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Abstract

Visualization of ex vivo human patellar cartilage matrix through the phase contrast imaging X-ray

computed tomography (PCI-CT) has been previously demonstrated. Such studies revealed

osteoarthritis-induced changes to chondrocyte organization in the radial zone. This study

investigates the application of texture analysis to characterizing such chondrocyte patterns in the

presence and absence of osteoarthritic damage. Texture features derived from Minkowski
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functionals (MF) and gray-level co-occurrence matrices (GLCM) were extracted from 842 regions

of interest (ROI) annotated on PCI-CT images of ex vivo human patellar cartilage specimens.

These texture features were subsequently used in a machine learning task with support vector

regression to classify ROIs as healthy or osteoarthritic; classification performance was evaluated

using the area under the receiver operating characteristic curve (AUC). The best classification

performance was observed with the MF features perimeter (AUC: 0.94 ± 0.08) and “Euler

characteristic” (AUC: 0.94 ± 0.07), and GLCM-derived feature “Correlation” (AUC: 0.93 ± 0.07).

These results suggest that such texture features can provide a detailed characterization of the

chondrocyte organization in the cartilage matrix, enabling classification of cartilage as healthy or

osteoarthritic with high accuracy.
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Gray-level co-occurrence matrix (GLCM); Minkowski functionals (MF); osteoarthritis (OA);
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I. Introduction

Osteoarthritis (OA) is widely recognized as one of the leading causes of disability

worldwide [1]-[3]. This disease is characterized by loss of the articular cartilage, thickening

of the underlying subchondral bone, and osteophyte formation. Currently, monitoring OA

progression to evaluate patient health and assess the impact of drug intervention is of

significant interest. Diagnostic markers that are used for this purpose, such as joint pain or

observation of joint space narrowing on conventional radiography, are only sensitive at

advanced stages of the disease. It would be desirable to have an imaging modality that could

provide early detection and visualization of any degenerative modifications to the cartilage

[4]-[8]. Several imaging techniques have been proposed to detect changes in cartilage

quality through evaluation of glycosaminoglycan (GAG) content, such as delayed

gadolinium-enhanced MR imaging of cartilage (dGEMRIC) [9], 23Na MRI [10], T1ρ [11],

GAG chemical exchange saturation transfer [12], etc. However, none of these techniques

currently possess the capability to visualize cartilage matrix structure at a cellular level. In

this context, Coan et al. demonstrated the ability of phase contrast imaging X-ray computed

tomography (PCI-CT) to visualize the internal architecture of the cartilage matrix at

micrometer scale resolution in ex vivo samples of the human patellae and recorded

differences in chondrocyte organization in healthy and osteoarthritic subjects [13].

Phase contrast imaging (PCI) has emerged as a novel X-ray-based imaging approach owing

to its ability to provide enhanced image contrast for visualizing structural details in the soft

tissue. PCI exploits the fact that X-rays are not just absorbed when passing through matter

but also refracted [14], [15]. The phase contrast effect associated with such refraction can be

more pronounced than the conventional absorption contrast, specifically for the energy

range of X-rays used in diagnostic modalities, and for the soft tissue encountered in clinical

studies [16]. This allows PCI to be effective in imaging tissue types where the conventional

absorption contrast is either unable to resolve differences between different soft tissue types,
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i.e., breast [17], [18], or poor/absent, i.e., cartilage [13], [19], [20]. Among different PCI

techniques, we specifically focus on the analyzer-based imaging (ABI) scheme [15], [21],

[22] that has been applied in different ex vivo breast [17], [18], brain [23], and cartilage

studies [13], [19].

We specifically focus on cartilage in the retropatellar joint which has significant potential

for enabling early detection of treatable osteoarthritic changes to the cartilage matrix.

Patellar cartilage, unlike femoro-tibial cartilage, is the thickest cartilage tissue compartment

in the human body which still shows macroscopic differences in appearance between

healthy and osteoarthritic states. PCI-CT imaging of ex vivo healthy and osteoarthritic

specimens of human patellar cartilage matrix revealed specific differences in their internal

architecture. Of specific interest was osteoarthritic-induced changes to the chondrocyte

organization in the radial zone of the cartilage matrix. Chondrocytes in normal samples

maintained a zone specific architecture; this was specifically visualized in the radial zone

where the chondrocytes were aligned in a direction perpendicular to the tide mark (also

known as Benninghoff’s arch). This zone-specific organization of chondrocytes was not

observed in osteoarthritic samples and was instead replaced by a more generalized clustering

of cells throughout the matrix [13]. The primary goal of this study was to identify

quantitative measures that could characterize such differences in chondrocyte patterns and

evaluate their ability to serve as diagnostic biomarkers for osteoarthritic-induced changes to

the cartilage matrix. In particular, we focus on the use of texture analysis, which to our

knowledge, has not been previously used for quantitative analysis of cartilage matrix

structure as visualized by PCI-CT.

