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Abstract In this review, we focus on the role of oxidative
stress in the aetiology of inflammatory bowel diseases (IBD)
and colitis-associated colorectal cancer and discuss free radi-
cals and free radical-stimulated pathways as pharmacological
targets for anti-IBD drugs. We also suggest novel anti-
oxidative agents, which may become effective and less-toxic
alternatives in IBD and colitis-associated colorectal cancer
treatment. A Medline search was performed to identify rele-
vant bibliography using search terms including: ‘free radi-
cals,’ ‘antioxidants,’ ‘oxidative stress,’ ‘colon cancer,’ ‘ulcer-
ative colitis,’ ‘Crohn’s disease,’ ‘inflammatory bowel dis-
ease.’ Several therapeutics commonly used in IBD treatment,
among which are immunosuppressants, corticosteroids and
anti-TNF-α antibodies, could also affect the IBD progression
by interfering with cellular oxidative stress and cytokine pro-
duction. Experimental data shows that these drugs may effec-
tively scavenge free radicals, increase anti-oxidative capacity
of cells, influence multiple signalling pathways, e.g. MAPK
and NF-kB, and inhibit pro-oxidative enzyme and cytokine
concentration. However, their anti-oxidative and anti-
inflammatory effectiveness still needs further investigation.
A highly specific antioxidative activity may be important for
the clinical treatment and relapse of IBD. In the future, a
combination of currently used pharmaceutics, together with
natural and synthetic anti-oxidative compounds, like lipoic
acid or curcumine, could be taken into account in the design
of novel anti-IBD therapies.
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List of non-standard abbreviations
AGE Advanced glycation end products
AP-1 Activator protein 1
ARE Antioxidant response element
CAT Catalase
CD Crohn’s disease
eNOS Endothelial nitric oxide synthase
GI Gastrointestinal
GRd Glutathione reductase
GSH Reduced glutathione
GSSG Oxidised glutathione
GPx Glutathione peroxidase
H2O2 Hydrogen peroxide
HO Heme oxygenase
IBD Inflammatory bowel diseases
ICAM Intracellular adhesion molecule
IL Interleukin
IkB Alpha- inhibitor of kB alpha of NF-kB
IFN-γ Interferon gamma
iNOS Inducible nitric oxide synthase
LOX Lipooxygenase
MAPK Mitogen-activated protein kinases
MPO Myeloperoxidase
NF-kB Nuclear factor-kappa B
NOS Nitric oxide synthase
NOX NADPH oxidase
NO• Nitric oxide
ONOO− Peroxynitrate
O2

• Superoxide anion
OCl− Hypochlorite ion
OH• Hydroxyl radical
PMNS Polymorphonuclear neutrophils
ROS Reactive oxygen species
RNS Reactive nitrogen species
SOD1 Copper/zinc superoxide dismutase
SOD2 Mitochondrial superoxide dismutase
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SOD3 Extracellular superoxide dismutase
UC Ulcerative colitis
TNF-α Tumour necrosis factor alpha
TNFR Tumour necrosis factor receptor
XO Xanthine oxidase

Introduction

Cells are continuously threatened by the damage caused by
reactive oxygen/nitrogen species (ROS/RNS), which are pro-
duced during physiological oxygen metabolism. Both ROS
and RNS at low and moderate concentrations are signalling
molecules involved in mitogenic response or in defence
against infectious agents. However, excessive production of
ROS and RNS or their inefficient scavenging leads to oxida-
tive and nitrosative stress, respectively. This condition is po-
tentially dangerous as it may alter inflammatory response and
lead to lipid and protein modifications, DNA damage, apo-
ptosis or cancerogenic cell transformation (Valko et al. 2001;
Ridnour et al. 2005; Valko et al. 2007). Because of this,
oxidative stress has been implicated in a number of human
diseases, including inflammatory bowel diseases (IBD) and
colorectal cancer.

This review will summarise the latest reports on the role of
oxidative stress and oxidative stress-induced signalling path-
ways in the aetiology of ulcerative colitis (UC), Crohn’s
disease (CD) and colitis-associated colorectal cancer. We will
also focus on the effects of well-established therapeutics on
oxidative stress and suggest future strategies for the treatment
of free radicals production in UC, CD and colitis-associated
colorectal cancer.

Types and sources of free radicals in intestinal tissue

Reactive oxygen species

The most abundant free radical in human tissues is the super-
oxide anion (O2•

−), generated by the addition of one electron
to molecular oxygen (Miller et al. 1990). Its main source in a
cell is complex I and III of the mitochondrial electron transport
chain, which converts 1–3% of total oxygen to the superoxide
anion (Muller et al. 2004) (Table 1 and Fig. 1 reaction (7)).
Another source of O2•

− is an enzymatic reaction catalysed by
xanthine oxidase (XO) [Fig. 1 reaction (1)] and membrane
enzyme complexes named NADPH oxidases (NOX) (see
Fig. 1). The NOX family comprises five isoforms, fromwhich
NOX1 is highly expressed in colon epithelium (Dutta and
Rittinger 2010). When activated, NOX1 catalyses the trans-
membrane electron transport to two molecular oxygens
forming O2•

−. NOX1-induced O2•
− at the luminal surface of

the colon has been suggested to enhance host defence (Geiszt
et al. 2003). Moreover, NOX1 and NOX4 have been impli-
cated as persistent, endogenous ROS generators that may
contribute to the hepatitis C virus-related pathologies (de
Mochel et al. 2010).

Under stress conditions, O2
•− concentrations rise leading to

excessive production of deleterious hydroxyl radical (OH•)
through the Haber-Weiss reaction. The hydroxyl radical is also
generated from hydrogen peroxide (H2O2) in the reaction
catalysed by ferrous ion (Fe2+) [the Fenton reaction; Fig. 1
reaction (3)]. Instead of ferrous, other transient metals like
copper, chromium or cobalt may participate in OH• genera-
tion, those reactions become a significant source of OH• under
oxidative stress conditions or when the concentration of free,
unbounded transient ions increases, e.g. during hemodialysis.
In the gastrointestinal (GI) tract, OH• inactivates a crucial
mitochondria l enzyme pyruvate dehydrogenase,
depolymerises GI mucin and inflicts mitochondrial RNA
and DNA damages (Tabatabaie et al. 1996; Takeuchi et al.
1996; Halliwell 1999).

Another protonated form of O2
•− is perhydroxyl radical

(HOO•), which initiates fatty acid peroxidation. Lipid perox-
idation disturbs integrity, fluidity and permeability of
biomembranes, modifies lipoproteins to pro-inflammatory
forms and generates potentially toxic products. Moreover,
lipid peroxidation products have been shown to possess mu-
tagenic and carcinogenic properties (Poli et al. 2008;
Winczura et al. 2012).

Apart from mitochondria, another source of free radicals in
cells is plasma membrane NADPH oxidases or peroxisomes,
which consume oxygen and produce H2O2. Under physiolog-
ical conditions, peroxisome-derived H2O2 is converted to
water by catalase (CAT) [Fig. 1 reaction (4)]. However, dam-
aged peroxisome releases H2O2 directly to cytoplasm, there-
fore contributing to oxidative stress. Moreover, together with
O2

•−, H2O2 may be converted to highly toxic and oxidising
OH• hydrogen peroxide in Fenton and Haber-Weiss reactions
(Fransen et al. 2012).

