
Inactivation of MYC reverses tumorigenesis

Yulin Li, Stephanie C. Casey, and Dean W. Felsher
Division of Oncology, Departments of Medicine and Pathology, Stanford University School of
Medicine

Abstract

The MYC proto-oncogene is an essential regulator of many normal biological programmes. MYC,

when activated as an oncogene, has been implicated in the pathogenesis of most types of human

cancers. MYC overexpression in normal cells is restrained from causing cancer through multiple

genetically and epigenetically controlled checkpoint mechanisms, including proliferative arrest,

apoptosis and cellular senescence. When pathologically activated in the correct epigenetic and

genetic contexts, MYC bypasses these mechanisms and drives many of the ‘hallmark’ features of

cancer, including uncontrolled tumour growth associated with DNA replication and transcription,

cellular proliferation and growth, protein synthesis and altered cellular metabolism. MYC also

dictates tumour cell fate by enforcing self-renewal and by abrogating cellular senescence and

differentiation programmes. Moreover, MYC influences the tumour microenvironment, including

activating angiogenesis and suppressing the host immune response. Provocatively, brief or even

partial suppression of MYC back to its physiological levels of activation can lead to the restoration

of intrinsic checkpoint mechanisms, resulting in acute and sustained tumour regression associated

with tumour cells undergoing proliferative arrest, differentiation, senescence and apoptosis, as

well as remodelling of the tumour microenvironment, recruitment of an immune response and

shutdown of angiogenesis. Hence, tumours appear to be addicted to the MYC oncogene because

of both tumour cell intrinsic and host-dependent mechanisms. MYC is important for the regulation

of both the initiation and maintenance of tumorigenesis.
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Introduction

The MYC proto-oncogene was identified as the aetiological agent of leukemogenesis

induced by avian myelocytomatosis retrovirus (MC29). Later, MYC was shown to be

activated through genomic events including chromosomal translocation in Burkitt’s

lymphoma as well as gene amplifications [1–3]. More recently, MYC was found to be

overexpressed in human tumours [4–6]; indeed, MYC is thought to be causally involved in
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more than half of all human cancers [4, 7–11]. Thus, MYC appears to be one of the most

important oncogenic events in human tumorigenesis.

MYC largely functions as a transcription factor that coordinates many biological processes

[12]. MYC activation can usurp these programmes resulting in the characteristic features of

cancer. Thus, MYC activation contributes to autonomous proliferation and growth,

persistent DNA replication, increased ribosomal biogenesis and protein synthesis, global

changes in cellular metabolism, activation of the angiogenic switch and suppression of host

immune responses [5, 13–16]. Hence, MYC activation appears to be a molecular hallmark

of cancer.

In this review, we will examine the notion that MYC activation is one of the necessary

events for the initiation of tumorigenesis and frequently results in the dependence of tumour

survival on high levels of MYC, herein referred to as MYC addiction.

MYC and the initiation of cancer

The expression of MYC is tightly regulated by transcriptional control, mRNA turnover and

protein expression and degradation. Through insertional mutagenesis, chromosomal

translocations and genomic amplifications, MYC can be activated to drive cell

transformation [17, 18]. However, generally MYC activation alone cannot induce

tumorigenesis. MYC causes transformation only in specific cell lines presumed to have

already acquired other oncogenic events that rendered them permissive [19, 20].

Surprisingly, MYC overexpression alone is incapable of inducing neoplastic transformation

of most cells. Instead, MYC overexpression in normal human and mouse cells induces

proliferative arrest, senescence and/or apoptosis [21–26] (Fig. 1). Thus, there appear to be

cellular programmes that inherently prevent MYC activation from initiating tumorigenesis.

MYC overexpression has also been found to induce DNA replication and entry into S phase

[27–30]. MYC is part of the replication complex [28, 31]. It is interesting that MYC alone

blocks mitotic cellular division [29]. Normal cells grow and replicate in response to MYC

but they cannot divide; rather, these cells become polyploid [19, 29, 30, 32, 33]. Indeed, this

occurs in part because MYC overexpression can enforce replication that results in DNA

breaks [34]. This appears to be the consequence of MYC directly blocking double-strand

DNA repair, but it could also be related to the dysregulation of oxidative stress [34–36]. The

dosage of MYC overexpression may dictate whether cells undergo proliferative arrest [29],

cellular senescence [24] or apoptosis. Thus, MYC deregulation alone cannot force complete

transit through the cell division cycle.