Texture analysis involves quantifying spatial properties of pixel distributions, i.e., image

patterns, from a specified region of interest (ROI). In this study, we pursued two approaches:

1) second-order statistical texture features derived from gray-level co-occurrence matrices

(GLCM) [24]; and 2) topological texture features derived from the Minkowski functionals

(MF) [25]. GLCM has been previously investigated in a wide range of medical image

analysis tasks such as distinguishing pathological patterns from healthy lung tissue on chest

CT [26], classifying benign and malignant lesions through characterization of the lesion

enhancement pattern on dynamic breast MRI [27], and quantitative analysis of carotid

atherosclerotic plaques on ultrasound B-mode scans [28]. However, texture features derived

through more novel techniques such as MF can provide a detailed topological

characterization of the gray-level pattern being analyzed. This approach has been previously

investigated in fibrotic tissue classification on lung CT [29], [30], dynamic characterization

of tissue lesions on breast MRI [31], and hip-fracture prediction in post-menopausal women

[32].

Given the wide applicability of texture features derived from GLCM and MF to medical

image processing tasks, we investigate the ability of such features in quantifying

chondrocyte patterns in the radial zone of the cartilage matrix as visualized by PCI-CT.

These features are evaluated in their ability to classify ROIs as being normal or

osteoarthritic in a machine learning task using support vector regression (SVR) [33], as

discussed in the following sections.
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II. Materials and Methods

A. Samples

The selection of the patellae was based on age of the donor, macroscopic visual inspection,

and probing of the cartilage surface at autopsy. Donors older than 40 years were a priori

excluded for harvest of normal samples; no constraint in age was imposed on potential

donors for osteoarthritic samples. A smooth, white, and shiny surface present across the

entire patellar cartilaginous surface and prompt resilience to manually performed focal

indentation probing were criteria that defined macroscopically normal cartilage. Lack of

these criteria in addition to visually perceived defects in the joint surface were used to select

osteoarthritic samples. IRB was waived by the institutional review board of the Ludwig

Maximilians University, Munich, Germany. Based on these inclusion criteria, two healthy

and three osteoarthritic cylinder-shaped osteochondral samples (diameter: 7 mm) were

extracted within 48 h postmortem from the lateral facet of the four human patellae using a

shell auger. Cylinders were trimmed to a total height of 12 mm including the complete

cartilage tissue and the subchondral bone. The samples were continuously rinsed by 0.9%

saline during extraction, trimming, and removal of soiling from sawing. During image

acquisition, samples were dipped into a 10% formalin solution. The grade of the

osteoarthritic samples was assessed to be 3-4 based on a histological standard proposed in

[34].

B. PCI Experimental Setup

The ABI setup consisted of a parallel monochromatic X-ray beam, used to irradiate the

sample, and of a perfect crystal, the analyzer, placed between the sample, and the detector

[35]. The analyzer acts as an angular filter of the radiation transmitted through the object

and only the X-rays traveling in a narrow angle window close to the Bragg condition are

diffracted onto the detector [22]. Before being detected, the beam is modulated by the angle-

dependent reflectivity of the crystal; its rocking curve (RC) has a full width at half

maximum typically of the order of a few microradians. All images were acquired at the half

maximum position on one slope of the RC (50% position), which was chosen to achieve the

best sensitivity. Further details of the ABI technique used in this study can be found in [13].

