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Abstract

Growth competition assays have been developed to quantify the relative fitness of HIV-1 mutants.

In this article, we develop mathematical models to describe viral/cellular dynamic interactions in

the assay system from which the competitive fitness indices or parameters are defined. In our

previous HIV-viral fitness experiments, the concentration of uninfected target cells was assumed

to be constant (Wu et al., 2006). But this may not be true in some experiments. In addition, dual

infection may frequently occur in viral fitness experiments and may not be ignorable. Here, we

relax these two assumptions and extend our earlier viral fitness model (Wu et al., 2006). The

resulting models then become nonlinear ODE systems for which closed-form solutions are not

achievable. In the new model, the viral relative fitness is a function of time since it depends on the

target cell concentration. First, we studied the structure identifiability of the nonlinear ODE

models. The identifiability analysis showed that all parameters in the proposed models are

identifiable from the flow-cytometry-based experimental data that we collected. We then

employed a global optimization approach (the differential evolution algorithm) to directly estimate

the kinetic parameters as well as the relative fitness index in the nonlinear ODE models using

nonlinear least square regression based on the experimental data. Practical identifiability was

investigated via Monte Carlo simulations.
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1. Introduction

Replicative fitness is the ability of a virus to replicate under the selective forces present in its

environment. HIV-1 replication fitness in vivo is postulated to influence which variants

predominate in a quasispecies, as well as affecting treatment responses and disease

progression (Quinones-Mateu et al., 2000; Nijhuis et al., 2001; Quinones-Mateu and Arts,

2001). A critical question is whether assays that measure HIV-1 replication fitness in vitro

correlate with fitness in vivo, and whether such assays can be used to predict prognosis or

response to therapy. If so, fitness assays might be used to determine how aggressively to

initiate treatment and the optimal time to switch a failing regimen.

Viral fitness is one of the most important areas in HIV research because of its potential

prognostic value for antiviral outcome. A common element to all fitness assays is the

comparison of the mutant or “test” virus to a reference strain (usually a drug-sensitive,

“wild-type” strain). Assays to measure HIV-1 replication fitness in vitro can differ in a

number of ways, including use of growth competition versus parallel infections, use of

whole virus versus recombinant virus assays, use of multiple-cycle versus single-cycle

assays, and use of a reporter gene versus a viral gene or gene product to monitor virus

growth (Nijhuis et al., 2001; Quinones-Mateu and Arts, 2001). Parallel assays are generally

less labor-intensive than growth competition assays, although they suffer from greater

experimental variability and reduced sensitivity compared to growth competition assays.

Growth competition assays are generally considered to be the gold standard for measuring

HIV-1 replication fitness in vitro. They are more sensitive to subtle differences in fitness

than parallel infections, and are not subject to artifact due to differences in culture conditions

(Collins et al., 2004; Prado et al., 2004).

It is critical to develop mathematical models and statistical methods to support viral fitness

assay development and to estimate viral fitness parameters. Several studies have

investigated the relative growth kinetics of two virus variants growing in competition either

in vivo (Goudsmit et al., 1996, 1997) or in vitro (Holland et al., 1991; Croteau et al., 1997;

Harrigan et al., 1998; Martinez-Picado et al., 1999). In these studies, a measure of fitness is

typically derived by plotting the ratio of the two competing variants on a logarithmic scale

against time and estimating the linear slope of this graph as the measure of fitness. Goudsmit

et al. (1997) and Marée et al. (2000) introduced a new definition of relative fitness as the

ratio of the production rates of two viral strains based on a viral dynamic model. Bonhoeffer

et al. (2002) presented a new approach called the growth-corrected method (GM) to estimate

the production rate ratio between two virus variants using time-series data (multiple data

points). However, the definition of relative fitness in these papers is inconsistent with the

conventional definition of relative fitness in population genetics and their methods are not

efficient and accurate (Wu et al., 2006). We have designed a multiple-cycle, recombinant-

virus, growth competition assay to measure relative viral fitness in cell culture using flow

cytometry (Dykes et al., 2006). We also developed mathematical models and statistical

methods to estimate the viral fitness parameters based on experimental data (Wu et al.,

2006). From the population genetics perspective, we clarified the confusion and corrected

the inconsistency in the definition of relative fitness in the HIV-1 viral fitness literature.

Calculation and estimation methods based on two data points and multiple data points were
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proposed and were carefully studied (Wu et al., 2006). A user-friendly web-based

computational tool of our methods has also been developed (http://www.urmc.rochester.edu/

bstools/vfitness/virusfitness.htm).

However, in our previous work (Wu et al., 2006), we assumed that the target (uninfected)

cell concentration is constant during an experiment and that dual infection of cells does not

occur. In this case, a closed-form solution could be obtained from the proposed viral

dynamic model. However, these key assumptions may not be true in many experiments.

