
Cardiorespiratory Anomalies in Mice Lacking CB1

Cannabinoid Receptors
Alessandro Silvani1., Chiara Berteotti1., Stefano Bastianini1, Gary Cohen2, Viviana Lo Martire1,

Roberta Mazza3, Uberto Pagotto3, Carmelo Quarta3, Giovanna Zoccoli1*

1 PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy, 2 Department of Women & Child Health,

Karolinska Institutet, Stockholm, Sweden, 3 Endocrinology Unit and Center for Applied Biomedical Research, Department of Medical and Surgical Sciences, S. Orsola

University Hospital, Alma Mater Studiorum – University of Bologna, Bologna, Italy

Abstract

Cannabinoid type 1 (CB1) receptors are expressed in the nervous and cardiovascular systems. In mice, CB1 receptor
deficiency protects from metabolic consequences of a high-fat diet (HFD), increases sympathetic activity to brown fat, and
entails sleep anomalies. We investigated whether sleep-wake and diet-dependent cardiorespiratory control is altered in
mice lacking CB1 receptors. CB1 receptor knock-out (KO) and intact wild-type (WT) mice were fed standard diet or a HFD for
3 months, and implanted with a telemetric arterial pressure transducer and electrodes for sleep scoring. Sleep state was
assessed together with arterial pressure and heart rate (home cage), or breathing (whole-body plethysmograph). Increases
in arterial pressure and heart rate on passing from the light (rest) to the dark (activity) period in the KO were significantly
enhanced compared with the WT. These increases were unaffected by cardiac (b1) or vascular (a1) adrenergic blockade. The
breathing rhythm of the KO during sleep was also more irregular than that of the WT. A HFD increased heart rate, impaired
cardiac vagal modulation, and blunted the central autonomic cardiac control during sleep. A HFD also decreased cardiac
baroreflex sensitivity in the KO but not in the WT. In conclusion, we performed the first systematic study of cardiovascular
function in CB1 receptor deficient mice during spontaneous wake-sleep behavior, and demonstrated that CB1 receptor KO
alters cardiorespiratory control particularly in the presence of a HFD. The CB1 receptor signaling may thus play a role in
physiological cardiorespiratory regulation and protect from some adverse cardiovascular consequences of a HFD.
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Introduction

Endogenous cannabinoids, such as arachidonoylethanolamide

(anandamide) and 2-arachidonoylglycerol (2-AG), play contrasting

roles in cardiovascular regulation [1]. For example, endocanna-

binoids decrease cardiac contractility and lower arterial pressure in

a model of genetic hypertension [2], and contribute to vasodilation

during hemorrhagic shock [3]. These effects are mediated by

cannabinoid type 1 (CB1) receptors, which are expressed in the

heart and blood vessels, sympathetic ganglia, and throughout the

brain [4,5].

The endocannabinoid system in the brain [6] and non-neural

peripheral tissues is modulated by diet [7]. We have shown that

lack of CB1 receptors protects from adverse metabolic conse-

quences of a high-fat diet (HFD), e.g. visceral obesity and high

plasma glucose, cholesterol, and triglycerides [5]. These protective

effects are associated with increased sympathetic activation of

brown adipose tissue, which burns fat to produce heat [5]. More

recently, we have found that CB1 receptor blockade during fasting

causes hypophagia by increasing sympathetic activity to the

gastrointestinal system and, as a result, afferent activation of the

nucleus of the solitary tract in the medulla [8]. However, it

remains unclear whether deficiency of CB1 receptor signaling

increases sympathetic activation of cardiovascular effectors as well

as brown fat and the gastrointestinal system. If so, absence of CB1

receptors may offer a measure of metabolic ‘‘protection’’ from a

HFD, while at the same time paradoxically worsening the

cardiovascular derangements provoked by HFD and obesity

[9,10]. Furthermore, cardiovascular control under conditions of

defective CB1 receptor signaling may be compromised by sleep-

related behavioral and respiratory anomalies. For instance,

absence of CB1 receptors is associated with multiple sleep-related

anomalies and greater arousal during the active period of the day

[11], and systemic cannabinoid administration seems to stabilize

breathing rhythm during sleep [12].

In this study, we tested the hypothesis that absence of CB1

receptor signaling disturbs wake-sleep behavior- and diet-depen-

dent cardiovascular and respiratory control. We present the first

detailed, simultaneous evaluation of the cardiovascular, respiratory

and wake-sleep phenotype of freely-behaving CB1 receptor knock-
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out mice (KO) [13]. The KO and wild-type (WT) control mice

were fed either a standard diet (SD) or HFD for 4 months.