In the GI tract, O2
•− is mainly generated by XO [Fig. 1

reaction (1)]. It is consequently converted to H2O2 in the
reaction catalysed by CAT and/or glutathione peroxidase
(GPx) [Fig. 1 reaction (4) and (5), respectively]. H2O2 pro-
duced by neutrophils is subsequently utilised by
myeloperoxidase (MPO) to produce hypochlorite ion
(OCl−). Superoxide anion is a highly reactive, highly unstable,
very short lived form of ROS which causes it to react away
very quickly and makes it membrane impermeable; therefore,
it acts near the place of its origin causing oxidation of sur-
rounding biomolecules, while H2O2 can freely diffuse across
cell membranes and oxidise compounds located further, e.g.
membrane lipids of pathogens. The H2O2 diffusion in GI is
facilitated by aquaporin 8 (Te Velde et al. 2008). Interestingly,
basal level of ROS in enterocytes differs, with lower
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concentration of ROS in small intestine and higher in colon
(Sanders et al. 2004). The differences in ROS generation may
influence the levels of oxidised proteins, lipids and DNA
damage, thus contributing to the higher susceptibility of colon
to GI diseases at these two intestinal sites.

During pathological states, circulating XO binds to vascu-
lar endothelial cells and produces site-specific oxidative injury
of the intestine tissue (Tan et al. 1993). Moreover, activated
neutrophils undergo series of reactions termed “the respiratory
burst,” in which O2

•− is generated. It was shown that this
process incorporates NOX enzymes, especially NOX2, be-
cause NOX2 knockout mice have reduced oxidative burst and
are less susceptible to experimentally induced ulcerative coli-
tis (Bao et al. 2011).

Reactive nitrogen species

The second group of free radicals are reactive nitrogen species
that are by-products of nitric oxide synthases (NOS), which
are expressed in selected cells of the intestinal submucosa and
mucosal regions. NOS metabolises arginine to citrulline and
forms the nitric oxide radical (NO•) via a five-electron oxida-
tive reaction (Ghafourifar and Cadenas 2005). The nitric oxide
radical has a relatively long half-life, but slow reaction time
due to its rapid diffusion into the bloodstream and inactivation

by haemoglobin. The nitric oxide radical is vital for proper
functioning of an organism, as its physiological action in-
cludes neurotransmission, blood pressure regulation and
immunomodulation. Furthermore, the vasodilatory actions of
NO• play a prominent role in the capillary recruitment of
absorptive hyperaemia, catalysed by the endothelial NOS
(eNOS) isoform, localised to the microvasculature at the sub-
mucosa–mucosa interface (Matheson et al. 2000). In addition,
the nitric oxide radical protects epithelial cells against H2O2-
induced toxicity and diminishes leukocyte adhesion to endo-
thelial cells (Kim and Kim 1998; Binion et al. 2000). While
eNOS produces NO• in a pulsative way, the other NOS
isoform termed inducible NOS (iNOS) produces NO• in a
constant manner. iNOS is detected only in inflamed tissue
and is responsible for an excessive generation of RNS in
activated macrophages, leukocytes and epithelial cells in the
intestinal mucosa (Dijkstra et al. 1998). It was demonstrated
that in UC, the activation of iNOS/cyclooxygenase-2 (COX-
2)/5-lipooxygenase (5-LOX) loop and increased contents of
their end products, namely NO, prostaglandin E2 (PGE2) and
leukotriene B4 (LTB4), contribute to a damage of large intes-
tine mucous membrane by overproduction of free radicals and
impairment of anti-oxidative system (Sklyarov et al. 2011).
Moreover, iNOS-derived NO reacts with tyrosine leading to
nitrotyrosine production. It was indicated that patients with

Table 1 Enzymatic reactions that participate in ROS/NOS generation in the GI tract

Enzyme Reaction Site of action Reaction
No. in
Fig. 1

complex I and III/ubiquinone of the
mitochondrial electron transport
chain

Complex I (NADH dehydrogenase):
O2 +NADH → O2

•−+NAD+

Complex III (cytochrome bc1):
O2 → O2

•−

Mitochondria

Xanthine oxidase Xanthine+O2+NADPH→ O2
•−+H2O2+

NADP++uric acid
Plasma and cytoplasm of epithelial cells (1)

NADPH oxidase 2O2+NADPH → 2O2
•+NADP++H+ Cell membrane (2)

Haber-Weiss reaction H2O2+O2
•− → O2+OH+OH• Plasma and cell’s cytoplasm

Fenton reaction H2O2+Fe
2+ → Fe3++OH+OH• Plasma and cell’s cytoplasm (3)

Catalase (CAT) 2H2O2 → O2+ H2O the cytoplasm and peroxisomes of epithelium
and lamina propria; leukocytes.

(4)

Glutathione peroxidase (GPx) H2O2+2GSH → GSSG+2H2O GPx1- peroxisomes of colon lymphatic tissue
and the lamina propria, submucosa,
muscularis and serosa;

(5)

GPx2- peroxisomes of the luminal epithelium;

GPx3- secreted by the intestinal epithelial cells;

GPx4- peroxisomes of colonic and ileal tissues.

Endothelial nitric oxide synthase
(eNOS)

L-arginine+O2 → L-citrulline+NO• Cell membrane of the endothelial cells (6)

Inducible nitric oxide synthase (iNOS) NO•+O2
•− → ONOO− Cytoplasm of inflammatory and epithelial cells

Superoxide dismutase (SOD) 2H++2O2
•− → O2+H2O2 SOD1- cytoplasm and small amount in nucleus;

SOD2- mitochondria;
SOD3- plasma.

(7)

Glutathione reductase (GRd) GSSG+NADPH → GSH+NADP+ Like GPx (8)
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UC, but not collagenous colitis, have intense epithelial stain-
ing for nitrotyrosine associated with infiltration of neutrophils
in the epithelium (Perner et al. 2001).

The reaction between NO• with O2
•− leads to

peroxynitrite production (ONOO−), which is an aggres-
sive oxidising agent that can cause DNA fragmentation
and lipid oxidation. Peroxynitrite is generated in cells
containing NOS enzymes, such as smooth muscle or
endothelial cells and, in particular during inflammatory
response, by stimulated leukocytes.

Lipid peroxidation and lipid radicals

Both ROS and RNS can contribute to lipid peroxida-
tion. Particularly susceptible to oxidative damages are
membrane lipids and lipoproteins since they are rich in
polyunsaturated fatty acids. During lipid peroxidation, a
hydroperoxy group is introduced into the hydrophobic
tails of unsaturated fatty acids. This change can result in
structural alterations of biomembranes and lipoproteins
via disturbance of hydrophobic lipid-lipid and lipid-
protein interactions, or can lead to generation of
hydroperoxyl radicals and reactive aldehyde derivates,
which may induce secondary modifications of other cell

components. The end products of lipid peroxidation,
like malondialdehyde or 4-hydroxynonenal, can cause
protein damage by reactions with lysine amino groups,
histidine imidazole groups or cysteine sulphydryl groups
[see review (Catala 2009)].