Recent work has shown that multiple infections of cells occurs far more frequently than

previously thought both in vivo (Jung et al., 2002; Levy et al., 2004) and in vitro (Levy et

al., 2004; Dang et al., 2004; Chen et al., 2005). Mathematical models of multiple infections

have also been developed (Dixit and Perelson, 2004, 2005). In this paper, we extend our

mathematical model of experiments in vitro to include dual infection. The assumption of

constant uninfected cell concentration is also relaxed. In this case, there is no closed-form

solution to the proposed model, and we use nonlinear least squares (NLS) methods

combined with numerical solutions of the proposed nonlinear ordinary differential equation

(ODE) models to estimate kinetic parameters and the relative fitness. Interestingly, in this

case, the relative fitness is not a constant parameter; instead, it varies with the concentration

of uninfected target cells. We propose this new concept and methods to estimate the varying

relative fitness.

In Section 2, we briefly introduce our viral fitness experiment. We extend our earlier viral

fitness model to accommodate varying concentrations of uninfected target cells in Section 3.

In this case, the relative viral fitness is also a varying quantity. In Section 4, we further

generalize our model to incorporate dual infections. We adopt a technique from engineering

(Xia, 2003; Xia and Moog, 2003; Jeffrey et al., 2005) to study the structure identifiability of

the proposed nonlinear ODE models in Section 5. In Section 6, a global optimization

approach (the differential evolution algorithm) is employed to fit the nonlinear ODE models

to experimental data and obtain the NLS estimates of kinetic parameters and the relative

fitness. Monte Carlo simulations are performed to study practical identifiability and to

evaluate the performance of parameter estimates in Section 7. We conclude the paper with a

discussion of results in Section 8.

2. Growth competition assay

The design and evaluation of a growth competition assay in which viral variants are detected

using flow cytometry is described in detail in Dykes et al. (2006). We designed two vectors,

pAT1 and pAT2, that are identical to the lab strain pNL4-3, except that they have the mouse

Thy1.1 or Thy1.2 genes cloned in place of nef, respectively. The Thy1.1 and Thy1.2 proteins

differ by only one amino acid and are expressed on the surface of infected cells. A site

directed mutant of RT, K103N, that is resistant to the non-nucleoside reverse transcriptase

inhibitor efavirenz, and has been shown to have a mild reduction in replication fitness was

cloned into pAT2 to produce pAT2K103N (Dykes et al., 2006; Koval et al., 2006). Wild-

type and mutant virus stocks were produced as previously published (Dykes et al., 2006),

and the two variants were used to co-infect PM1 cells, a T cell line in an equal ratio. At

hours 70, 94, 115, 139, and 163, half the culture was removed and replaced with fresh
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media. The number of viable cells per mL of culture was determined before cells were

removed by staining with trypan blue and counting in a hemocytometer. Cells removed

during this process were singly and dually stained with the Thy1.1 (1:200 dilution) and

Thy1.2 (1:100 dilution) antibodies (BD Biosciences). Cells were analyzed using a

FACScaliber flow cytometer (Becton Dickinson), as previously published (Dykes et al.,

2006). The number of viable wild-type or mutant infected cells was calculated by

multiplying the total number of viable cells in the original culture by the percent of wild

type or mutant as determined by flow cytometry. Under these conditions, approximately

0.03%, 0.05%, 1.08%, and 20.63% of cells were infected with both viruses at 94, 115, 139,

and 163 hours, respectively.

3. Viral fitness models ignoring dual infections

Wu et al. (2006) proposed a five-compartment model to describe viral fitness experiments in

vitro. We make a minor modification to the model in Wu et al. (2006) by including

proliferation of infected cells. The new model is written as follows:

(1)

where T, Tm, Tw, M, and W are numbers of uninfected target cells, cells infected by mutant

virus, cells infected by wild-type virus, mutant virus, and wild-type virus, respectively.

Parameters (λ, λw, λm) represent the proliferation rates of uninfected target cells, cells

infected by wild-type virus, and cells infected by mutant virus. Note that λw, and λm were

assumed to be zero in Wu et al. (2006). Parameters  and  are the respective infection

rate constants that describe the rates at which T cells become infected by M and W; Nm and

Nw are the respective number of new virions produced from each of the infected cells during

their life-time; parameters δ, δm and δw are the respective death rates of T, Tm and Tw; cm

and cw are the respective clearance rates of mutant and wild-type virions.

The model assumes that both viral population densities are proportional to their

corresponding infected cell densities. The dynamics of free virus are typically fast in

comparison with the infected cells (Quinones-Mateu and Arts, 2001; Prado et al., 2004).

This generally implies that a quasi-steady state is rapidly established. We, therefore, do not

explicitly distinguish between free virus and infected cell load. Thus, we write the quasi-

steady-state equations for virus as follows

(2)

where θm = Nm δm/cm and θw = Nw δw/cw, and reduce model (1) to the following form
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where  and . Clearly parameters, λ and δ, λw, and δw, and λm and δm,

are not identifiable in the above equations. We define ρ = λ − δ, ρw = λw − δw, and ρm = λm −

δm, and then we rewrite the above model as

(3)

Wu et al. (2006) performed simulation studies and showed that the approximation of model

(1) by model (3) is quite reasonable.