Experiments were performed at the Biomedical Beamline (ID17) of the European

Synchrotron Radiation Facility (ESRF, France). A highly collimated X-ray beam was

produced by a 21-pole wiggler after monochromatization by means of a double Si (111)

crystal system and an additional single Si (333) crystal [36]. The emerging, refracted, and

scattered radiation from the sample was analyzed with a Si (333) analyzer crystal. Quasi-

monochromatic X-rays of 26 keV were used. Given the laminar shape of the stationary

synchrotron beam, images were obtained by rotating and vertically scanning the sample

through the X-ray beam [37]. The imaging detector used was the Fast Readout Low Noise

(FReLoN) CCD camera developed at the ESRF [38]. The X-rays were converted to visible

light by a 60 μm thick Gadox fluorescent screen; this scintillation light was then guided onto

a 2048 × 2048 pixel 14 × 14 m2 CCD (Atmel Corp, U.S.) by lens-based system. The

effective pixel size at the object plane was 8 × 8 μm2.
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C. Tomographic Image Reconstruction

To acquire the CT images with synchrotron radiation, the sample was rotated about an axis

perpendicular to the incident laminar beam; it was vertically displaced at the end of each

rotation to image a different region. Both the beam and the detector were kept stationary; the

detector acquisition was synchronized with the sample angular scanning. A flat field

normalization was performed for each angular projection image to reduce the effects of the

spatial and temporal X-ray beam inhomogeneities. Tomographic images were reconstructed

using a direct Hamming filter backprojection algorithm [39]. An image volume of

dimensions 1120 × 1124 × 805 was acquired for each specimen and subsequently trimmed

to eliminate background regions. For data analysis, coronal slices of slice thickness 8 μm

were reconstructed from the original data and subjected to edge-preserving median filtering

with a [5 5] sliding window to smoothen noise artifacts.

D. Annotation

Chondrocyte patterns were annotated with 2-D square ROIs in the radial zone of the

cartilage matrix on the acquired PCI-CT images of all five specimens. In each specimen,

special care was taken to ensure that the same cluster of chondrocytes was not captured by

different ROIs by ensuring that annotated slices were atleast 32 μm apart. 842 ROIs were

annotated in total, of which 439 were osteoarthritic and 403 were healthy. All ROIs

extracted from healthy cases were healthy, while those from the OA cases were abnormal,

i.e., no healthy ROIs were extracted from the OA samples in this study. The annotations

were made using a square of 101 × 101 pixels; ROIs of smaller size (11, 21, …, 91) were

then extracted without any manual intervention using the same ROI center. The ground truth

was extracted using analysis performed by two independent observers as described in [13].

Examples of a healthy and osteoarthritic ROIs annotated on PCI-CT images are shown in

Fig. 1.

E. Texture Analysis

MF were computed by first binarizing each ROI through the application of several

thresholds between its minimum and maximum intensity limits [25]. The number of

thresholds applied was a free parameter; a suitable choice for this parameter was

investigated here. On each binarized image, three MF, i.e., area, perimeter, and Euler

characteristic, were computed as follows:

(1)

(2)

(3)

where ns was the total number of white pixels, ne was the total number of edges, and nv was

the number of vertices. The area feature recorded the area of the white pixel regions in the

binary image, the perimeter measure calculated the length of the boundary of white pixel

regions, and the Euler characteristic was a measure of connectivity between the white pixel

Nagarajan et al. Page 5

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2014 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



regions. Further explanation of how these formulae were derived can be found in [25]. Once

computed for every binary image derived from a specific ROI, these values were stored in

three high-dimensional vectors corresponding to each MF. This is further illustrated in Fig.

2.

GLCM were extracted from the ROIs as described in [24]. The interpixel distance d was a

free parameter; a suitable choice for this parameter was investigated here. On each ROI, the

gray-levels were quantized to 32 gray-level values. GLCMs were then generated in the four

principal directions and then, summed up element-wise resulting in one nondirectional

GLCM. From this, the least correlated and most frequently used statistical features were

computed, i.e., absolute value, entropy, contrast, energy, correlation, and homogeneity [40].

Statistical moments of the gray-level distributions within the ROIs, i.e., mean and standard

deviation, were used both individually and combined as a 2-D vector to serve as a baseline

for comparison with texture features derived from GLCM and MF.

F. Classification

The extraction of texture features was followed by a supervised learning step where the

ROIs were classified as healthy or osteoarthritic. We note here that since GLCM features are

1-D while MF feature vectors are 20-D, classification was univariate for GLCM features and

multivariate for MF. In this paper, SVR with a radial basis function kernel was used for the

machine learning task [33]. The SVR implementation was taken from the libSVM library

[41].