Methods

The study was carried out in accordance with the recommen-

dations in the Guide for the Care and Use of Laboratory Animals

of the National Institutes of Health. The protocol was approved by

the Committees on the Ethics of Animal Experiments of the

University of Bologna and of the Italian Ministry of Education,

University, and Research (Permit Number: 8137). All surgery was

performed under isoflurane anesthesia (1.8–2.4% in O2) with

intra-operative analgesia (Carprofen 0.1 mg s.c., Pfizer Italy,

Latina), and all efforts were made to minimize discomfort and

distress.

Mice
Experiments were performed on male WT mice and male KO

mice with a congenital deficiency of CB1 receptors (i.e. homozy-

gosis for the Cnr1tm1.1Ltz allele of the Cnr1 gene) [13]. All mice

were congenic (back-crossed 7 generations to C57Bl/6N),

maintained at the laboratory animal facilities of the University

of Bologna, Italy, and genotyped by polymerase-chain reaction as

previously described [5,13].

Diets
The breeders and weaned pups were fed a mouse SD (12.3 KJ/

g: 11% fat, 19% proteins, 70% carbohydrates; laboratory of Dr.

Piccioni, Gessate, Milano, Italy) [5,11]. At age 8 weeks, mice for

study were randomly placed on a HFD (18.9 KJ/g: 40% fat, 15%

proteins, 45% carbohydrates; laboratory of Dr. Piccioni) [5,11] or

maintained on a SD for .15 weeks until the termination of the

experiment, yielding 4 experimental groups: WT-SD (n = 9), KO-

SD (n = 10), WT-HFD (n = 10), KO-HFD (n = 9). Data describing

sleep alterations associated with CB1 receptor deficiency have

previously been published for these animals [11]. In the present

study, an additional group of KO-HFD mice (n = 6) was included

and tested pharmacologically during the light and the dark periods

to assess cardiovascular activation during the light-dark transition

(LDT) under conditions of sympathetic receptor blockade.

Surgery
Mice were instrumented with electrodes for electroencephalog-

raphy (EEG) and neck muscle electromyography (EMG) record-

ings. A calibrated telemetric arterial pressure transducer (TA11-

PAC10, Data Science International, Tilburg, The Netherlands)

was implanted subcutaneously, and the catheter tip advanced via

the femoral artery until it lay in the abdominal aorta below the

renal arteries. Surgical procedures followed a published protocol

[14]. Mouse age at surgery averaged 20.160.3 weeks (mean 6

SEM) and did not differ significantly between groups. Mouse

weight at surgery was significantly lower for the KO (SD,

25.660.8 g; HFD, 27.260.9 g) versus the WT (SD, 29.061.5 g;

HFD, 30.860.9 g). A detailed analysis of body weight of these

mice throughout the dietary treatment has been recently published

[11].

Figure 1. Daily profiles of mean arterial pressure and heart rate. Panels A and B show the daily profiles of mean arterial pressure (MAP) and
heart rate (HR). Zeitgeber time (ZT) is time from lights on. The other panels show differences (D) in MAP and HR across the light-dark transition (LDT),
i.e., between the first six hours of the dark period (ZT12 - ZT18) and the last 6 hours of the light period (ZT6 - ZT12). Panels C and D show data
computed regardless of the wake-sleep state (TOT) or exclusively during epochs of wakefulness (WAKE). Data are means 6 SEM for cannabinoid type
1 receptor knock-out mice (KO) and wild-type (WT) mice fed a standard diet (SD) or a high-fat diet (HFD), with n = 9–10 per group. The statistical
analysis in panels A and B was performed on the average values over 6-hour periods (horizontal lines). * and {, P,0.05, main effects of genotype (KO
vs. WT) and diet (HFD vs. SD), respectively. Symbols within brackets indicate significant main effects (ANOVA). Detailed ANOVA results are reported in
Table S1.
doi:10.1371/journal.pone.0100536.g001
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Experimental protocol
After surgery, mice were housed individually and allowed 12–15