Lipid radicals originate as well from LOX enzymes that
catalyse dioxygenation of polyenoic fatty acids forming
hydroperoxides. In the intestines, a substantial role is
played by 5-LOXs, as it catalyses the oxidation of arachi-
donic acid. The hydroperoxides that are generated by
LOX enzymes are then reduced by GPx [see review
(Kuhn and Borchert 2002)].

Patients with CD, especially during an active phase
of the disease, have higher plasma levels of lipid per-
oxidation products, as well as a decreased peroxidation
potential and oxidative LDL level (Boehm et al. 2012).
Although lipid peroxidation occurs in IBD patients, it
may have different origin depending on the IBD type.
Kruidenier et al. (2003) showed that in CD, lipid per-
oxidation is associated with mitochondrial superoxide
dismutase (SOD) activity, suggesting the involvement
of OH• and O2

•−, while the amount of lipid peroxidation
products is associated with epithelial CAT expression
and neutrophilic MPO activity in UC, suggesting a
H2O2- and/or OCl−-mediated mechanism.

Fig. 1 Formation of ROS and anti-oxidant defence system in intestinal
epithelial cells. CAT catalase, GRd glutathione reductase, GSH reduced
glutathione, GSSG oxidised glutathione, GPx glutathione peroxidise,
H2O2 hydrogen peroxide, NO• nitric oxide, NOX NADPH oxidase,
ONOO− peroxynitrate, O2

•− superoxide anion, OH• hydroxyl radical,

SOD1 cooper/zinc superoxide dismutase, SOD2 mitochondrial superox-
ide dismutase, SOD3 extracellular superoxide dismutase, XO xanthine
oxidase. Numbers corresponds to reactions catalysed by representative
enzymes and presented in Table 2
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Anti-oxidative mechanisms in GI tract

A non-harmful concentration of ROS/RNS is sustained by the
anti-oxidative defence mechanisms, that include enzymes
such as CAT, SOD or GPx and non-enzymatic endo- and
exogenous scavengers like glutathione (GSH), transient ions
(e.g. Fe2+, Cu2+) or flavonoids (Fig. 1). Noteworthy, it was
demonstrated that the colonic enterocytes are characterised
not only by higher ROS contents, as mentioned earlier, but
also by higher concentration of CAT, SOD and GPx compared
to small intestine tissue (Sanders et al. 2004).

Three mammalian SOD isoforms, copper/zinc (SOD1),
mitochondrial (SOD2) and extracellular (SOD3), catalyse
the reaction of O2

•− reduction to H2O2 (Fridovich 1997)
[Fig. 1 reaction (7)]. SOD1 is a cyanide-sensitive homodimer
localised mainly in the cytoplasm and to some extent in the
nucleus, but absent in the mitochondria of epithelial cells and
phagocytes (Pietarinen-Runtti et al. 2000; Kruidenier and
Verspaget 2002). The mitochondria are protected from O2

•−

by SOD2, which is vital for cell survival as mice lacking
SOD2 gene die within several days after birth (Li et al.
1995). SOD3 dominates in plasma and interstitium
(Kruidenier and Verspaget 2002) and has a high affinity to
glycosaminoglycans like heparin (Marklund 1982).

Approximately 70 % of total SOD is expressed as
SOD1, which not only dismutes O2

•−, but can also convert
H2O2 in the presence of copper ion, forming OH• or
peroxynitrate (Ischiropoulos and al-Mehdi AB 1995).
SOD-produced H2O2 is converted to water in the reaction
catalysed by CAT or GPx. CAT is widely expressed in the
cytoplasm and peroxisomes of colonic epithelium and
lamina propria and activated when concentrations of
H2O2 increase, e.g. during inflammatory process. In con-
trast, H2O2 produced during normal cell metabolism is
reduced by GPx in the presence of NADPH. GPx has
higher affinity to H2O2 than CAT and also reduces lipid
hydroperoxide levels, preventing peroxynitrite-mediated
oxidation (Sies et al. 1997).

Currently, there are five isoforms of GPx, which belong to
the group of selenium-dependent enzymes. GPx1 and GPx2
play an important role in the intracellular antioxidant defence,
but in different layers of the gut; GPx1 is highly expressed in
the colon lymphatic tissue and the lamina propria, submucosa,
muscularis and serosa, but not the luminal epithelium, which
is the area of the action of GPx2. GPx3most likely contributes
to the extracellular antioxidant defence of the intestinal mu-
cosa, as it is secreted by intestinal epithelial cells (Esworthy
et al. 1998; Tham et al. 1998). Recently, GPx4 has been
detected in colonic and ileal tissues (Florian et al. 2010). This
isoform is responsible for a repair of oxidatively damaged
DNA by reducing thymine hydroperoxide and for scavenging
phospholipid hydroperoxides and repressing lipid peroxida-
tion (Bao et al. 1997; Seiler et al. 2008).

GPx enzymatic activity requires glutathione as a proton
donor. GSH is a water-soluble tripeptide composed of the
amino acids glutamine, cysteine and glycine, containing the
cysteine-derived thiol group, which is a potent reducing agent.
GSH is highly abundant in the cytoplasm (1–11 mM), nucleus
(3–15 mM) and mitochondria (5–11 mM) and is the major
soluble antioxidant in these cell compartments. GSH homeo-
stasis in healthy tissues is sustained by de novo synthesis from
cysteine, the regeneration of oxidised glutathione (GSSG), as
well as from GSH uptake via sodium-dependent transport
systems (Aw 2005). The reduction of two GSH particles in
the presence of NADPH leads to the synthesis of GSSG. GSH
is next regenerated from GSSG in the reaction mediated by
GSH reductase (GRd) [Fig. 1 reactions (5) and (8)] or it is
eliminated from the cell via export into the extracellular space
(Bachhawat et al. 2013).

Several reports showed that the sufficient concentration of
GSH in the jejunal and colonic epithelial cells prevents tissue
degradation by eliminating harmful peroxides (Aw 2005),
while the loss of GSH/GSSG redox balance contributes to
tissue hyperplasia, mucosal inflammation and clinical symp-
toms of colitis (Tsunada et al. 2003). Oxidants like H2O2 were
also shown to stimulate cysteine uptake and GSH synthesis
(King et al. 2011). Furthermore, the promoter region of γ-
glutamylcysteine synthetase, an enzyme involved in GSH
synthesis, contains ROS-sensitive activator protein 1 (AP-1)
binding site and an antioxidant response element (ARE)
(Rahman et al. 1998). When activated, those regions increase
GSH synthesis, thus enhancing anti-oxidative abilities of the
cell (Aw 2005).