Owing to the practical limitations imposed by the small size of the patient population used in

this study, we specified the following patient constraints to the supervised learning step: 1)

ROIs from the same patient were not simultaneously used in both training and test sets; and

2) the same number of ROIs was used from every patient to ensure that the classifier did not

get overtrained on patterns from a specific patient. Based on these constraints, each iteration

of the supervised learning step involved randomly sub-sampling 100 ROIs from each of the

five patients and randomly designating one of the healthy and osteoarthritic subjects as the

test set (the other samples comprised the training set). Such a strategy ensured that training

sets used in different iterations of supervised learning were not identical despite the patient

constraint. In the training phase, models were created from labeled data by employing a

random sub-sampling cross-validation strategy where the training set was further split into

70% training samples and 30% validations samples—the purpose of the training was to

determine the optimal classifier parameters that best captured the boundaries between the

two classes of ROIs. The free parameters for the classifier used in this study were the cost

parameter for SVR and the shape parameter of the radial basis function kernel. Then, during

the testing phase, the optimized classifier predicted the class of ROIs in the independent test

set. A receiver operating characteristic (ROC) curve was generated and used to compute the

area under the ROC curve (AUC) which served as a measure of classifier performance on

the independent test set.
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G. Statistical Analysis

A Wilcoxon signed-rank test was used to compare two AUC distributions corresponding to

different texture features. Significance thresholds were adjusted for multiple comparisons

using the Holm-Bonferroni correction to achieve an overall type I error rate (significance

level) less than α (where α = 0.05) [42], [43].

Texture, classifier, and statistical analysis were implemented using Matlab 2010a (The

MathWorks, Natick, MA, USA).

III. Results

A. Free Parameter Exploration

Fig. 3 shows the classification performance of the GLCM-derived features when computed

with different interpixel distances (d = 1, 2, 3, 4, 5). The texture features were computed

from ROIs of size 101 × 101 pixels. As seen here, the classification performance

deteriorated as the interpixel distance was increased. The best classification performance

was noted with GLCM feature correlation (0.93 ± 0.07) for d = 1.

Fig. 4 shows the classification performance of topological texture features derived from MF

when extracted using different number of thresholds. As with GLCM, these texture features

were also computed from ROIs of size 101 × 101 pixels. The best classification performance

was observed for features perimeter (0.94 ± 0.08) and Euler characteristic (0.94 0.07)

obtained with 20 thresholds; increasing the number of±thresholds further did not improve

the performance achieved.

B. Classification Performance Comparison

Table I compares the classification performance achieved with the statistical moments,

GLCM-derived features (using d = 1) and MF (with 20 thresholds). The best performance

was observed with MF perimeter (0.94 ± 0.08) and Euler characteristic (0.94 ± 0.07), and

GLCM feature correlation (0.93 ± 0.07). Both features significantly outperformed all

statistical moments (p < 10-4). Standard deviation produced the best performance from the

statistical moment features (0.66 ± 0.06). All texture features were computed from ROIs of

size 101 × 101 pixels.

C. Impact of ROI Size

Fig. 5 shows the effect of ROI size on the classification performance of the best feature from

GLCM (correlation), MF (Euler characteristic) and statistical moments (mean and standard

deviation). The performance for all features was observed to be best when texture features

were extracted from ROIs of the largest size used in this study, i.e., 101 × 101 pixels. For

ROIs of size 51 × 51 pixels and greater, both Euler characteristic and correlation achieve

comparable classification performance. However, for smaller sized ROIs, correlation

outperformed Euler characteristic. Regardless of ROI size, both features significantly

outperformed standard deviation (p < 10-4).
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IV. Discussion

PCI has emerged as a novel X-ray-based imaging modality for providing enhanced image

contrast in certain biological tissue types [13], [17]-[20]. In the field of cartilage imaging,

Coan et al. previously demonstrated the ability of PCI-CT to visualize structural details of

the cartilage matrix with high-spatial resolution, and reported differences in chondrocyte

organization within the cartilage matrix, specifically in the radial zone [13]. In this study, we

investigated the use of texture features derived from topological and statistical approaches,

i.e., MF and GLCM, in characterizing such differences and potentially serving as diagnostic

bio-markers for OA. Our results show that such textural descriptors can classify chondrocyte

patterns as being healthy or osteoarthritic with high accuracy.