The precise consequences of MYC overexpression in a normal cell are dependent on both

the epigenetic and genetic setting. MYC overexpression in the embryonic liver induces

cellular proliferation, whereas it promotes cellular growth without mitotic division

associated with polyploidy in the adult liver [37]. Similarly, MYC overexpression induces

proliferation in embryonic heart, but cellular hypertrophy in adults (Felsher and Bishop,

unpublished data). Circumstances in an adult host that promote proliferation may favour

MYC-induced cellular proliferation. For example, in the liver, a partial hepatectomy or

exposure to toxins that cause liver damage can enable MYC to induce cellular proliferation
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[37, 38]. Similarly, the loss of the p53 tumour suppressor cooperates with MYC to induce

cellular proliferation and tumorigenesis in adult hepatocytes [37]. Thus, cellular context and

specific genetic defects can enable MYC to more readily induce tumorigenesis.

The gene dosage of MYC strongly influences the consequences of its activation. Highly

robust activation of MYC is more commonly associated with DNA damage and apoptosis;

conversely, less robust MYC activation appears to be associated with proliferative arrest and

cellular senescence [24, 29]. Similarly, the MYC gene dosage appears to strongly influence

the effect on cellular proliferation versus apoptosis [39]. Thus, the level and context of MYC

dictate the consequences of its activation.

MYC cooperates with other oncogenes

MYC cooperates with other oncogenes [40–44]; many oncogenes, such as Bmi1 and Pim1,

were first identified in genetic screens to establish events that cooperate with MYC to

induce lymphomagenesis [45–49]. Oncogenes or tumour suppressor genes that regulate

apoptosis are often dysregulated in MYC-induced tumorigenesis, including expression of

BCL2 or loss of p53 or p19ARF [50–54]. Hence, there are ‘intrinsic’ mechanisms of tumour

suppression that prevent MYC-induced malignant transformation [55].

The use of in vivo mouse models has illustrated that host-dependent mechanisms also

influence the ability of MYC to initiate tumorigenesis. Examples of such host-dependent

mechanisms include environmental toxins or carcinogens [56], cytokines such as

transforming growth factor alpha [57, 58], innate immunity [59] and autocrine factors [60].

The particular stage of differentiation of a cellular lineage may also have an influence on the

consequences of MYC activation. As described above, MYC activation in embryonic

hepatocytes induces robust cellular proliferation; by contrast MYC activation in adult cells

induces DNA replication associated with mitotic arrest and hyperdiploid cells [37]. Thus,

the ability of MYC expression to initiate tumorigenesis is a consequence of the constellation

of other oncogene activating or tumor suppressor inactivating genetic events as well as

likely through nongenetic or even epigenetic mechanisms.

MYC initiates tumorigenesis only in a permissive epigenetic and genetic context which

overcomes cell intrinsic mechanisms that mitigate proliferation, induce apoptosis and

activate innate and adaptive immunity. Genetic events may be required to bypass these

mechanisms. Changes in the microenvironment can create a setting that is permissive for

tumorigenesis. Thus, changes both inside tumour cells and outside in the tumour

microenvironment are causally involved in the mechanism of MYC-induced tumorigenesis.

MYC and the maintenance of cancer

Because cancers are caused by oncogenes, suppression of oncogenes should in theory

reverse cancer [61, 62]. Yet, several questions remain unanswered: which and how many

events must be targeted? Will cancers acquire compensatory mutations? Does an oncogene

need to harbour mutations to be essential for maintenance of a neoplastic state? Could
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therapeutically targeting oncogenes be toxic to the host because their inactivation in normal

cells could disrupt their required normal physiologic function?

The notion that a neoplastic state is reversible was first illustrated using conditional

temperature-sensitive oncogene mutants [63, 64]. Further, anti-sense oligonucleotides that

targeted oncogenes could reverse neoplasia [65–69].

To determine experimentally whether an autochthonously arising cancer is reversible, we

employed transgenic mouse models utilizing a conditional oncogene. Use of mouse models

with the tetracycline-regulated system and/or chimeric gene products that could be activated

in an on/off fashion are the most common approaches [70–72].

The suppression of MYC was shown to reverse tumorigenesis. Similar results were seen in a

wide variety of tumours, including haematopoietic (T cell and B cell lymphoma and

leukaemia), epithelial (hepatocellular, breast and squamous cell carcinomas) and

mesenchymal tumours (osteogenic sarcoma) [73–76]. Of note, in some cases it was

confirmed that these tumours were clonal and genetically complex [77].