Targeting oxidative stress in IBD

Ulcerative colitis

ROS and NOS, as well as pro-inflammatory cytokines have a
long-standing implication in both the aetiology and the pro-
gression of UC (Seril et al. 2003). A significant infiltration by
neutrophils and increase in MPO levels was observed in the
inflamed lamina propria of humans with UC in close approx-
imation to the epithelia (Kruidenier et al. 2003). It was also
shown in mice that the onset and severity of colitis were
significantly attenuated by iNOS gene ablation (Krieglstein
et al. 2001). In UC, iNOS is considered to be responsible for
greatly increased production of NO in the epithelium and in
foci of inflammation in association with nitrotyrosine (Singer
et al. 1996). iNOS-derived NO stimulates TNF-α production
in the middle and distal colon, which promotes the infiltration
of neutrophils for example through stimulation of synthesis of
intracellular adhesion molecule (ICAM) and P-selectin, there-
fore leading to colonic tissue damage (Yasukawa et al. 2012).
Neutrophil recruitment and activation of key transcriptional
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signalling pathways like nuclear factor-kappa B (NF-kB) and
AP-1 augment the inflammatory response and tissue damage
(Brennan et al. 1995). When activated, NF-kB translocates to
the nucleus, binds DNA and subsequently activates gene
expression. The activated genes involved in mucosal inflam-
mation include cytokines IL-6, IL-8 IL-1β, IL-10, TNF-α and
ICAM (Yasukawa et al. 2012). Recently, Gan et al. (2005),
documented an increased activation of NF-kB and high levels
of the expression of interleukin IL-1β mRNA and IL-8
mRNA in human UC tissue.

Although UC is a well-known inflammatory bowel dis-
ease, the search for reliable disease markers continues. Studies
reported higher concentration of serpin B1, a neutrophil elas-
tase inhibitor which reduces H2O2-induced tissue damage in
patients with inflamed UC (Uchiyama et al. 2012). Further-
more, those patients were more likely to possess a polymor-
phism in the CAT promoter region (C-262T) that alters CAT
expression levels (Khodayari et al. 2013). Moreover, the
proteomic characterization of inflamed colonic tissue demon-
strated a relatively higher level of oxidative stress-response
proteins like selenium binding protein, SOD and thioredoxin-
dependant peroxide reductase, as well as higher expression of
proteins implicated in energy generation like isocitrate dehy-
drogenase, L-lactate dehydrogenase B-chain, inorganic
pyrophosphatase or enoyl-CoA hydratase, which could indi-
cate inflammation-associated alterations in energy metabo-
lism (Poulsen et al. 2012).

Clinical studies indicated that combined treatment of UC
patients with oral mesalamine (2.4 g/day) plus N-acetyl-L-
cysteine (0.8 g/day) for 4 weeks showed better clinical re-
sponses (66 vs 50% inmesalamine alone group) accompanied
by decreased levels of IL-8 and MCP-1 (Guijarro et al. 2008).

Crohn’s disease

CD is characterised by reduced number of naive T cells and
increased content of memory T cells, as well as higher expres-
sion of major histocompatibility complex (MHC) class II
molecules in the colonocytes and in ileal epithelial cells
(Ebert et al. 2005). At an early stage, patchy necrosis of the
surface epithelium, focal accumulations of leukocytes adja-
cent to crypts and an increased number of intraepithelial
macrophages and granulocytes are detected. Stimulated in-
flammatory cells produce ROS and RNS, but the mechanisms
of free radical production and their sources in CD patients are
complex. Previously, it was shown that blood polymorphonu-
clear neutrophils (PMNS) of patients with untreated CD have
impaired infiltration ability, reduced SOD content, lower O2

•−

production and therefore, decreased H2O2 generation
(Verspaget et al. 1984; Verspaget et al. 1988; Curran et al.
1991). This is in line with Maor et al. (2008), who document-
ed reduced release of O2

•− and lysozyme from neutrophils of
patients with active but not stable CD. The authors speculated

however, that the decreased superoxide anion production by
the isolated PMNS might be caused by improper separation
technique or the fact that the circulating substances present in
serum exhausted their capacity for superoxide anion genera-
tion. Nevertheless, a positive correlation between the free
radicals formation and pro-inflammatory cytokines content
was described despite the fact that patients with active and
stable CD had the anti-inflammatory medications in their
clinical history (Maor et al. 2008). However, recent studies
suggested that immune peripheral cells in patients with active
CD have higher SOD activity and H2O2 production, increased
lipid peroxidation, inhibited mitochondrial function and de-
creased CAT activity; interestingly those changes, apart from
CATactivity, were reversed during disease remission showing
an important role of mitochondria and oxidative stress in CD
development (Beltran et al. 2010).

Also CD patients have higher ONOO− content, a by-
product of iNOS that is highly expressed in activated macro-
phages and neutrophils of colonic mucosa (Rachmilewitz
et al. 1995).

The pathogenesis of CD may be as well associated with a
decreased production of cytokines that suppress macrophage
and T cell functions. For instance, intestinal tissue of CD
patients is characterised by lower IL-4 mRNA expression, a
cytokine, which delays O2

•− production in PMNS (Nielsen
et al. 1996). Moreover, CD patients have lower content of
anti-oxidative compounds, including tissue GSH, which par-
ticipates in GPx-catalysed H2O2 reduction, as well as plasma
ascorbic acid, α- and β-carotene, lycopene and β-
cryptoxanthin (Miralles-Barrachina et al. 1999; Wendland
et al. 2001; Maor et al. 2008). However, serum content of
anti-oxidative enzymes like GPx seems to depend on the CD
state; during CD remission, GPx activity is stable or lower,
while its activity rises in active CD (Tuzun et al. 2002; Maor
et al. 2008). The mouse models of UC and CD showed that an
up-regulation of gene expression of GPx2 and down-
regulation of aquaporin 8 (the facilitator of H2O2 diffusion)
in the colon may play a protective role in defending against
severe oxidative stress during IBD (Te Velde et al. 2008).

Apart from IL-4, several other cytokines play a role in CD,
including TNF-α, IL-1β, IL-6 and IL-8 (Podolsky 2002). The
release of cytokines is not only induced by ROS, but also by
RNS. Recent study of (Rafa et al. 2013) showed an up-
regulated NOS mRNA expression in peripheral blood mono-
nuclear cells and colonic mucosa in patients with active CD
and suggested a positive correlation between NOS-derived
NO• and IL-6, IL-17A and IL-23 plasma levels.

The above-mentioned cytokines mediate their action via
NF-kB and mitogen-activated protein kinase (MAPK) signal-
ling pathways, and aberrant activation of NF-kB is involved in
the pathogenesis of IBD (Schreiber et al. 1998). The partici-
pation of NF-kB and MAPK signalling pathways was pre-
sented in Fig. 2. Free radicals like superoxide anion are

610 Naunyn-Schmiedeberg's Arch Pharmacol (2014) 387:605–620



produced by NOX enzymes. The superoxide anion is convert-
ed to hydrogen peroxide by SOD3 and/or directly increases
advanced glycation end products (AGE) content in plasma
membrane of epithelial cells (Fig. 2). Both AGE and NOX, as
well as pro-inflammatory cytokines e.g. IL-6 or TNF-α acti-
vate NF-kB signalling pathway leading to increased expres-
sion of caspase 3, ICAM, TNF-α or IL-6 genes, while activa-
tion of MAPK results in ameliorated AP-1 signalling mole-
cule expression and increased production of iNOS, the unin-
hibited source of NO. Taken together, the inhibition of NF-kB
or p38 MAPK may decrease cytokine production in CD and
influence ROS/RNS production in CD patients, especially
during the active phase of the disease (Waetzig et al. 2002).