MF enable the characterization of the underlying topology as a function of the gray-level

threshold by capturing information pertaining to size (area), boundary (perimeter), and

connectivity (Euler characteristic). In this study, such detailed topological information was

stored in high-dimensional feature vectors which were subsequently processed in a machine

learning task. The best classification performance was noted with Euler characteristic which

suggests that connectivity can serve as a major distinguishing factor between healthy and

osteoarthritic ROIs. This is supported by the fact that the chondrocytes are more clustered in

the osteoarthritic ROIs than they are in healthy ROIs; such a clustering could influence the

topology of the gray-level patterns being captured by the ROIs. The ability of Euler

Characteristic to distinguish between healthy and osteoarthritic ROIs is further illustrated in

Fig. 6. We also note that the MF area performed the worst suggesting that analyzing the

behavior of pixel regions with high intensity values as a function of the gray-level threshold

does not really contribute toward distinguishing between the two classes of chondrocyte

patterns. This could also suggest that topological characterization of these chondrocyte

patterns needs to be sufficiently complex in order to accurately distinguish between the two

classes.

Most features derived from GLCM or statistical moments such as mean and standard

deviation did not yield a comparable performance to Euler characteristic in terms of

classifying healthy and osteoarthritic ROIs, as seen in Table I. The failure of such statistical

features adds further credence to the complexity of the pattern classification problem being

investigated in this study; simpler feature descriptors that account for the distribution of

intensity values, brightness, etc, alone are not sufficient to characterize the differences

between the two classes of chondrocyte patterns. We do note one exception, i.e., GLCM

feature correlation, that exhibited comparable classification performance to MF Euler

characteristic. This feature measures the gray-level linear dependencies between

neighboring pixels [24]. Since chondrocytes are more clustered in osteoarthritic ROIs, these

ROIs tend to exhibit higher correlation values than healthy ROIs which capture more extra

cellular space. This could explain the effectiveness of the correlation feature in

distinguishing between healthy and osteoarthritic ROIs annotated on PCI-CT images.

The impact of the ROI size on the classification performance of different features was also

investigated in this study. The best performance was achieved with the largest ROI size, i.e.,

101 × 101 pixels, as shown in Fig. 5. Such ROIs would capture larger portions of the
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chondrocyte patterns being investigated leading to better characterization by the texture

features. While performance deteriorates as the ROI size is reduced, AUC values of 0.9 are

noted at an ROI size of 51 × 51 pixels, which suggests that such texture features could be

used for purposes of segmenting regions of the cartilage matrix that are indicative of healthy

or osteoarthritic chondrocyte organization. Such a segmentation algorithm would involve

assigning a healthy or osteoarthritic label to every pixel in the radial zone based on texture

features computed from the surrounding neighborhood. This would be useful in quantifying

the percentage of the radial zone affected by OA, especially in cases where some portions of

the cartilage remain healthy. Such quantitative measures could extend this study from a

binary classification problem of differentiating between healthy and osteoarthritic cartilage

samples to that of a bio-marker that tracks osteoarthritic progression in the cartilage matrix

over time. This will be explored in further detail in future studies.

One limitation of this study was the small number of patients (five) from whom cartilage

specimens were acquired for image acquisition. As a result, the classifier was trained with a

smaller subset of patients and could be overtrained to the limited variations of healthy and

osteoarthritic patterns found in these subjects. Future studies should include more patients to

ensure that the classifier is trained with a potentially larger variation of healthy and

osteoarthritic patterns. However, even with the small sample size used in this study, the

separation between the two classes of chondrocyte patterns is adequately captured by high-

dimensional feature vectors of Euler characteristic, as shown in Fig. 6. The inclusion of

more patients would also enable extending our work for characterization of the entire

patellar specimen based on local properties, and subsequent classification. We have taken a

step in this direction by extracting texture features from smaller ROIs within each specimen,

each of which be treated as a local neighborhood and the corresponding texture features

characterize local spatial properties. Future studies could also focus on characterizing the

alignment of chondrocytes in healthy ROIs where the current study focused more of the

clustering of chondrocytes in osteoarthritic ROIs. Further improvements to textural

characterization of chondrocyte organization could include volumetric analysis as both

GLCM and MF can be computed for 3-D volumes of interest.