days to recover. Simultaneous sleep and breathing recordings were

then made inside a whole-body plethysmograph for 8 hours,

starting at the onset of the light period (i.e, Zeitgeber Time 0,

ZT0). After further 2–5 days recovery, mice underwent undis-

turbed 48 hour baseline recordings of sleep and arterial pressure in

their cages. Mice then underwent a sequence of tests to evaluate

sleep control (6 hours of sleep deprivation, 18 hours of sleep

recovery, 6 hours of cage switch), which have been described in

detail in a previous publication [11]. After a further 24 hours

recovery, mice received intra-peritoneal (ip) bolus injections of

prazosin (P7791, Sigma Aldrich, St. Louis, MO, USA), which

blocks the a1 adrenergic receptors that mediate sympathetic

vasoconstriction, and metoprolol (M5391, Sigma Aldrich), which

blocks the b1 adrenergic receptors that mediate sympathetic

increases in heart rate and contractility. Drugs were administered

in random order on 2 successive days during the light period (ZT6-

ZT12) whilst sleep state and arterial pressure were continuously

recorded. On the second day, mice also received a control ip

injection of saline at ZT0-ZT6 (i.e., 6 hours before the drug was

injected). The volume of all injections was 10 mL/g. Prazosin

(dose: 1 mg/g) was dissolved in 5% dextrose-5% glycerol in saline

[15]. Metoprolol (dose: 4 mg/g) was dissolved in saline [15]. All

recordings were performed under a 12:12-h light-dark cycle with

lights on (ZT0) at 09:00, at an ambient temperature of 25uC, with

free access to water and food.

A separate group of 6 KO mice fed a HFD was injected ip with

saline, prazosin and metoprolol at the above doses, randomly at

the end of the light period (ZT6-ZT12) as well as under dim light

at the beginning of the dark period (ZT12-ZT18), whilst sleep and

arterial pressure were continuously recorded. Each mouse received

2–5 injections of each drug during the light period and the same

during the dark period. Injections were separated by a minimum

18 hour washout period. To facilitate injecting in the dark, this

group of mice was habituated to a different light schedule (ZT0 at

03:00; continuous dim light during the dark period) from the time

of surgery.

Data acquisition
The EEG, EMG and breathing of mice unrestrained except for

the electrode tether was recorded continuously inside a modified

2-chamber whole-body plethysmograph (PLY4223, Buxco, Wil-

mington, NC, USA). The mouse chamber (volume 0.97 L)

accommodated a rotating electrical swivel (SL6C/SB, Plastics

One, Roanoke, VA, USA) and probes to measure temperature

and humidity (PC52-4-SX-T3 sensor, Rense Instruments, Rowley,

MA, USA). The differential pressure between the two plethysmo-

graph chambers was measured with a high-precision pressure

transducer (DP103-06, Validyne Engineering, Northridge, CA,

USA). The chamber was continuously purged with air at a

relatively high flow rate (1.5 L/min) to prevent CO2 build-up. The

system was calibrated dynamically with a 100 mL micro-syringe

(Hamilton, Reno, NV, USA) at the termination of each recording,

substituting the mouse with an object of similar volume [16,17].

Baseline recordings and drug challenges were performed on

freely-behaving mice housed individually in cages with simulta-

neous acquisition of the EEG, EMG, and arterial pressure, as

previously described [14]. The EEG and EMG signals were

transmitted via a cable connected to a rotating swivel (SL2+2C/

SB, Plastics One) on a balanced suspensor arm. The arterial

pressure signal was transmitted telemetrically via radio waves to a

receiver located under the cage.

The signals were synchronized during analog-to-digital conver-

sion [14] and digitized at 16-bit and 1024 Hz using acquisition

hardware (National Instruments, Austin, TX, USA) and custom-

written software (Labview, National Instruments). The signals

other than arterial pressure were down-sampled for data storage

(EEG, EMG, and plethysmograph pressure at 128 Hz; plethys-

mograph temperature and humidity at 4 Hz).

Data analysis
Data analysis was performed with MatLab (Mathworks, Natick,

MA, USA). Scoring of wakefulness, non-rapid-eye-movement

sleep (NREMS), and rapid-eye-movement sleep (REMS) was

performed visually by scrolling through raw EEG and EMG

records at 4-s resolution, as previously described [14].