Colitis-associated colorectal cancer—ROS/RNS contribution

Carcinogenesis is generally a slow process and often takes
decades from tumour initiation to diagnosis. The mutation and
transformation process of a normal into a cancer cell can be
triggered by accumulation of free radicals at the early stages
and result in cancer progression. This might lead to an oxida-
tive cellular damage or to an alteration in signalling pathways
since ROS may act as signalling molecules.

Colorectal cancer remains the third most common cancer in
both women and men worldwide (Chawla et al. 2013). It was
demonstrated that during exogenous stress, the colon exhibits
significantly greater oxidative DNA damage compared to the
small intestine (Sanders et al. 2004). The oxidative environ-
ment results from excessive production of O2

•− in mitochon-
dria, which can lead to the formation of other damaging agents
like H2O2 and OH•. Moreover, it has been shown that mito-
chondrial respiration in the colon is less efficient than in other

parts of intestines as the oxidation of butyrate, the primary
energy substrate for colonocytes, yields 4.4 ATP/O2, while the
oxidation of glutamine, the primary energy substrate for
enterocytes, delivers 5.3 ATP/O2 (Wu et al. 1995).

Apart from influencing mitochondrial metabolism, ROS
modifies cell cycle. It was indicated that in human colon
adenocarcinoma cells ROS stimulate expression of p53,
which—among other functions—plays a role of an oxidative
response transcription factor, therefore causing S phase arrest
(Sun et al. 2012).

The association between inflammation and cancer involves
key inflammatory mediators, such as NF-kB-targeted gene
products including TNFα, and COX-2. It was observed that
down-regulation of COX-2 accelerated tissue healing in ex-
perimental colitis (Zwolinska-Wcislo et al. 2011) and the
inhibition of COX-2 enzyme by therapeutic agents to prevent
damage by ROS was thus proposed as a strategy for cancer
chemoprevention. Other chemoprotective targets include the
Kelch-like ECH-associated protein 1 (Keap1) and its binding
protein, transcription factor NF-E2-related factor-2 (Nrf2),
because of their role in regulating the antioxidant response
element in response to oxidative stress (Chang et al. 2013).
Nrf2 regulates the expression of anti-inflammatory enzymes
like XO-1 and GSH transferase (Schuhmacher et al. 2011).
Recently, it was indicated that Nrf2 deficiency in epithelial
cells leads to oxidative stress and DNA lesions, accompanied
by impairment of cell cycle progression, mainly G2/M-phase
arrest (Reddy et al. 2008). This effect is decreased after
addition of the redox status regulator, GSH, which is known
to act as a growth regulator, whereas GSH deficiency results in
growth arrest (Iwata et al. 1997). Additionally, Nrf2-mediated
and ROS-dependant cell cycle arrest is accompanied by HO-1

Fig. 2 The influence of ROS and
cytokines on signalling pathways
in intestinal epithelial cells. AGE
advanced glycation end products,
AP-1 activator protein 1, ICAM
intracellular adhesion molecule,
IL-6 interleukin 6, IL-6R
interleukin 6 receptor, iNOS
inducible nitric oxide synthase,
NF-kB nuclear factor-kappa B,
NOX NADPH oxidase, MAPK
mitogen-activated protein
kinases, OCl− hypochlorite ion,
SOD3 extracellular superoxide
dismutase, TNF-α tumour
necrosis factor alpha, TNFR
tumour necrosis factor receptor
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expression, followed by p21 induction and prevention of
neointimal hyperplasia (Kim et al. 2009).

Another strategy for cancer chemoprevention is to induce
apoptosis via activation of MAPK pathways, in particular
those involving c-Jun N-terminal kinase 1 (JNK) and p38
(Davis 2000; Ono and Han 2000). It was recently reported
that mice with epithelial-deleted p38-MAPK in the colon had
greater tumour development mediated by impaired cell cycle
regulation (Wakeman et al. 2012). Also the GSH transferase,
an enzyme incorporated in GSH metabolism, was shown to
form protein-protein interactions with members of the MAPK
pathway, thereby serving a regulatory role in the balance
between cell survival and apoptosis (Scharlau et al. 2009).

The involvement of oxidative stress-regulated pathways in
colon carcinoma was also confirmed in the in vitro experi-
ments with free radical scavengers. For instance, the group of
Hsu et al. (2007) showed that the administration of N-
acetylocysteine (NAC), a ROS scavenger, reduced colonic
cancer cell apoptosis via inhibition of JNK, p38 MAPK and
activation of c-jun. Also, a pharmacological inhibition of ERK
and p38 MAPK may decrease HO-1 up-regulation in colonic
cells (Park et al. 2010). The induction of HO-1 gene expres-
sion is an important event in cellular response to pro-oxidative
and pro-inflammatory compounds. However, further studies
are necessary to determine the role of oxidative stress and
oxidative stress-stimulated signalling pathways in colitis-
associated colorectal cancer.

Clinical view of the anti-oxidative role of drugs used
in IBD treatment and their influence on IBD outcome

Current treatment strategies for moderate-severe IBD consist
immunosuppressants, corticosteroids and anti-TNF-α anti-
bodies. Therapeutic effect of those drugs is in part contributed
to their anti-inflammatory and anti-oxidative properties. Im-
munosuppressants and corticosteroids possess direct free
radical-scavenging abilities while anti-TNF-α antibodies de-
crease TNF-α concentration having indirect anti-oxidative
effect.

Sulfasalazine and mesalazine

Sulfasalazine is a potent cysteine transporter inhibitor com-
posed of 5-aminosalicylic acid and sulfapyridine that has been
routinely used in the clinical therapy of IBD (Gan et al. 2005).
After oral intake, sulfasalazine is split by intestinal flora into
sulfapyridine and mesalazine (Rijk et al. 1988). Like salicy-
lates, the anti-inflammatory potential of sulfasalazine may be
reflected by its influence on the release of adenosine, which
controls oxidative potential, and by the effect of sulfasalazine
on pro-inflammatory compounds content and free radicals
generation. It was indicated that in clinical studies, a 6-week

treatment with sulfasalazine to patients with mildly and mod-
erately active UC resulted in a significant decrease of gut
inflammation (Chen et al. 2005). This effect can be explained
by sulfasalazine influence on ROS and pro-inflammatory
cytokines content. It was shown that sulfasalazine decreased
ROS concentration (Guo et al. 2011). In patients with moder-
ate UC treated with sulfasalazine (2–4 g/day) for 8–36 weeks,
a down-regulated activity of NF-kB accompanied by de-
creased expression of pro-inflammatory IL-1β mRNA and
IL-8mRNAwas observed (Gan et al. 2005).When stimulated,
NF-kB signalling pathway activates genes for e.g. pro-
inflammatory cytokines production. Therefore, the down-
regulation of NF-kB activity under sulfasalazine treatment is
desired. Interestingly, in patients with moderate UC, de-
creased concentration of NF-kB was independent of IkBα
level, which is a regulatory protein that inhibits NF-kB by
trapping it in the cytoplasm (Gan et al. 2005). In response to a
stimulus, IkBα degrades and rapidly returns to the original
level, what traps NF-kB and keeps it inactive, therefore indi-
rectly inhibiting NF-kB effects (Scherer et al. 1995).