In Wu et al. (2006), it was further assumed that the uninfected cell concentration T is

approximately constant during the one week experiment. Then a closed-form solution of Tm

and Tw to Eq. (3) can be obtained. Some kinetic parameters and viral fitness parameters can

be estimated from the closed-form solution using linear regression techniques. However, the

assumption of constant uninfected cell concentration T may not be realistic in many

experiments. Fortunately, our flow-cytometry based growth competition assay can quantify

the concentrations of uninfected cells (T), wild-type virus infected cells (Tw) and mutant

virus infected cells (Tm) at distinct time points during an experiment. This allows us to

estimate the kinetic parameters in Eq. (3) directly by fitting the data to the nonlinear ODE

model (3) using the nonlinear least squares (NLS) method.

If we can estimate all kinetic parameters in model (3), the pure reproduction rates of the

mutant and wild-type viruses can be defined as

(4)

respectively. Note that the uninfected cell concentration (T) in Eq. (4) varies during an

experiment, but can be measured at different time points. In Eq. (4), it can be replaced by its

measurements directly or by its predicted values from the regression analysis using model

(3) directly.

We can define d, the log-relative fitness (LRF) of mutant virus as:

(5)

The relative fitness (RF) of mutant virus versus the wild-type virus at time t is defined as
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(6)

where t = t1, t2,…, tn are measurement times and s is the selection coefficient.

After we obtain the parameter estimates (k̂
m, k̂

w, ρm̂, ρ̂
w, ρ̂) from fitting the experimental

data, we can also get the fitted value for T(t), say, T̂(t). Then the estimated LRF and RF are

(7)

(8)

Thus, we can see that the relative fitness is not constant, instead it is a function of the

concentration of uninfected cells (T), which varies during the experiment. Consequently, the

relative fitness is also a function of time. The relative fitness (RF) during an experiment can

be summarized by the average of the relative fitness (ARF) estimates at different time

points,

(9)

If T(t) is a constant over time, the ARF reduces to the constant relative fitness definition

introduced in Wu et al. (2006).

4. Viral fitness models with dual infections

For both the recombinant-virus assay and the whole-virus assay, we cannot completely rule

out the presence of dually infected cells. Sometimes the dual infection rate is very small and

we can ignore it. But sometimes it may be too large to simply ignore. Thus, we develop

mathematical models and statistical methods to estimate viral fitness parameters in the

situation of nonignorable dual infection. The mathematical model can be specified as

(10)

where T, Tm, Tw, and Tmw are numbers of uninfected cells, cells infected by mutant virus,

cells infected by wild-type virus, and cells infected by both mutant and wild-type viruses

(dual-infection); M, W, and R are mutant viruses, wild-type viruses, and viruses produced by

dually-infected cells, respectively. Recall that each HIV-1 virion contains two RNA

molecules. Thus, virions produced by dually infected cells may contain two wild-type
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RNAs, two mutant RNAs, or one wild-type and one mutant RNA molecule (heterozygous

virus). For simplicity, we shall ignore the possibility of recombinant viruses being produced

as we are studying a short-term assay. The impact of recombination in vivo has been studied

by others (Fraser, 2005). Note that mutant and wild-type RNAs may not be produced at

equal levels within dually infected cells, or be packaged into virions at equal efficiency.

Thus, we assume Tmw produce a fraction pm of viruses with only mutant RNA, a fraction pw

of viruses with only wild-type RNA and a fraction (1 − pm − pw) of viruses with

heterozygous RNA. The viruses with heterozygous RNA can infect target cells and turn the

target cells into Tmw directly. The “mutant” and “wild-type” viruses produced by dually

infected cells are not included in the M and W equations, as these virions may contain a

mixture of proteins produced by the wild-type and mutants provirus DNA in the dually

infected cells. For this reason, these virions may infect cells at different rates than the true

mutant and wild-type virions and are kept track separately. Parameters  are

infection rates of mutant virus, wild-type virus, and virus produced by dually infected cells,

respectively. Parameters (λ, λm, λw, λmw) represent the proliferation rate of T, Tm, Tw, and

Tmw. Parameters δ, δm, δw, and δmw are the death rates of T, Tm, Tw, and Tmw and  and 

are dual infection rates. Let ρ = λ − δ, ρm = λm − δm, ρw = λw − δw and ρmw = λmw − δmw be

the pure growths rates of T, Tm, Tw, and Tmw cells which are the differences between the

corresponding proliferation rate and death rate. If the proliferation rate is zero, then the

death rate of the corresponding cells can be estimated. Otherwise we cannot distinguish

between the proliferation rates and the death rates. Parameters (Nm, Nw, Nmw) represent the

number of virions produced from each of Tm, Tw and Tmw cells during their life time. Other

notations are similar to model (1). In this model, we do not consider cells dually infected by

the same virus population, and we ignore cells infected with more than two viruses.

However, variations of model (10) that incorporate these effects may easily be investigated.

Note that we have not included recombination in the model, because previous studies have

demonstrated that it is very unlikely to be detected under the conditions present in our

assays. First, Levy et al. (2004) demonstrated that recombination rates drop dramatically

with the frequency of infected cells. Secondly, recombinant virus does not result from cells

dually infected with each parental strain, and HIV recombination requires that a

heterozygous virus infects the cell (Hu and Temin, 1990). We have also evaluated the

concordance between mutant prevalence as measured by bulk sequence analysis and the Thy

marker, and found that they give very similar results under experimental conditions that are

the same as we have used here (Dykes et al., 2006). This suggests that recombination is not

frequent enough to disrupt the linkage between the Thy marker and RT for the dominant

strains during the time course of the experiment. We do acknowledge that low-frequency

recombinant events could have an impact on replication fitness over longer time frames, if

the resultant recombinant mutant has substantially different fitness than either parent. This,

however, is not the case in these growth competitions between a wild-type and drug resistant

mutant that differ at only a single codon.