MYC-induced tumorigenesis is not always reversible. The introduction of additional genetic

features, such as a mutant RAS, can impede the reversibility of MYC-induced breast

adenocarcinoma [78]. Absence of p53 prevents MYC-induced lymphoma from being

reversible [79]. However, when examined, all tumours that recurred after MYC suppression

had reactivated MYC expression [80]. Thus, tumours do not appear to be able to completely

escape MYC addiction.

Tumorigenesis may be reversible even when MYC is not the initiating oncogenic lesion.

Utilizing a dominant negative MYC, termed ‘omoMYC’, it was shown that conditional

suppression of MYC appears to reverse RAS-induced tumorigenesis [81, 82]. However, it is

likely that RAS is activating endogenous MYC, which may explain why these tumours

appear to be addicted to MYC. Moreover, recent observations suggest that omoMYC blocks

some of the interactions between MYC and other partners [83]. Thus, addiction to MYC

appears to be a feature of cancers that do not necessarily require its genetic activation.

MYC-associated oncogene addiction

Cancer appears to be addicted to MYC [84–87]. MYC inactivation reverses cancer, restoring

normal cellular checkpoint mechanisms and resulting in proliferative arrest, differentiation,

apoptosis and/or cellular senescence. In addition, MYC inactivation remodels the

microenvironment, restoring normal tissue architecture [73] and shutdown of angiogenesis

[79]. Thus, oncogene addiction to MYC restores physiological programmes both within the

tumour cell and in the host.

The specific outcome of MYC suppression is influenced by the type of cancer (Fig. 2).

Haematopoietic tumours appear to undergo proliferative arrest, differentiation and

senescence, followed by robust apoptosis [73]. Osteosarcoma undergoes proliferative arrest,

differentiation and senescence with minimal if any evidence of apoptosis [74].

Hepatocellular or breast adenocarcinoma follow two main courses; most tumour cells
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undergo proliferative arrest, senescence and apoptosis, but a subpopulation of cells exhibits

tumour dormancy [88, 89].

Predicting oncogene addiction

The stereotypical changes associated with oncogene addiction suggest that it may be

possible to predict when tumours will regress shortly after therapeutic measures. Oncogene

addiction can be modelled as a consequence of differential changes in survival and death

signals [90]. Tumours regress because both survival and death signals dissipate upon

oncogene suppression, but the latter signals dissipate more slowly. This could be related to

differential regulation of either the actual effectors or of survival and death signalling [90,

91], differential levels of metabolites that regulate or are required for survival or death [92,

93] and/or non-cell autonomous mechanisms such as autocrine or paracrine host signalling

[6].

Oncogene addiction and the immune system

MYC can influence immune mechanisms that may contribute to tumorigenesis [94–96];

MYC inactivation could contribute to tumour regression through the restoration of immune

mechanisms. Indeed, MYC inactivation in a RAG1−/− (lacking both B and T cells) or a

CD4−/− mouse host (lacking CD4+ T helper cells) demonstrated reduced kinetics of tumour

regression, increased minimal residual disease and inevitable tumour recurrence [97]. It was

also shown that CD4+ T helper cells were required for MYC or BCR-ABL inactivation to

induce cellular senescence of tumour cells and the shutdown of angiogenesis in the tumour

microenvironment [97].

In situ analysis showed that the absence of host immune effectors had little impact on

proliferative arrest or apoptosis in the tumour, but the absence of immune effectors largely

abrogated cellular senescence and the shutdown of angiogenesis. Thrombospondins were

implicated as critical effectors. Similarly, suppression of MYC through omoMYC induces

changes in the tumour microenvironment associated with tumour regression [6, 98]. The

suppression of MYC mediates its effect on the tumour both through direct effects on cancer

cells as well as through specific immune effectors and chemokines [99].

Thus, oncogene addiction may occur via mechanisms that operate on multiple levels: (i)

tumour cell intrinsic induction of proliferative arrest, senescence and apoptosis; (ii)

recruitment of immune effectors that is probably heralded by a non-canonical CD4+ T cell-

specific mechanism; and (iii) remodelling of the tumour microenvironment. The initial

regression of a tumour is cell autonomous, but complete regression requires host-dependent

mechanisms (Fig. 3).

The rational combination of immune therapy with oncogene-targeted therapy could

cooperate to induce optimal treatment of human cancers [100, 101]. Hence, oncogene

suppression may result in tumour regression via the cell autonomously killing the tumour

and then through host cell-dependent immune activation that eliminates the residual tumour

cells.
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Brief or partial suppression of MYC can reverse tumorigenesis

Brief suppression of MYC is associated with an irreversible change in the cellular

programme; in some settings, tumours cannot be restored upon MYC reactivation [74].