Beat-to-beat mean arterial pressure (MAP), systolic arterial

pressure (SAP), heart rate (HR) and heart period (HP) were

computed from the raw arterial pressure signal as previously

described [14]. Differences between the average MAP and HR

values in the first 6 hours of the dark period (ZT12-ZT18) and

Figure 2. Cardiovascular effects of adrenergic receptor block-
ade. Panel A shows mean values of MAP and HR during WAKE in a
group of KO mice fed a HFD and subjected to pharmacological
treatment with saline (vehicle, n = 5), prazosin (a a1 adrenergic receptor
blocker, n = 6) and metoprolol (a b1 adrenergic receptor blocker, n = 5)
during both the light and dark periods. Segments connect the values
measured in the same mouse after drug or vehicle injection during the
light (open triangles) and dark (filled triangles) periods. Values of MAP
and HR after prazosin and metoprolol formed two separate clusters and
are shown in black and white. Values of MAP and HR after saline are
shown in red and white. Panels B and C show means and SEM of DMAP
and DHR during WAKE across the light-dark transition (LDT) for the
same mice in A. #, P,0.05, vs. saline. For other abbreviations, see
Figure 1.
doi:10.1371/journal.pone.0100536.g002
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those in the last 6 hours of the light period (ZT6-ZT12) were

computed to assess cardiovascular activation across the LDT.

For pharmacological experiments, mean MAP and HR during

wakefulness was computed 0.75–1.25 hours post-injection, once

arousal effects of the injection had subsided [15]. Cardiovascular

values post-injection were compared with baseline (the 1.5 hours

before injection). For technical reasons, data post-prazosin

injection during the light period were not obtained for 2 WT-

SD, 3 KO-SD, 1 WT-HFD, and 3 KO-HFD within the main

group of mice treated pharmacologically during the light period.

Data post-prazosin and saline injections were also not available for

1 KO-HFD mouse from the additional group treated across the

LDT. The main problem was that 10/74 prazosin and 2/62

metoprolol injections were followed by a dramatic fall in HR

below 300 bpm, possibly a reflexive vagal reaction. These extreme

events occurred for mice of both genotypes and dietary treatment

groups. Consequently, these animals were excluded from the

analysis.

Baseline cardiac baroreflex sensitivity (BRS) was computed from

SAP and HP using the sequence technique. The amplitude of

cardiac vagal modulation was estimated with the index pNN8,

which measures the percentage of HP values that differ from the

immediately succeeding HP by .8 ms. The contributions of the

baroreflex and central autonomic commands to cardiac control

were assessed by computing HP vs. SAP cross-correlation

functions (CCF), and by coherent averaging of spontaneous SAP

surges from artefact-free wake-sleep episodes of .60 s, following

published protocols [18].

Technically satisfactory plethysmograph recordings were ob-

tained and analyzed for 7 WT-SD, 5 WT-HFD, 4 KO-SD, and 8

KO-HFD mice. Breathing analysis was performed on stable wake-

sleep episodes lasting $12 s (i.e., at least 3 consecutive 4-s epochs).

Individual breaths were identified automatically from the upward

(+) plethysmograph pressure deflection peak. Errors in breath

detection as well as pressure artefacts (e.g., due to movements)

were manually excluded from the analyses. Stable, artefact-free

periods of breathing comprised 7462% and 5964% of the

NREMS and REMS recordings, respectively, but only 762% of

the time awake. A detailed analysis of breathing was therefore

confined to periods of sleep.

Instantaneous total breath duration (i.e. the interval between

successive breaths, TTOT), tidal volume (VT) and minute volume

(VE = VT/TTOT) were calculated, and volumes were expressed per

gram body weight [16,17,19]. For each mouse in each sleep state,

augmented breaths (sighs) were defined as VT.3 times average

VT, and apneas were defined as TTOT.3 times average TTOT.

The short-term and long-term variability of TTOT was

estimated from Poincaré plots of the TTOT of consecutive breaths

[20]. The standard deviations of TTOT around a new set of axes

oriented with (SD1) or orthogonal to (SD2) the line of identity of

the Poincaré plots were calculated using published formulas to

estimate the short-term and long-term variability of TTOT,

respectively [21].

Statistics
Statistical tests were performed with SPSS (SPSS, Chicago, IL,

USA) and significance at P,0.05. Data are reported as means 6

SEM and were analysed by ANOVA (GLM procedure with

Huynh-Feldt correction when appropriate) to test for main effects

of genotype (2 levels: KO and WT) and diet (2 levels: SD and

HFD) and interaction effects. In case of significance of diet x

genotype interaction effects, differences between groups of mice

were tested by t-tests with four planned comparisons (KO-SD vs.

WT-SD, WT-HFD vs. WT-SD, KO-HFD vs. KO-SD, and KO-

HFD vs. WT-HFD).