If we make the same assumption as in model (1), that the infected cell densities are

proportional to their corresponding virus densities, then we can simplify model (10) to
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(11)

where (km, kw, kR) are new parameters that are re-parameterized from . In the

second equation of (11), pm Tmw are basically mutant viruses while in the third equation, pw

Tmw are basically wild-type viruses. Thus, the pure reproduction rates of mutant and wild-

type viruses can be defined as

(12)

respectively.

As in the case without dual infection, we define the log-relative fitness (LRF) of mutant

viruses versus wild-type virus as:

(13)

The relative fitness (RF) of mutant viruses versus the wild-type viruses can be defined as

(14)

Thus, the relative fitness of mutant virus versus wild-type virus depends on three factors:

their pure growth rate difference (ρm − ρw), infection rate difference (km − kw), and the dual

infection rate difference [qw Tm(t) − qm Tw(t)].

Note that our flow-based assay can measure the concentrations of T, Tm, Tw, and Tmw, where

Tmw is the concentration of cells infected by both mutant and wild-type viruses or cells

infected by viruses with heterozygous RNA, but our assay cannot distinguish between these

two categories of infected cells. However, if we can estimate all the kinetic parameters in

Eq. (11), we can define the viral fitness of “heterozygous” viruses using the first term of the

fourth equation in (11), i.e., define the pure reproduction rate of heterozygous viruses as

Thus, we can define the log-relative fitness (LRF) and the relative fitness (RF) of

heterozygous viruses versus the wild-type viruses as

(15)
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(16)

respectively. Similarly we can define the relative fitness of heterozygous viruses versus the

mutant viruses. This definition of the relative fitness of heterozygous viruses, as well as

model (10), ignores the production of heterozygous viruses by direct infection of a target

cell by a mutant and a wild-type virus simultaneously. In model (10), we have assumed one

virus infects first and then the singly infected cell is infected a second time with a different

type of virus to become dually infected. In the definition of relative fitness of heterozygous

virus, we also ignore the term (qm + qw)Tw Tm in the last equation of model (11) that

corresponds to these types of sequential infections. Although this term contributes to the

amount of Tmw, we consider it as the “replenishment” of Tmw from an external source

instead of direct reproduction of Tmw. After we obtain the parameter estimates and the

estimates of T(t), Tm(t), and Tw(t), we can get the estimates of the LRF and RF by plugging

these estimates in formulas (13)-(16).

5. Identifiability analysis

Identifiability (observability) is important for biomedical system modeling. Consider a

general nonlinear system,

(17)

where x ∈ Rn is the state variable vector, u ∈ Rm the input vector, y ∈ Rp the output vector,

and θ ∈ Rq the parameter vector. The system Σθ is identifiable if the parameter θ can be

uniquely determined from the input u and the corresponding output y. See Ljung and Glad

(1994), Xia and Moog (2003), and Jeffrey et al. (2005) for a more detailed introduction of

identifiability concepts.

The identifiability problem for linear systems has been well addressed, especially for

compartmental models (Audoly et al., 1998). However, for nonlinear ODE models, a general

algorithm for global identifiability analysis needs to be further investigated. Techniques

based on differential algebra have been successfully applied to low dimensional problems

(Ljung and Glad, 1994; Audoly et al., 2001). For a formal introduction to differential

algebra, the reader is referred to Ritt (1950). These techniques are used to address

differential polynomial problems to which most biomedical dynamic models belong.

However, the differential algebra methods come with high computational complexity. The

efficiency of differential algebra algorithms needs to be improved. Xia and Moog (2003)

proposed a simple alternative method based on the implicit function theorem, which has

been successfully applied to HIV dynamic models (Xia and Moog, 2003; Jeffrey et al.,

2005). In this study, the procedure described in Xia and Moog (2003) and Jeffrey et al.

(2005) is used to analyze the identifiability of the proposed viral fitness models.

Considering the model (11) with the assumption that parameters pm and pw are known, i.e.,

pm = pw = 0.25 and 1 − pm − pw = 0.5, we have
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(18)

In our experiments, all state variables (T, Tm, Tw, Tmw) are measurable, which gives the

outputs of the system as

(19)

By taking derivatives up to the 4th order of the first equation of Eq. (18), the four parameters

(ρ, km, kw, kR) are found to be identifiable if

(20)

Since the 4th order derivative of y1 = T is needed to obtain the equation above, at least five

measurements are necessary to evaluate . Similarly, the parameters (ρm, qm) are

identifiable if

(21)

and the parameters (ρw, qw) are identifiable if

(22)

Finally, if (ρ, km, kw, kR, ρm, qm, ρw, qw) are identifiable, then ρmw is identifiable if

(23)

To satisfy Eq. (23), the measurements of Tmw cannot be zero.