Deactivation of NF-kB by sulfasalazine was also described
in the in vitro models. For instance, sulfasalazine-mediated
inhibition of NF-kB induced apoptosis of T lymphocytes
(Liptay et al. 1999) and macrophages (Brindley et al. 1996).
In the macrophages, sulfasalazine also stimulates phospholi-
pase D, an enzyme involved in the regulation of cell signalling
and oxidant stress, and the generation of phosphatidate
(Brindley et al. 1996).

Sulfasalazine was also shown to inhibit extracellular re-
lease of pro-inflammatory secretory phospholipase A2
(Pruzanski et al. 1997).

Mesalazine (5-ASA), a metabolite of sulfasalazine, is wide-
ly used for the treatment of UC. At the cellular level 5-ASA
reduces oxidative stress by inhibiting O2

•− and H2O2 produc-
tion, as well as preventing mucosal GAPDH inhibition
(Kimura et al. 1998; Campregher et al. 2010). Clinical trials
indicated that in patients with UC, 4-week treatment with 5-
ASA (2.4 g/day) plus N-acetyl-L-cysteine (0.8 g/day) not only
improved clinical response but also correlated with decreased
blood TNF-α, IL-6 and IL-8 concentration, as well as im-
proved GSH content (Guijarro et al. 2008). 5-ASA adminis-
trated alone also improved clinical outcome, but with little
effect on IL-6 and IL-8 content and with no influence on GSH
and TNF-α concentration (Guijarro et al. 2008). Also in
patients after ileocolonic resection of CD, a 6-month 5-ASA
(6 g/day) prevented the CD recurrence, but it did not reduce
pro-inflammatory cytokine content; the concentration of mu-
cosal TNF-α, IL-1β and IL-6 was increased (Yamamoto et al.
2009).

The possible difference in action between sulfasalazine and
mesalazine in patients with IBD was recently described in a
retrospective cohort study (Masuda et al. 2012). The authors
observed that mesalazine group (n=303, 250–40,00 mg/day
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for 111 days) had greater haematological adverse effects,
expressed by lower white blood cells and platelet counts and
higher mean serum urea nitrogen level than the sulfasalazine
group (n=67, 250–6,000 mg/day for 116 days). Therefore, we
may speculate that the haematological changes after 5-ASA
therapy may influence free radical generation and pro-
inflammatory cytokine content in IBD patients.

It should be also noticed that 5-ASA potently inhibits
peroxynitrite-mediated DNA strand breakage, scavenges
peroxynitrite and affects peroxynitrite-mediated radical for-
mation responsible in part for 5-ASA anti-inflammatory and
anti-cancer effects (Graham et al. 2013).

As discussed above, it may be suggested that sulfasalazine
seems to be more effective than mesalazine. However, addi-
tional studies are necessary to evaluate the efficacy of
sulfasalazine and 5-ASA in oxidative stress.

Corticosteroids

Systemic corticosteroids are highly effective at inducing clin-
ical remission of UC and CD. Currently, a second generation
of corticosteroids, which includes budesonide, prednisone or
beclomethasone dipropionate, is in clinical use and they seem
to possess fewer side effects in patients treated for UC and
CD. Studies indicated that glucocorticoid therapy effectively
inhibited neutrophil activity, reflected by decreased MPO and
neutrophil elastase serum contents in paediatric IBD
(Makitalo et al. 2012).

The anti-oxidative and anti-inflammatory action of gluco-
corticoids can be explained by their influence on NF-kB. It
was demonstrated that glucocorticosteroids (e.g. prednisolone
0.75 mg/kg/day for 3 weeks) strongly inhibit intestinal NF-kB
activation by stabilising the cytosolic IkBα activation in tissue
from patients with colitis (Ardite et al. 1998; Schreiber et al.
1998). Although helpful in decreasing ROS, corticosteroids
do not seem to reduce the mucosal expression of NOS in
patients with UC (Leonard et al. 1998). However, a recent
study demonstrated a significant inhibition of NOS mucosal
level and rectal NO production in patients with UC (n=22)
and CD (n=24) treated with prednisolone (0.5–1 mg/kg orally
for 1 month) (Ljung et al. 2006). Therefore, the effect of
glucocorticosteroids on NOS and NO synthesis has to be
further analysed.

It should also be stressed that corticosteroids may have a
different effect on signalling pathways activity in CD patients
who are steroid sensitive or steroid insensitive. Glucocorticoid
treatment to steroid-sensitive patients lead to an activation of
NF-kB, AP-1 and p38 MAPK mainly in lamina propria mac-
rophages, while glucocorticoids mediated those changes
mostly in epithelial cells in steroid-resistant patients (Bantel
et al. 2002). Thus, steroid resistance is associated with in-
creased epithelial activation of the above-mentioned pathways

that may inhibit the anti-inflammatory glucocorticoid-induced
action and accelerate disease progress.

Cyclosporine

Cyclosporine A, a calcineurine inhibitor, is an immunosup-
pressive drug which was shown to suppress the production of
IL-2 and IL-3, inhibit chemotaxis of neutrophils and induce
apoptosis in T cells of patients with UC (Ina et al. 2002;
Kountouras et al. 2004). Cyclosporine A also decreased the
number of neutrophils and mononuclear cells in colonic tissue
and inhibited cytotoxic activity of T cells and mucosal che-
mokine activity in humans (Ina et al. 2002). When adminis-
tered to humans, cyclosporine A binds to cyclophilin A,
whose gene expression was shown to be up-regulated in the
crypt epithelia of UC patients (Kim et al. 2006). The
cyclosporine-cyclophilin A complex decreases TNF-α and
IL-6 concentration by inhibiting the activity of NF-kB and
MAPK signalling pathways in monocytes, therefore altering
inflammatory processes (Yuan et al. 2010). However, no
association was found between clinical response and whole
blood cyclosporine A concentration in patients receiving both
high (>5 mg/kg/day) and low (<5 mg/kg/day) oral cyclospor-
ine A dose (Egan et al. 1998).

Anti-TNF-α antibodies

Infliximab is a monoclonal antibody against serum and
membrane-bound TNF-α, which decreases TNF-α concen-
tration in colonic mucosa in patients with UC (Hart and Ng
2010). Infliximab treatment has been shown to decrease in-
flammation which improved mucosal healing in patients with
UC via healing of the goblet cells and reducing abnormal
mucus formation and secretion, which finally led to the re-
covery of the villi components (Fratila and Craciun 2010).
Studies on 32 patients suffering fromUC for about 4 years and
treated with infliximab in repeated intravenous infusions at 0,
2 and 6 weeks expressed lower mRNA of TNF-α and INF-γ
(Olsen et al. 2009). Moreover, UC remission was observed in
eight patients after infliximab treatment. The colon tissue of
UC remission patients was characterised by lower number of
macrophages and lymphocytes; however, the level of TNF-α
positive cells was unchanged (Olsen et al. 2009). Those
changes can be attributed to inhibition of TNF-α generation
and modulation of TNF-α stimulated signalling pathway.
Apart from reducing mRNA for TNF-α, infliximab decreased
T lymphocyte and macrophage content and down-regulated
the expression of IFN-γ without affecting IL-10 and IL-4
mRNA (Olsen et al. 2009). Infliximab introduced to patients
at a dose of 5 mg/day for 2–4 weeks inhibited neutrophil
activity, reflected by lower neutrophil elastase level, but not
as efficiently as glucocorticoids at a dose of 0.8 mg/kg/day
(Makitalo et al. 2012). Moreover, infliximab therapy
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decreased the up-regulation of leukocyte cell adhesion mole-
cules and the inflammatory cell number in colonic lamina
propria (Arijs et al. 2011). Furthermore, semi-chronic admin-
istration of anti-TNF-α antibodies increased blood contents of
regulatory T cells and their suppressive function (Boschetti
et al. 2011).