Figure 3. Sleep-related changes in arterial pressure, heart rate, cardiovagal modulation, and cardiac baroreflex sensitivity. Panels A-
D show the mean values of MAP and HR, pNN8 (an index of cardiac vagal modulation), and spontaneous cardiac baroreflex sensitivity (BRS) during
epochs of WAKE, non-rapid-eye-movement sleep (NREMS) and rapid-eye-movement sleep (REMS) averaged over 48 hours including light and dark
periods. Data are means 6 SEM for KO and WT mice fed a SD or a HFD, with n = 9–10 per group. The [{] symbol indicates a significant main effect of
diet (P,0.05, ANOVA). Horizontal brackets indicate significant pairwise comparisons (P,0.05, t-test). For other abbreviations and symbols see
Figure 1. Detailed ANOVA results are reported in Table S2.
doi:10.1371/journal.pone.0100536.g003
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Results

Daily rhythms of arterial pressure and heart rate
The MAP and HR were both significantly higher for KO versus

WT, but only during the dark (active) period (Figure 1A,B; cf.

Table S1 for statistical detail). Thus, increases in MAP and HR

across the LDT were significantly greater for the KO compared

with the WT (Figure 1C–D). This effect of genotype was weaker

but remained statistically significant when the increases in MAP

and HR across the LDT were only computed for epochs of

wakefulness (Figure 1E–F).

The 24-h average HR was higher for mice fed a HFD

compared with those fed a SD (Figure 1B). The increase in MAP

computed for epochs of wakefulness across the LDT was also

enhanced by a HFD (Figure 1E).

Effects of adrenergic receptor blockade
The values of MAP and HR between 0.75 and 1.25 hours after

saline (vehicle) injection did not differ significantly from those in

the 1.5 hours before injection. In the same time window, blockade

of a1 vascular adrenergic receptors with prazosin and blockade of

b1 cardiac adrenergic receptors with metoprolol significantly

reduced MAP and HR during wakefulness in the light period, and

the extent of these reductions did not differ significantly between

groups (Figure S1). To investigate the effects of adrenergic

receptor blockade on the cardiovascular activation across the

LDT, we subjected a separate group of KO mice fed a HFD to

prazosin and metoprolol injections at the end of the light period

and at the beginning of the dark period. As expected, prazosin

decreased MAP and reflexively increased HR of these mice,

whereas metoprolol reduced both MAP and HR (Figure 2A).

However, the increase in MAP across the LDT was not blunted

either by prazosin or metoprolol, whereas the increase in HR

across the LDT was actually enhanced by metoprolol compared

with saline (Figure 2B,C).

Cardiovascular changes as a function of the wake-sleep
state

The analysis of MAP, HR, the cardiovagal index pNN8, and

BRS as a function of the wake-sleep state over 48 hours (light and

dark periods included) are shown in Figure 3 (cf. Table S2 for

statistical detail). The pNN8 index was lower in mice fed a HFD

than in those fed a SD (Figure 3C). Analysis of HR and BRS

revealed a significant 3-way interaction effect of genotype, diet,

and wake-sleep state. In particular, KO-HFD had higher HR

during wakefulness and REMS and a lower BRS during each

wake-sleep state than did the KO-SD. The WT-HFD had a higher

HR during wakefulness and NREMS than did the WT-SD. Lastly,

the KO-HFD had a higher HR and lower BRS values than did the

WT-HFD. Overall, HR was significantly increased by a HFD both

Figure 4. Cross-correlation analysis of cardiovascular coupling. Panels A–C show cross-correlation functions (CCF) between low-frequency
(,0.8 Hz) spontaneous fluctuations of heart period (HP) and systolic arterial pressure (SAP) computed during WAKE, NREMS and REMS during
48 hours including light and dark periods. Data are means 6 SEM for KO and WT mice fed a SD or a HFD, with n = 9–10 per group. Panel D
summarizes the interpretation of CCF results [21]. Negative time shifts indicate that changes in HP follow SBP. A positive CCF peak at negative time
shifts (e.g. cardiac slowing after SAP rises), is consistent with baroreflex buffering of SAP changes caused by fluctuations of vascular resistance. A
negative CCF trough at positive time shifts (e.g. cardiac acceleration before SAP rises) is consistent with central autonomic commands acting on the
heart. Statistical analysis (panels A–C) was performed on the correlation coefficients at the CCF peak (maximum positive) and trough (minimum
negative) values. Detailed ANOVA results are reported in Table S3. For abbreviations and symbols see Figures 1 and 3.
doi:10.1371/journal.pone.0100536.g004
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in the KO and in the WT, whereas BRS was significantly

decreased by a HFD in the KO only.