Note that the basic assumptions of the above identifiability analyses are that the model

structure is absolutely accurate and that the measurements are exact (no measurement error),

which is not realistic in practice. The practical identifiability with measurement errors is

studied via Monte Carlo simulations in Section 7. However, this analysis provides important

information on the necessary condition for a model to be identifiable and the minimum

number of measurements needed. Similar techniques can also be used to analyze the
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identifiability of models (3) and (11). We summarize the identifiability analysis results for

the three models in Table 1.

6. Model fitting and parameter estimation

Parameter estimation can be based on the maximum likelihood (ML) principle or the least

squares (LS) principle. The LS method, which is the focus of this paper, is robust against the

distribution assumption of measurement errors and is equivalent to the ML method if the

measurement errors are normally distributed and independent with a common variance. The

LS estimates can be obtained by minimizing the objective function, i.e., the sum of squared

residuals of all measurements. There are two main categories of minimization methods for

solving the LS problem: gradient methods and direct search methods (or global optimization

methods). The gradient methods, such as the Levenberg–Marquardt method and the Gauss–

Newton method, can efficiently search for local minima based on the Jacobian or Hessian

matrix of the objective function. For details of gradient methods and their applications to

ODE parameter estimation, the reader is referred to Nocedal and Wright (1999) and

Englezos and Kalogerakis (2001).

The gradient methods perform well only if the initial guess of the solution is very close to

the true solution and the objective function behaves well. However, gradient methods can be

easily trapped in the local minima if the objective function has multiple local minima or is

not differentiable. This defect of gradient methods can be overcome by direct search

methods such as the Luus–Jaakola method (Luus and Jaakola, 1973). For instance, Linga et

al. (2006) compared the Luus–Jaakola method to the Gauss–Newton method for parameter

estimation of ODE models. They found that the solutions produced by the Luus–Jaakola

method and the Gauss–Newton method can be very different for the same problem and the

objective function value achieved by the Luus–Jaakola method is much smaller than that

found by the Gauss–Newton method.

Various direct search or global optimization methods are currently available. Moles et al.

(2004) compared the performance and computational cost of seven global optimization

methods, including the Luus–Jaakola method and the Differential Evolution (DE) method

(Storn and Price, 1997). Their results indicate that the DE method outperforms the other six

methods with a medium computational cost. In addition, our preliminary results (not shown)

indicate that the gradient methods, including the Gauss–Newton method, the Levenberg–

Marquardt method, and the quasi-Newton method failed to obtain good parameter estimates

even if the initial guess of the parameter values is just 5% away from the true parameter

values. So, for this problem, a global optimization method such as the DE method should be

employed. Note that global optimization methods are very computationally intensive, but

that computational cost can be improved by combining stochastic global optimization

methods and deterministic methods such as the scatter search method proposed by

Rodriguez-Fernandez et al. (2006).

For our study, the DE method is employed to solve the LS problem and to estimate the

parameters in the proposed HIV-viral fitness models. For details of the DE algorithm the

reader is referred to Storn and Price (1997). The basic idea of the DE method is to use the

Miao et al. Page 11

Bull Math Biol. Author manuscript; available in PMC 2014 June 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



concept of biological evolution theory to design the search strategy. Within a region

specified by constraints in the parameter space, a number of parent vectors are randomly

generated, then the next generation of vectors (child vectors) are generated from parent

vectors according to some strategies similar to chromosome pairing. For different strategies,

different numbers of groups of randomly shuffled parent vectors are involved in generating

one child vector. If the fitness (the objective function) of child vectors is better than the

fitness of their parents, the parents are replaced by children, and this procedure is repeated

until convergence is attained. We implemented the DE algorithm in both C++ and

MATLAB®, based on a MATLAB® prototype developed by Price et al. (2005). The ODE

system is solved using a 4th order Runge–Kutta scheme. Our results suggest that the

computational time of the C++ implementation is less than 10% of the MATLAB®

implementation for the same problem.

In this study, the number of infected and uninfected T cells was rmeasured at 5 time points

with three replicates at each time point (Table 2). The cell number in Table 2 refers to the

total number of cells in the culture vessel. The measurement models are

(24)

where i = 1, 2,…, 5 and {ε1(ti), ε2(ti), ε3(ti), ε4(ti)} are assumed to be independent with mean

zero and common variance σ2. If they are not independent with heterogeneous variance, the

weighted (generalized) least squares method can be used. Based on the identifiability

analysis (Table 1) in the previous section, all the parameters are theoretically identifiable.

Thus, we fitted the dual infection model (18) to the experimental data to estimate 9 kinetic

parameters and 4 ODE initial conditions simultaneously using the aforementioned

differential evolution (DE) method.

Since the measured number of cells is on the order of 107, we took a log transformation of

the experimental data in model fitting in order to stabilize the computational algorithm.

Also, note that the five parameters (km, kw, kR, qm, qw) have to be positive to make

biological sense. Thus, we also used a natural log transformation for these parameters to

accommodate this constraint. Confidence intervals of all the estimated parameters were

obtained using the bootstrap method (Shao and Tu, 1995; Davison and Hinkley, 1997). The

search regions for all parameters (ρ, ρm, ρw, ρmw, km, kw, kR, qm, qw) are given in Table 3.

The fitted results for the logarithm of the numbers of infected and uninfected cells are

plotted in Fig. 1 with all the experimental data superimposed on the fitted curves, which

indicates good agreement between the model prediction and the experimental data.