We also note a practical limitation with the experimental setup used in this study where the

imaging technique relies on synchrotron radiation. This restricts its use to imaging ex vivo

specimens such as those used in the study, rather than in vivo exams of the entire cartilage

tissue, since the radiation source is stationary. Future research will be necessary to

investigate the possibility of implementating PCI methods with high-brilliance and high-

energy compact X-ray sources that are currently under development [44]-[46]. These

technologies currently show significant promise for transferring PCI-CT imaging from

synchrotron radiation facilities, which offer highly collimated, high fluence, and partially

coherent X-rays, to a clinical environment. Another advantage of PCI-CT is its promising

potential to save radiation by employing higher energy X-rays for the image acquisition

which may be associated with a lower effective radiation dose for the patient [13]. The

results of our proof-of-principle study demonstrate the potential role that PCI-CT could play

in OA detection, which suggests that an implementation of an adapted PCI setup in one of

these new sources could have a great impact in OA diagnosis.

Nagarajan et al. Page 9

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2014 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



V. Conclusion

This study introduced an automated and nonsubjective computer-aided diagnosis approach

in the context of PCI-CT for purposes of characterizing chondrocyte organization observed

in the radial zone of the cartilage matrix of ex vivo human patella specimens. Our results

suggest that textural characterization with topological features such as Euler characteristic or

second-order statistical features such as correlation can provide high-classification

performance in distinguishing between healthy and osteoarthritic ROIs annotated in this

region. We hypothesize that such texture features could serve as PCI-based diagnostic bio-

markers for evaluation and monitoring of OA.
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Fig. 1.
Coronal reconstructions of healthy (top) and osteoarthritic (bottom) cartilage specimens as

visualized by PCI-CT. The boxes are representative of ROIs annotated in this study.
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Fig. 2.
Illustration of MF. The upper and middle rows correspond to normal and osteoarthritic ROIs

as shown in Fig. 1. The ROIs on the far left are binarized for five thresholds. In the bottom

row, the three MF features—area, perimeter, and Euler characteristic, are plotted as a

function of the threshold for the healthy (gray) and osteoarthritic (black) ROIs; the subset of

the five thresholds (of 20) used to create the binary images are marked as vertical-dotted

lines. These curves depict the morphological properties of the binary images and distinguish

between healthy and osteoarthritic patterns.
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Fig. 3.
Comparison of classification performance achieved with GLCM when different interpixel

distances (d) are used for computation of features. For each distribution, the central mark

corresponds to the median and the edges are the 25th and 75th percentile. The best results

are observed for correlation when d = 1.
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Fig. 4.
Comparison of classification performance achieved with the MF when different thresholds

(t) are used for computation of features. For each distribution, the central mark corresponds

to the median and the edges are the 25th and 75th percentile. The best results are obtained

with Euler characteristic for 20 thresholds; increasing the number of thresholds further did

not yield significantly better results.
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Fig. 5.
Comparison of classification performance achieved with Euler characteristic (square),

correlation (circle), and standard deviation (triangle) when extracted from ROIs of different

sizes. For each distribution, the central mark corresponds to the median and the edges are the

25th and 75th percentile. The best results are observed for the largest ROI size of 101 × 101

pixels; Euler characteristic and correlation exhibits the best performance when extracted

from such ROIs.
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Fig. 6.
Illustration of the high-dimensional feature space of MF Euler characteristic. LEFT: The two

corridors represent the Euler characteristic feature distribution for healthy (gray) and

osteoarthritic (black) ROIs. Each corridor is enclosed by the standard 25th and 75th

percentile as a function of the threshold; the solid lines represent the median. RIGHT: 2-D

representation of the Euler characteristic feature space using the first two principal

components computed from principal component analysis (PCA). As seen here, the Euler

characteristic provides suitable discrimination between healthy and osteoarthritic ROIs.
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TABLE 1

Comparison of Classification Performance (Mean AUC ± std) Achieved With Statistical Moments, GLCM

Features and MF.

Technique Feature AUC

Minkowski Functionals Area 0.67 ± 0.06

Perimeter 0.94 ± 0.08

Euler Characteristic 0.94 ± 0.07

GLCM Absolute Value 0.78 ± 0.12

Entropy 0.57 ± 0.04

Contrast 0.78 ± 0.13

Energy 0.59 ± 0.06

Correlation 0.93 ± 0.07

Homogeneity 0.76 ± 0.12

Statistical Moments Mean 0.55 ± 0.04

Std 0.66 ± 0.06

Mean & Std 0.62 ± 0.07

The best results (bold) are obtained with Euler characteristic (MF), Perimeter (MF), and correlation (GLCM).
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