The CCF between HP and SAP (Figure 4) reveals how much

HP variability can be attributed to arterial baroreflex and central

autonomic commands. A positive CCF peak at negative time shifts

is consistent with the cardiac baroreflex response to changes in

SAP that are elicited by fluctuations of vascular resistance [22]. A

negative CCF trough at positive time shifts is consistent with

central autonomic commands on the heart [22]. This analysis

revealed a significant interaction effect between diet and wake-

sleep state on the CCF trough (cf. Table S3 for statistical detail). In

particular, the CCF trough during NREMS and REMS was

significantly less pronounced for mice fed a HFD versus a SD.

Further insight into sleep-related changes in cardiovascular

coupling is provided by coherent averaging of short-lasting SAP

increases (surges) (Figure 5). These occur spontaneously in mice

during each wake-sleep state. As expected from previous work on

mice [18], HP decreased below baseline before SAP peaked, and

increased above baseline thereafter. These HP changes are

consistent with central autonomic and baroreflex control of the

heart, respectively [22] (Figure 5G). The SAP surges were less

frequent in KO versus WT mice (Figure 5H, cf. Table S4 for

statistical detail). The HP nadir preceding the SAP peak was less

pronounced for mice fed a HFD versus those fed a SD. This

analysis also revealed significant interaction effects between diet

and wake-sleep state on peak SAP and on the maximum HP

increase that followed the SAP peak. The SAP peaked slightly but

significantly higher during wakefulness for HFD

(15.260.4 mmHg) versus SD fed mice (14.160.4 mmHg). The

maximum HP increase after the SAP peak tended to be lower

during REMS for HFD versus SD fed mice, but the difference was

not significant (P = 0.056).

Breathing as a function of the wake-sleep state
Effects of genotype and diet were not significant for VT or TTOT

(Figure 6A,B; cf. Table S5 for statistical detail) but were for VE

Figure 5. Coherent averaging of spontaneous surges of arterial pressure. The panels show time series of DSAP (A, C, E) and DHP (B, D, F)
during spontaneous SAP surges (detection threshold = 5 mm Hg) during WAKE, NREMS, and REMS over 48 hours including light and dark periods.
The time series were normalized by subtracting the respective baseline values and synchronized at the SAP peak. Panel G summarizes the
interpretation [22]. A DHP trough (i.e., cardiac acceleration) preceding a SAP surge is consistent with central autonomic control of the heart. A
positive DHP peak (i.e., cardiac slowing) following a SAP surge is consistent with baroreflex cardiac control. Statistical analysis in panels A–F was
performed on DSAP and DHP peaks and the DHP nadir. Panel H shows the frequency of spontaneous SAP surges per 10 min of each wake-sleep
state. Data are means 6 SEM for KO and WT mice fed a SD or a HFD, with n = 9–10 per group. Detailed ANOVA results are reported in Table S4. For
abbreviations and symbols see Figures 1 and 3.
doi:10.1371/journal.pone.0100536.g005

Cardiorespiratory Anomalies in CB1KO Mice
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(Figure 6C). In particular, VE was lower during REMS versus

NREMS for the WT but not KO. Genotype significantly affected

breathing variability: the KO rhythm was more irregular (SD2 of

TTOT higher) (Figure 6D–F), due to more frequent long pauses

between breaths (brief apneas) during NREMS, an example of

which is shown (Figure 7A,B).

Discussion

We performed the first systematic study of cardiovascular

function in CB1 receptor deficient KO mice during spontaneous

wake-sleep behavior. Our comparison of KO and WT yielded

four main novel findings. Firstly, the MAP and HR of the KO

increased more on passing from the light to the dark period.

Secondly, cardiac vagal modulation during different wake-sleep

states was diminished by a HFD both in KO and in WT. Thirdly,

a HFD attenuated BRS selectively in CB1 receptor KO. Finally,

the KO breathing rhythm during NREMS was more irregular

(long pauses between breaths were more frequent) than that of the

WT.

We found that CB1 receptor KO significantly enhanced

cardiovascular activation across the LDT (Figure 1). Regardless

of genotype, mice predominately rest during the light cycle and are

active during the dark [11]. The LDT for a mouse is thus

equivalent to the morning rest-activity transition of a human.