Note that the number of uninfected T cells decreased from hour 139 to 163. To confirm this

decrease is due to infection and is not a problem with the culture system, a control

experiment using uninfected cells was done using the same five sampling time points (hours

70, 94, 115, 139, and 163), as listed in Table 2. The total cell number in the culture vessel

was 1.51 × 108 at hour 139 and 3.52 × 108 at hour 163. Thus, the number of uninfected T

cells at hour 163 in the control group is much greater (>300%) than the total number of cells

(infected and uninfected) in the infection experiments at hour 163. This comparison suggests
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that the culture did not approach or exceed its saturation density toward the end of the

experiment, and the slow down of the growth rate of uninfected cells is due to viral infection

and not growth saturation or other culture effects.

The parameter estimates with their bootstrap confidence intervals for model (18) are given

in Table 3. From Table 3, we can see that the infection rates of the wild-type virus and

mutant virus, kw and km, are very similar, but the infection rate of heterozygous virus (kR) is

about 3-fold smaller than kw and km, although the confidence intervals of kw, km and kR

significantly overlap with each other. Our simulation studies in the next section show that

the estimate of kR is less reliable than those of kw and km. The dual infection rate from two

different routes, qw and qm, are also similar. The estimate of the pure growth rate of

uninfected target cells, ρ = λ − δ, is reasonable and is positive which indicates that the

proliferation rate (λ) is larger than the death rate (δ) during the experiment. However, the

estimates of the pure growth rates of infected cells, ρm, ρw, and ρmw, are not reliable since

their confidence intervals include zero. This may indicate that the parameters, ρm, ρw, and

ρmw, are too small to be reliably estimated from the measurements with error although they

are theoretically identifiable. Their practical identifiability is further investigated via Monte

Carlo simulations in the next section.

Based on the fitted model, the log-relative fitness d(t) and relative fitness RF(t) as well as

their corresponding 95% confidence intervals are calculated at the five time points of

experimental measurements for both mutant virus versus wild-type virus and heterozygous

virus versus wild-type virus, respectively, using the formulas (13)-(16). These results are

given in Table 4 and plots of d(t) and RF(t) versus time t are shown in Fig. 2. From Table 4

and Fig. 2, we see that the relative fitness (RF) of mutant virus versus the wild-type virus

was increasing from hour 70 to 139, but decreased at hour 163, while the relative fitness

(RF) of heterozygous virus versus the wild-type virus was decreasing initially from hours 70

to 139, and then increased on hour 163. However, the variation of RF(t) of both mutant virus

and heterozygous virus is relatively small (Table 4). The estimated time-varying trend may

not be statistically significant. This is presumably because the concentration of uninfected

target cells, T (t), is approximately constant in our experiment (Fig. 1) and other time-

varying terms in RF formulas (14) and (16) are relatively small compared to the term related

to T (t). The results also indicate that the heterozygous virus is less fit than the mutant virus.

For the purpose of comparison, we ignored the dual infection and fitted the 3D viral fitness

model (3) to the same experimental data (Table 2). The parameter estimates and their

corresponding bootstrap confidence intervals are given in Table 5. Comparing the results

from the 3D model in Table 5 to those of the 4D model in Table 2, we find that the estimates

of parameters (ρ, km, kw) are similar between the two models. But the estimates of the two

parameters, ρm and ρw, may not be reliable and even the sign of the estimates of ρw from the

two different models are different. These results are consistent with our practical

identifiability analyses in the next section.
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7. Simulation studies and practical identifiability

To study the practical identifiability and sensitivity of the kinetic parameters in the ODE

models when the state variables are measured with errors, we conducted intensive Monte

Carlo simulations and numerical sensitivity analyses based on the 4D model (18). In the

simulation studies, we used the estimated parameter values from the experimental data in

Section 6 and generated the simulation data sets based on the ODE model (18). The

measurement errors are assumed to be identically and independently distributed (iid) with a

normal distribution N (0, σ2), where we took σ to be 0%, 5%, and 30% of the average

logarithm number of all measurements, respectively, in our simulations. To study the large

sample behavior of our estimates, we generated 1,000 replicates at each of 5 experimental

time points for each simulation data set (compared to only 3 replicates at each time point in

our current experiment). We generated 1,000 simulation data sets for each of the three

different measurement error levels (σ = 0%, 5%, and 30%), respectively. We define the

average relative estimation error (ARE) as , where θ̂
j

is the estimate of parameter θj from the j th simulation data set and N = 1,000 is the total

number of simulation runs. We use the ARE to evaluate the parameter estimates. The same

search regions for the real experimental data fitting in Table 3 are employed in our

simulation studies.