Unlike UC, CD is characterised by increased mucosal
concentrations of TNF-α even during disease remission
(Raddatz et al. 2005). Infliximab treatment lead to lower
global numbers of CD4+ and CD8+ T lymphocytes and
CD68, a marker of monocytes/macrophages (Baert et al.
1999). It also decreased mucosal expression of T regulatory
cells, counted as forked box P3 (FoxP3) level (Li et al. 2010).
Therefore, targeting TNF-α generation in CD patients seems
to be crucial. It was presented that infliximab treatment (5 mg/
kg, every 8 weeks for 6 months) to patients after resection of
CD showed a decrease in mucosal IL-1β, IL-6 and TNF-α
which contributed to the suppressive effect on clinical and
endoscopic disease activity (Yamamoto et al. 2009). Similarly,
six injections of adalimumab to 70 CD patients (80 mg at
week 0 and then 40 mg every 2 weeks as subcutaneous
injections), another anti-TNF-α antibody, for 10 weeks to
patients with CD significantly decreased mucosal mRNA
level of TNF-α, INF-γ, IL-17A and IL-23 (Rismo et al.
2012). The decreased level of IFN-γ may result from its
reduced secretion by T cells and depletion of TNF levels
(Agnholt and Kaltoft 2001). Decreased cytokines concentra-
tion can directly influence ROS/RNS production by inflam-
matory cells or indirectly modulate ROS-stimulated signalling
pathways activity. However, further studies indicating the role
of anti-TNF-α antibodies drugs on ROS/RNS production in
IBD are necessary.

Thiopurines

The thiopurines, which include azathioprine (AZA) and mer-
captopurine (MP), remain a mainstay in the management of
IBD. Thiopurines are relatively efficacious—nearly 70 % of
patients with steroid-dependent IBD achieve and maintain
remission (Pearson et al. 1995). However, their use is limited
because of their high intolerance level and the risk of adverse
reaction, which is between 15 and 28% (D'Haens et al. 1999).
When metabolised, AZA is converted to 6-thioguanine nucle-
otides (6-TG), which is incorporated into cellular DNA and
may be accumulated therein. It was shown that IBD patients
have detectable 6-TG DNA in lymphocytes (Cuffari et al.
1996). It was recently described that 6-TG DNA, produced
in patients under AZA treatment, increases DNA susceptibil-
ity to ROS produced in a biological context (Daehn and
Karran 2009). Moreover, in the same study, the authors dem-
onstrated that macrophages which contain DNA 6-TG are at
risk from self-inflicted DNA 6-TG oxidation and their

sustained high level of endogenous ROS swiftly leads to cell
death.

Nevertheless, AZA remains one of the most efficient anti-
inflammatory drugs that decreases infiltration of inflammatory
cells into the ileal mucosa in CD patients and facilitates
mucosal healing (D'Haens et al. 1999).

Future therapies based on anti-oxidative
and anti-inflammatory drugs—brief review
of experimental data

The severity of colitis can be modified therapeutically by
drugs that influence free radicals generation, neutrophil infil-
tration and pro-inflammatory agents’ production. Uraz et al.
(2013) showed that oral administration of NADPH oxidase
inhibitor, NAC, to mice with acetic acid-caused UC signifi-
cantly decreased pro-inflammatory cytokine concentration
and lipid peroxidation, as well as elevated GSH and SOD
content (Table 2). Similar results were obtained in rat model of
acetic acid-induced colonic inflammation (Nosal'ova et al.
2000; Cetinkaya et al. 2005). Moreover, NAC amplified pro-
tective effect of a well-established anti-inflammatory agent, 5-
ASA, used in UC patients, and decreased COX-2 gene ex-
pression and prostaglandin E2 level, therefore influencing
colon nitrate generation and iNOS activity (Ancha et al.
2009). NAC alone reduced iNOS level in ulcerative distal
colon (Seril et al. 2002).

Romagnoli et al. (2012) reported that NAC prevents
TNF-α-induced GSH/GSSG ratio depletion in intestinal
subepithelial myofibroblasts isolated from patients with active
CD. The improvement of cell redox status negatively corre-
lated with secreted matrix metalloproteinase-2, a compound
responsible for a dysfunction of epithelial barrier in CD
patients.

Recently, another natural anti-oxidant, lipoic acid, was
shown to decrease tissue lipid peroxidation, MPO activity
and increase GSH content in rats with ileitis or colitis
(Kolgazi et al. 2007). Similarly, curcumin, an active ingredient
of an Indian spice, and ellagic acid, a natural polyphenol, were
used in IBD treatment for their scavenging activity to free
radicals, inhibition of MPO, COX-1, COX-2, LOX, TNF-α,
IFN-γ, iNOS and positive influence on multiple signalling
pathways, especially the MAPK and NF-kB [see review of
Rosillo et al. (2011) and Baliga et al. (2012)].

Bjorndal et al. (2013) observed that fatty acid analogue
tetradecylthioacetic acid, an anti-inflammatory and antioxi-
dant agent, reduced colonic oxidative damage by decreasing
iNOS, TNF-α and IL-6 at mRNA level. Other therapeutics
like tributyrin reduced mucosal damage and neutrophil and
eosinophil mucosal infiltration, which was associated with a
higher percentage of regulatory T cells and higher levels of
TGF-β and IL-10 in the lamina propria (Leonel et al. 2012).
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Inhibition of TNF-α and IL-1β during experimentally in-
duced colitis can also be observed after oral administration
of molecular hydrogen (H2) inducers, like lactulose (Chen
et al. 2013). The protective role of molecular hydrogen against
oxidative stress is associated with H2 ability to neutralise the
ONOO− and OH• (Ohsawa et al. 2007).

A natural compound ectoine found in several species of
bacteria inhibits colitis by blocking nuclear translocation of
NF-kB and MAPK and down-regulation of the expression of
the pro-inflammatory cytokines like IL-1α, IL-6, IL-8 and
TNF-α (Sydlik et al. 2009; Abdel-Aziz et al. 2013). Similar
results were documented for parthenolide, an herbal com-
pound, which reduced the production of TNF-α and IL-1β
via influencing phosphorylation and subsequent degradation
of NF-kB inhibitory protein IkBα in mice (Zhao et al. 2012).