Humans typically exhibit a morning surge in arterial blood

pressure [23]. An abnormally high early-morning blood pressure

surge is associated with an increased incidence of adverse

cardiovascular events such as stroke [23]. Heightened cardiovas-

cular activity may partly explain why the peak incidence of

myocardial infarction, sudden death, and stroke occurs early in the

morning [24]. If, as our data suggest, CB1 receptors limit the

morning surge in arterial pressure, they could conceivably exert a

modulating influence that reduces cardiovascular risk.

We have recently provided evidence that CB1 receptors reduce

arousal during the active period of the day [11]. The arterial

pressure of a mouse is higher during the dark than during the light

period for two reasons. Firstly, mice spend more time awake and

less time asleep in the dark, and wakefulness increases arterial

pressure. Secondly, arterial pressure within each wake-sleep state is

subject to a circadian rhythm entrained to the light-dark cycle,

with pressure higher during the dark period [25]. Thus, one

possible explanation for the enhanced cardiovascular activity

across the LDT was that the KO spent more time awake during

the dark than the WT did [11]. In this respect, it is worth

remarking that the effects of sleep and wakefulness on MAP were

similar for KO and WT (Figure 3A), which indicates CB1

receptors are not essential for the central neural circuits that drive

sleep-dependent changes in MAP [26]. Restricting the analysis to

epochs of wakefulness revealed, however, a persistent enhance-

ment of cardiovascular activity across the LDT of the KO

(Figure 1E,F). This finding indicates that mechanisms other than

altered wake-sleep behavior per se must enhance wakefulness

cardiovascular activity during the dark in the KO.

In light of previous evidence [5,8], we investigated whether

sympathetic hyperactivity could explain the enhanced cardiovas-

cular activity during wakefulness observed for the KO across the

LDT. We focused on the a1 and b1 adrenergic receptors, which

are crucial for sympathetic control of arterioles and the heart,

respectively. Somewhat unexpectedly, blockade of these adrener-

gic receptors either did not affect or actually enhanced cardiovas-

Figure 6. Sleep-related changes in tidal volume, respiratory period, and minute ventilation. Panels A, B, and C show tidal volume (VT),
breath duration (TTOT), and minute volumes (VE), respectively, during light period epochs of NREMS and REMS. Panel D shows a Poincaré plot of TTOT

of each breath (n) versus the following breath (n+1) during REMS for a KO mouse fed a HFD. Panels E and F show the standard deviations of TTOT

around a new set of axes oriented with (SD1) or orthogonal to (SD2) the line of identity of the Poincaré plots, as shown in C; these reflect short-term
and long-term variability of TTOT, respectively [20,21]. Data are means 6 SEM for KO mice fed a SD (n = 4) or a HFD (n = 8) and for WT mice fed a SD
(n = 7) or a HFD (n = 5). For abbreviations and symbols see Figures 1 and 3. Detailed ANOVA results are reported in Table S5.
doi:10.1371/journal.pone.0100536.g006
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cular activity across the LDT of the KO-HFD (Figure 2). These

data may indicate that KO cardiovascular activity is enhanced

across the LDT by an actively regulated process akin to an upward

shift of the MAP set-point. Blockade of either vascular or cardiac

sympathetic control may then be compensated by over-activation

of sympathetic effectors which remain viable, as well as by further

vagal withdrawal. Alternatively, sympathetic control may not be

critical for cardiovascular activation across the LDT. Immuniza-

tion of humans against angiotensin II decreases early-morning

arterial pressure [27], which suggests the renin-angiotensin system

plays an important role in the morning BP surge [23].

Interestingly, angiotensin II induces vascular endocannabinoid

release, which acts via CB1 receptors to attenuate the vasocon-

strictor effect of angiotensin II [28]. Further experiments are

needed to establish whether angiotensin II enhances LDT

cardiovascular activation of the KO via this mechanism.

Nonetheless, our data do not support the original hypothesis that

lack of CB1 receptor signaling increases sympathetic activity to

cardiovascular effectors, as it does to brown fat [5] and the

gastrointestinal tract [8]. The activity of sympathetic efferent fibers

to brown adipose tissue and to the cardiovascular system is

controlled by distinct central neural pathways [29], which may be

differentially modulated by the CB1 receptor.