Similarly, a two-fold decrease in oncogenic levels of MYC was sufficient to induce tumour

regression [15]. This effect is tumour-type specific, as evidenced by the fact that lymphoma

and osteosarcoma exhibit this phenotype [74, 79], in contrast to epithelial tumours such as

hepatocellular or breast carcinoma [88, 89].

In osteosarcoma, MYC suppression results in terminal cellular differentiation from

osteoblasts into differentiated osteocytes that are associated with bone formation in vivo

[74]. The reactivation of MYC not only fails to restore the cancer, but either has no effect or

is associated with apoptosis. Gene expression analysis showed that there were irreversible

changes in gene expression involving ribosome biosynthesis and protein synthesis [16, 102].

Changes in protein biogenesis may be important mechanisms of oncogene addiction.

Partial suppression of MYC can also result in sustained tumour regression when the levels

of MYC are below those of human tumour-derived cell lines and above those of

proliferating normal human cells or Epstein barr virus-transformed lymphocytes [103].

Thus, there is a specific threshold level of MYC required to sustain a malignant phenotype

[103]. Protein and gene expression analysis identified many specific changes but, of note,

ribosomal gene products were suppressed. Collectively, these results suggest that a global

shift in protein biogenesis is an important part of how MYC suppression results in tumour

regression, as has been described by others [104].

An important implication of these results is that it may be sufficient to partially and/or

briefly suppress MYC expression in at least some tumour types in order to induce a

sustained clinical effect on human cancer. The transient inactivation of MYC may be

effective as a result of the dependence of MYC-associated oncogene addiction on molecular

features that are determined shortly after oncogene inactivation [90].

MYC activation is also associated with global changes in the energy metabolism of cancer

cells [19, 105]. Hence, MYC addiction observed in many cancer cells could at least in part

relate to acute changes in metabolism. Alternatively, suppression of MYC may induce

tumour regression by acutely disrupting the means by which tumour cells maintain survival

or suppress death signalling.

Summary: MYC as an important mediator of cancer initiation and

maintenance

MYC initiates and thereby maintains tumorigenesis through the regulation of multiple

programmes. These include programmes within cells (e.g. DNA replication, survival, death,

self-renewal and energy metabolism), within the tumour microenvironment (e.g. regulation

of autocrine factors and angiogenesis) and within the host (i.e. through effects on the

immune response) (see Fig. 3). MYC suppression elicits addiction and tumour regression
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precisely because of the reversal of these cellular, microenvironmental and immune-

regulated programmes.

MYC, like most transcription factors, is generally considered to be ‘undruggable’ [106–

109]. Nevertheless, siRNA/shRNA/anti-sense oligos could provide potential strategies to

target MYC [67, 110, 111]. Alternatively, synthetic lethal screens have provided some

strategies to target MYC-addicted tumours [112–114]. Therapies that suppress MYC

indirectly may be efficacious as illustrated by inhibition via statins or the bromodomain

containing 4 gene [108, 115, 116]. The central role of MYC in the initiation and

maintenance of tumorigenesis suggests that efforts to identify therapies that can target this

oncogene are of paramount importance.
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Fig. 1.
MYC-induced cancer initiation and maintenance. MYC induces tumorigenesis by evading

multiple tumour suppressing checkpoint mechanisms including proliferative arrest,

apoptosis and/or senescence. Upon MYC suppression, these barriers are restored, enabling

sustained tumour regression.
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Fig. 2. MYC inactivation leads to cancer-specific consequences
MYC inactivation elicits oncogene addiction by multiple mechanisms that differ depending

on the tumour type. MYC inactivation in lymphoma induces proliferative arrest,

differentiation/senescence and apoptosis. In an osteosarcoma model, MYC inactivation

induces proliferative arrest and differentiation/senescence but not apoptosis. Finally, in liver

cancer, MYC inactivation induces proliferative arrest, differentiation/senescence and

apoptosis. MYC reactivation restores the tumour in liver cancer but not in the osteosarcoma

model.
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Fig. 3. MYC inactivation elicits tumour regression through both tumour-intrinsic and host-
dependent mechanisms
MYC activation leads to tumorigenesis through suppression of critical safeguards such as

apoptosis, proliferative arrest, differentiation and senescence. Activation of MYC also

facilitates engagement of the hallmarks of tumour growth, as well as cell-extrinsic

phenomena such as host immunity.
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