The AREs of all 9 parameters in model (18) for three measurement error levels (0%, 5%,

and 30%) are reported in Table 6. Parameters (km, kw, kR, qm, qw) are forced to be positive

by taking a log-transformation in the estimation. Parameters (ρ, ρm, ρw, ρmw) can be positive

or negative, depending on whether the proliferation rate is larger than the corresponding

death rate. In Table 6, we also report the percentages of simulation runs that did not

correctly identify the sign of the parameters (sign change). From Table 6, we can see that

when there is no measurement error (σ = 0%), all the 9 parameters can be well identified

(the maximum ARE is 0.4%), which confirms our theoretical identifiability analysis in

Section 5. This also indicates that our parameter estimation method converges to the true

parameter values when the sample size is large enough and the measurement error is small

enough. However, as the measurement error increases to 5% or 30%, the ARE of parameter

ρmw rapidly increases to 556% or 2062%, respectively, and the sign of parameter ρmw cannot

be correctly identified in about 50% of simulation runs. The ARE of ρw also increases to

39% and 201%, while the ARE of kR increases to 28% and 106%, respectively. When the

measurement error is large (σ = 30%), the sign of parameter ρw cannot be correctly

identified in 43% of simulation runs. The AREs of parameters (qw, ρm) are reasonable for

the case of small measurement error (σ = 5%), but increase to 49% and 59% for the large

measurement error case (σ = 30%), respectively. The AREs for other four parameters (ρ, km,

kw, qm) are reasonable for all cases.

It is also important to investigate the reliability of parameter estimation under our current

experimental conditions. The estimated measurement error level from our experimental data

is σ = 1.5% of average measurements. We repeated the above simulations using this actual

measurement error level and studied the effect of using different numbers of time points and

a different number of replicates at each time point. Besides the standard 5 time points (hours
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70, 94, 115, 139, and 163) as in our current experiment, we also performed the simulations

for 9 time points (hours 70, 82, 94, 106, 115, 127, 139, 151, and 163). We used the number

of replicates at each time point as 3, 6, 9, and 100, respectively. Note, if the number of

replicates at each time point is 3, 6, or 9, this could be done in a real experiment, but 100

replicates at each time point may not be realistic and we only used it to evaluate the

performance of our estimates in a large sample with an actual measurement error level. We

report the simulation results of all cases (the AREs and sign change) in Table 7.

From Table 7, one can see that the ARE of parameter ρmw ranges from 410% to 2130% and

the sign change ranges from 36% to 56%. This indicates that the ρmw is practically

unidentifiable. Considering the practical case of 9 time points and 9 replicates for each time

point, the ARE of parameter ρw is 86% and the sign change is 17%, which indicate that it

may be difficult to accurately identify the parameter ρw unless the sample size is

unrealistically large (say, 100 replicates for each time point). For parameter kR, the AREs

are also large (ranging from 62% to 108%) for practical cases (the number of replicates is 3,

6, or 9). For parameters (ρm, qw), the AREs are reasonable (ranging from 22% to 38%) for

most reasonable sample sizes. The parameters (ρ, km, kw, qm) are very well identified (the

AREs ranging from 3% to 22%).

In summary, the simulation results in Table 7 suggest that if we can perform an experiment

for the sample size of 9 time points and 9 replicates at each time point, we can estimate the

four parameters (ρ, km, kw, qm) with a good accuracy (the AREs ranging from 3% to 10%).

In addition, we can estimate parameters (ρm, qw) with a reasonable accuracy (the AREs

ranging from 22% to 26%), but parameter kR can only be estimated with a large error (the

ARE is 62%). The parameter ρw is difficult to identify since its ARE is as large as 87% with

17% sign change in this largest practical sample size (9 time points and 9 replicates at each

time point). In this case, the ARE of parameter ρmw is 1190% with 49% sign change which

indicates that the parameter ρmw is practically unidentifiable. These conclusions are

consistent with those derived from the simulation results in Table 6.

To further confirm the above results and conclusions and to investigate why the estimation

error is very large for parameter estimates of ρmw, ρw, and kR even when the measurement

error is small, we numerically evaluated the Fisher information matrix FIM and the error

covariance matrix C (Seber and Wild, 1989; Rodriguez-Fernandez et al., 2006) based on our

experimental data. The FIM is

(25)

(26)

where y(ti) is the measurements of the state variables at time point ti, the θ is the parameter

vector, and V = σ2 · I4 is the variance-covariance matrix of the measurements with I4 being

an identity matrix of dimension 4. From our experimental data, we can obtain estimates of

the standard error (SE) of all parameters. For parameters ρmw, ρw, and kR:
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(27)

where SE denotes the standard error of the parameter estimates. For example, with a 30%

measurement error, σ = 4.29. Considering that the parameters ρmw, ρw, and kR are of the

order of 10−4, 10−3, and 10−10 (Table 3), respectively, the results (27) can clearly lead to a

large SE for these three parameters. These results further confirm the above conclusions.

8. Discussion and conclusion

In HIV viral fitness experiments that involve growth competition assays, the concentration

of uninfected target cells has been assumed to be constant. This was also a key assumption

in our earlier study (Wu et al., 2006). But this may not be true in some experiments. In

addition, dual infection may frequently occur in viral fitness experiments (Dang et al., 2004;

Levy et al., 2004) and may not be ignorable. In order to relax these two assumptions, we

have extended our earlier viral fitness model (Wu et al., 2006) to avoid these two

assumptions. The resulting models then become a nonlinear ODE system for which the

closed-form solutions are not achievable. In this case, the relative fitness becomes a function

of time since it depends on the cell concentrations at different time points. We studied the

structure identifiability of the nonlinear ODE models based on a technique developed in the

fields of engineering and differential algebra (Ljung and Glad, 1994; Audoly et al., 2001;

Xia and Moog, 2003; Jeffrey et al., 2005). We also employed a global optimization

approach (the differential evolution algorithm) to directly estimate the kinetic parameters in

the nonlinear ODE models using the least squares principle. Practical identifiability is

investigated via Monte Carlo simulations. We applied the proposed models and methods to

HIV viral fitness experimental data to estimate the kinetic parameters and the relative

fitness.