As NF-kB is an oxidative stress-activated pathway, its
inhibition may decrease ROS production. The activity of
NF-kB pathway may also be influenced by compounds
that constitute an energy source for colonic epithelial cells,
like butyrate. It was indicated that in colonic epithelial
cells and mucosal biopsies of CD patients, butyrate
lowered LPS-induced ROS concentration and down-
regulated gene expression and protein content of NF-kB,
TNF-α, COX-2 and ICAM-1 (Russo et al. 2012). In
addition, the inhibition of NF-kB activation affects cell
apoptosis by silencing of mRNA expressions of Fas/
FasL, Bax and caspase-3, and activated Bcl-2 genes in
intestinal epithelial cells (Liu and Wang 2011). The inhi-
bition of apoptosis prevents excessive loss of epithelial
cells and therefore, intestinal injury.

Table 2 Anti-oxidative and anti-inflammatory effects of therapeutics used in ulcerative colitis treatment

Antioxidants and anti-inflammatory
drugs in the treatment of IBD

Role Reaction
No. in
Fig. 1

Reference

Pre-clinical studies

N-acetylocysteine ↓MPO, ↑GSH in colon lesions
↓iNOS in distal colon lesions
↓MPO, ↑GSH, SOD, ↔ CAT in colon lesions
↓COX-2, PGE2, nitrate concentration
↓lipid peroxidation, ↑GSH, SOD in ulcerative colitis
↓COX-2 and iNOS mRNA in colon lesions
↓iNOS activity in UC
↑GSH/GSSG ratio in intestinal subepithelial
myofibroblasts in CD

(5) (Nosal'ova et al. 2000)
(Seril et al. 2002), (Cetinkaya et al. 2005)
(Ancha et al. 2009)
(Uraz et al. 2013), (Nosal'ova et al. 2000),
(Cetinkaya et al. 2005)

(Ancha et al. 2009)
(Seril et al. 2002), (Romagnoli et al. 2012)

Lipoic acid ↑GSH, ↓MPO and lipid peroxidation in ileum and colon (5) (Kolgazi et al. 2007)

Curcumin and ellagic acid ↓MPO, COX-1, COX-2, LOX, TNF-α, IFN-γ, iNOS
tissue level in CD

(Baliga et al. 2012), (Rosillo et al. 2011)

Tetradecylthioacetic acid ↓iNOS, TNF-α and IL-6 mRNA in ulcerative colitis (Bjorndal et al. 2013)

Tributyrin ↑TGF-β and IL-10 in lamina propria (Leonel et al. 2012)

Lactulose, a molecular hydrogen
inducer

↓TNF-α, IL-1β, MPO in colon lesions
↓ONOO-, OH• in colonic lesions

(3) (Chen et al. 2013)
(Ohsawa et al. 2007)

Ectoine ↓IL-1α, IL-6, IL-8 and TNF-α (Sydlik et al. 2009; Abdel-Aziz et al. 2013)

Clinical studies

Mesalazine ↓O2•−, H2O2 in UC
↓IL-6, Il-8,↔GSH, TNF-α in UC
↑TNF-α, IL-1β and IL-6 in mucus of CD

(7) (Campregher et al. 2010)
(Guijarro et al. 2008)
(Yamamoto et al. 2009)

Sulfasalazine ↓ROS,
↓IL-1β and IL-8 mRNA

(Guo et al. 2011)
(Gan et al. 2005)

Glucocorticoids ↓MPO and neutrophil elastase in paediatric IBD (Makitalo et al. 2012)

Cyclosporine ↓IL-2, IL-3 (Kountouras et al. 2004)

Infliximab ↓TNF-α in colonic mucosa
↓INF-γ mRNA in inflammatory cells in colitis

(Fratila and Craciun 2010)
(Olsen et al. 2009)

Adalimumab ↓TNF-α, INF-γ, IL-17A, IL-23 mRNA in colonic
mucosa of CD patients

(Rismo et al. 2012)

CATcatalase,CDCrohn’s disease,GRd glutathione reductase,GSH reduced glutathione,GSSG oxidised glutathione,GPx glutathione peroxidase,H2O2

hydrogen peroxide, IBD inflammatory bowel disease, IL interleukin, IFN-γ interferon gamma, LOX lipooxygenase,MPO mieloperoxidase, NO• nitric
oxide, iNOS inducible nitric oxide synthase, NOX NADPH oxidase, ONOO− peroxynitrate, O2

•− superoxide anion, OH• hydroxyl radical, PGE2

prostaglandin E2, SOD1 copper/zinc superoxide dismutase, SOD2 mitochondrial superoxide dismutase, SOD3 extracellular superoxide dismutase,
TNF-α tumour necrosis factor alpha, UC ulcerative colitis, XO xanthine oxidase
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Treatment of UC can also target promoter regions for
chemoprotective genes, like heme oxygenase-1 (HO-1). Re-
cently, Yukitake et al. (2011) reported that activation of ARE-
mediated gene expression with BTZO-15 reduced the ulcer-
ated area by increasing expression of HO-1, suppressing NO-
induced cell death and ameliorating rectal metalloproteinase
activity. BTZO-15 is a derivative of BTZO-1 (BTZO-1, 2-
pyridin-2-yl-4H-1,3-benzothiazin-4-one) that possesses
cytoprotective effect by elective bounding to macrophage
migration inhibitory factor (MIF), and increasing in GSH
transferase mRNA expression (Kimura et al. 2010).

Recently, Biagioni et al. (2006) reported that defective
neutrophil function in patients with CD can be restored by
granulocyte-macrophage colony-stimulating factor (GM-
CSF), which activates respiratory burst and improves cell
viability. GM-CSF is necessary for proper mucosal barrier
function, and patients with elevatedGM-CSF antibody exhibit
an increase in bowel permeability and disease severity vs.
patients with CD with lower levels of GM-CSF antibody
(Nylund et al. 2011).

Conclusion

The results of both clinical and experimental studies suggest a
potent ia l involvement of ROS and RNS in the
pathomechanism of IBD and colitis-associated colorectal can-
cer. However, it remains unclear whether the increased oxida-
tive stress in the gut environment results from failing metab-
olism, especially in mitochondria or is a reason of decreased
local scavenging capacity. Also, an excessive activation of
macrophage, PMN infiltration and/or activation can contrib-
ute or cause local increase in free radicals production. Proba-
bly all above-mentioned mechanisms of excessive free radi-
cals production are engaged in the aetiology and/or exacerba-
tion of IBD and colitis-associated colorectal cancer. Therefore,
further analyses are necessary to accumulate a larger amount
of data on the anti-oxidative and anti-inflammatory role of
currently used therapeutics and their interference with ROS/
RNS-stimulated signalling pathways.

Clinical studies with existing and potential anti-IBD drugs,
especially those employing natural antioxidants show prom-
ising outcomes for IBD and colorectal cancer treatment
(Rosillo et al. 2011; Baliga et al. 2012). However, since
numerous intestinal factors like bacteria, digestive enzymes
or foodmetabolites can change the anti-oxidative properties of
drugs potentially inactive, further clinical trials are necessary.
The knowledge on highly specific anti-oxidative effects of
currently used therapeutics and novel agents may provide
significant clinical benefits in the treatment and relapse of
IBD.

It is likely that, in the near future, combination of currently
used pharmaceutics with natural and synthetic potent anti-

oxidative compounds, like lipoic acid or curcumine, will
become a strategy of choice in IBD treatment.
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