Mechanisms modulating cardiac vagal activity are of great

clinical interest since they appear to protect against life-threatening

cardiac arrhythmias [30]. We found that HFD exerted a robust

effect on pNN8 (an index of cardiac vagal modulation), which was

reduced for KO and WT mice (Figure 3C). During sleep, this

impairment in cardiac vagal modulation in HFD-fed mice

manifested as a blunted central autonomic control of HR

(Figure 4), which was associated with a blunting of the short-

lasting cardiac accelerations that precede spontaneous arterial

pressure surges (Figure 5B,D,F). Our finding that a HFD impaired

cardiac vagal modulation contrasts with previous observations of

mice with diet-induced obesity [31], but fits well with data from

obese humans [9,10] and our own data from leptin-deficient obese

mice [18]. Moreover, our findings that a HFD increased the HR

of both the KO and the WT mice (Figure 3B), while effects of

cardiac adrenergic b1 receptor blockade on HR did not differ with

diet (Figure S1B) suggest that a HFD also decreased cardiac vagal

tone.

Obese humans exhibit reduced BRS [10]. In obese rats,

reduced BRS is a result of impaired central processing of signals

from the myelinated baroreflex afferents, which are tonically active

at the resting (basal) arterial pressure [32]. Interestingly, we found

that a HFD only reduced BRS of the KO (Figure 3D). The

apparent lack of an effect of a HFD on the BRS of the WT may be

due to the rather mild HFD we administered (40% calories from

fat, cf. Methods). Alternatively, the KO may be more susceptible

to a HFD-induced reduction in BRS because loss of CB1 receptor

signaling decreases activity of barosensitive neurons in the nucleus

of the tractus solitarius, the first central relay of the baroreflex

pathway [33]. The decrease in BRS of the KO-HFD was not

severe enough to decrease the baroreflex contribution to cardiac

control, as shown by the CCF peak (Figure 4A–C) and the peak

HP increase during BP surges (Figure 5B,D,F). A low spontaneous

BRS may nevertheless be of interest since it is associated with a

poor prognosis of hypertensive patients [34].

Obesity in humans tends to decrease the depth and rate of

breathing (lower VT, TTOT), favoring a rapid, shallow breathing

pattern that increases VE [35]. Our analysis of breathing during

sleep (Figure 6) yielded VT, TTOT, and VE values consistent with

previous work from mice [16,36], but which did not differ as a

function of diet. This may be a consequence of our relatively mild

dietary stimulus, because VE is reportedly increased if mice are fed

a more extreme HFD [36]. The influence of genotype on VE

(lower in NREMS versus REMS for WT but not KO) was minor

(Figure 6C). The KO breathing rhythm was, however, more

irregular during NREMS (based on SD2 of TTOT, an index of long-

term variability, Figure 6D,F) due to frequent long pauses between

breaths (‘‘apneas’’; Figure 7B). This rhythm anomaly was,

however, quite mild (,5 events per hour NREMS). It is unlikely

to explain the associated cardiovascular anomalies: spontaneous

surges in arterial pressure were actually less frequent for the KO

(Figure 5H). Our findings do, however, suggest that endocanna-

binoid tonus acting via CB1 receptors helps to stabilize breathing,

especially during NREMS. Our data fit well with evidence that

cannabinoid administration to rats decreases apnea frequency

during NREMS and REMS [12], and decreases the apnea-

Figure 7. Sleep apneas and sighs. Panel A shows representative
recordings of the raw plethysmograph signal (VENT), the electroen-
cephalogram (EEG), and the neck muscle electromyogram (EMG) during
NREMS for a KO mouse fed a HFD. The red arrows indicate a sigh (A;
left) followed by a brief apnea (A, right). Panels B and C show the
frequency of apneas (left) and sighs (right) per hour NREMS and REMS,
respectively. Data are means 6 SEM for KO mice fed a SD (n = 4) or a
HFD (n = 8) and for WT mice fed a SD (n = 7) or a HFD (n = 5). For
abbreviations and symbols see Figures 1 and 3.
doi:10.1371/journal.pone.0100536.g007
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hypopnea index of patients with obstructive sleep apnea during

NREMS [37]. Recent data suggest that endocannabinoids help to

stabilize breathing rhythm during sleep by modulating the flow of

afferent signals from the lung and airways at the level of the vagal

nodose ganglion [38].

In conclusion, we provide evidence that the absence of CB1

receptor signaling is associated with subtle but significant

alterations in sleep-wake cardiorespiratory control which are

partly diet-dependent. The results thus suggest that CB1 receptor

signaling plays a role in physiological cardiorespiratory control,

and may protect from some adverse cardiovascular consequences

of a HFD. In perspective, these data raise the hypothesis that

treatments of the negative metabolic consequences of obesity

based on long-term CB1 receptor blockade may have limited

effectiveness in preventing obesity-related cardiovascular alter-

ations, particularly if dietary fat content is not concomitantly

reduced.
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