335-010-9310-6.

. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, et al. (2010)

A method and server for predicting damaging missense mutations. Nat Methods
7: 248-249. doi:10.1038/nmeth0410-248.

Itoh H, Naganuma S, Takeda N, Miyata S, Uchinokura S, et al. (2004)
Regeneration of injured intestinal mucosa is impaired in hepatocyte growth
factor activator-deficient mice. Gastroenterology 127: 1423-1435.

. Lettre G, Lange C, Hirschhorn JN (2007) Genetic model testing and statistical

power in population-based association studies of quantitative traits. Genet
Epidemiol 31: 358-362. doi:10.1002/gepi.20217.

White JK, Gerdin A-K, Karp NA, Ryder E, Buljan M, et al. (2013) Genome-
wide Generation and Systematic Phenotyping of Knockout Mice Reveals New
Roles for Many Genes. Cell 154: 452-464. doi:10.1016/j.cell.2013.06.022.
Gerhardt A, Scharf RE, Beckmann MW, Struve S, Bender HG, et al. (2000)
Prothrombin and factor V mutations in women with a history of thrombosis
during pregnancy and the puerperium. N Engl ] Med 342: 374-380.
doi:10.1056/NEJM200002103420602.

Simioni P, Prandoni P, Lensing AW, Scudeller A, Sardella C, et al. (1997) The
risk of recurrent venous thromboembolism in patients with an Argb06—>GIn
mutation in the gene for factor V (factor V Leiden). N Engl ] Med 336: 399-403.
doi:10.1056/NEJM199702063360602.

Bromberg Y, Yachdav G, Rost B (2008) SNAP predicts effect of mutations on
protein function. Bioinformatics 24: 2397-2398. doi:10.1093/bioinformatics/
btn435.

Schaefer C, Meier A, Rost B, Bromberg Y (2012) SNPdbe: constructing an
nsSNP functional impacts database. Bioinformatics 28: 601-602. doi:10.1093/
bioinformatics/btr705.

. Bright SR, Brown TE, Varnum MD (2005) Disease-associated mutations in

CNGB3 produce gain of function alterations in cone cyclic nucleotide-gated
channels. Mol Vis 11: 1141-1150.

. Liu C, Sherpa T, Varnum MD (2013) Disease-associated mutations in CNGB3

promote cytotoxicity in photoreceptor-derived cells. Mol Vis 19: 1268-1281.

. Thiadens AAH]J, Roosing S, Collin RW]J, van Moll-Ramirez N, van Lith-

Verhoeven JJC, et al. (2010) Comprehensive analysis of the achromatopsia genes
CNGA3 and CNGB3 in progressive cone dystrophy. Ophthalmology 117: 825
830.¢l. doi:10.1016/j.0phtha.2009.09.008.

June 2014 | Volume 9 | Issue 6 | €100322


http://www.ncbi.nlm.nih.gov/pubmed/22983955

46.

47.

Nakayama J, Fu Y-H, Clark AM, Nakahara S, Hamano K, et al. (2002) A
nonsense mutation of the MASSI gene in a family with febrile and afebrile
seizures. Ann Neurol 52: 654-657. doi:10.1002/ana.10347.

Yagi H, Noguchi Y, Kitamura K, Sato M (2009) Deficiency of Vlgr1 resulted in
deafness and susceptibility to audiogenic seizures while the degree of hearing
impairment was not correlated with seizure severity in C57BL/6- and 129-
backcrossed lines of Vlgrl knockout mice. Neurosci Lett 461: 190-195.
doi:10.1016/j.neulet.2009.06.012.

PLOS ONE | www.plosone.org

1

48.

49.

50.

Integrating EMR and Functional Genetic Data

Yagi H, Takamura Y, Yoneda T, Konno D, Akagi Y, et al. (2005) Vigrl
knockout mice show audiogenic seizure susceptibility. J Neurochem 92: 191—
202. doi:10.1111/7.1471-4159.2004.02875 x.

Shimomura T, Ochiai M, Kondo J, Morimoto Y (1992) A novel protease
obtained from FBS-containing culture supernatant, that processes single chain
form hepatocyte growth factor to two chain form in serum-free culture.
Cytotechnology 8: 219-229.

Kho AN, Pacheco JA, Peissig PL, Rasmussen L, Newton KM, et al. (2011)
Electronic medical records for genetic research: results of the eMERGE
consortium. Sci Transl Med 3: 79rel. doi:10.1126/scitranslmed.3001807.

June 2014 | Volume 9 | Issue 6 | €100322