Xia and Moog (2003) and Jeffrey et al. (2005) proposed a system identifiability analysis

method based on the implicit function theorem. We employed their method to analyze the

identifiability of the proposed viral fitness models. We found that for the dual infection

model (18), we need at least 5 measurements for each state variable in order to identify all

the kinetic parameters. This conclusion was confirmed by our numerical results. The

identifiability analysis methods, such as those proposed by Xia and Moog (2003) and Jeffrey

et al. (2005) and other similar methods using the framework of differential algebra (Ljung

and Glad, 1994; Audoly et al., 2001), which are called structural identifiability analysis,

cannot deal with practical identifiability (Rodriguez-Fernandez et al., 2006) when the

outcome variables are measured with error. To study the practical identifiability, Rodriguez-

Fernandez et al. (2006) proposed a method based on the correlation matrix of parameter

estimates to locate the practically non-identifiable parameters. They concluded that if the

correlation of two parameters is nearly one, the two parameters are not practically

identifiable. In this paper, we investigated the practical identifiability of the proposed

models using both Monte Carlo simulations and the covariance matrix of parameter

estimates (based on the Fisher information matrix). Similar approach has been applied to an

HIV dynamic model by Wu et al. (2008). We found that although all 9 parameters in model

(18) are theoretically identifiable based on the identifiability analysis, three of them (ρmw,
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ρw, and kR) are difficult to identify practically from the experimental data; two of them (ρm,

qw) can be identified but with a large error; only four of them (ρ, km, kw, qm) can be well

identified from the experimental data as summarized in Table 8.

Parameter estimation of ODE models, especially for high-dimensional nonlinear ODEs with

a high-dimensional parameter space, remains challenging in biomedical modeling. When a

large number of unknown parameters with different orders of magnitudes need to be

estimated in a high-dimensional ODE system, it is difficult to find a global solution to the

problem of minimizing the objective function. Standard gradient methods are not suitable

for optimizing an objective function with multiple local maxima or minima since they are

easily trapped at the local solutions. Global optimization methods are needed to overcome

this problem. In this paper, we employed the differential evolution method (Storn and Price,

1997) implemented in C++ and MATLAB® to estimate the unknown parameters in the

proposed nonlinear ODE models. Note that the computational cost of the C++

implementation is much less than that of the MATLAB® implementation, which makes it

affordable on regular PCs. However, the computational efficiency of global optimization

methods may be improved in the future by considering hybrid algorithms (Rodriguez-

Fernandez et al., 2006).

Monte Carlo simulation is an important tool to validate the identifiability analysis results

and to perform sensitivity analyses for model parameters as well as to evaluate parameter

estimation methods. It also can be used to perform simulations for different experimental

scenarios so that it can provide guidance for the design of future experiments. Our intensive

simulation results indicate that measurements at 9 time points with 9 replicates at each time

point are necessary to reasonably estimate all the kinetic parameters in model (18) except for

parameters ρmw, ρw and kR, since these three parameters are very sensitive to measurement

errors. We suspect that the terms involving these three parameters may be relatively small

compared to the other terms in the same equations. Thus, an interesting research topic,

which is currently under our investigation, is to use model selection methods, such as the

Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC), to evaluate

whether these small terms should be dropped from the model. We expect to report these

results in the near future.
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Fig. 1.
Experimental data and model fitting results (○ replicate 1, □ replicate 2, and ∆ replicate 3)

and fitted curves for T (solid), Tm (dotted), Tw (dashed) and Tmw (dash-dotted).
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Fig. 2.
(a) Estimates of log-relative fitness d(t) for mutant virus versus wild-type virus and

heterozygous virus versus wild-type virus; (b) Estimates of relative fitness RF for mutant

virus versus wild-type virus and heterozygous virus versus wild-type virus.
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Table 1

Identifiability analysis of 3-D and 4-D viral fitness models

Model All parameters identifiable? Minimum number of measurements of (T, Tm, Tw, Tmw)

(3) Yes 4

(11) Yes 5

(18) Yes 5
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Table 3

Parameter estimation results for the 4D dual infection model (18)

Parameter Search region lower
bound

Search region upper
bound

Parameter estimate Bootstrap 95% confidence interval

ρ (per hour) −6.0e-02 6.0e-02 1.50e-02 1.29e-02, 1.71e-02

ρm (per hour) −2.0e-01 6.0e-02 −2.29e-02 −4.78e-02, 7.90e-03

ρw (per hour) −6.0e-02 6.0e-02 7.13e-03 −2.96e-02, 4.41e-02

ρmw (per hour) −2.0e-01 6.0e-02 5.68e-04 −3.94e-02, 1.83e-02

km (per cell per hour) 0 1.0e-08 1.51e-09 9.88e-10, 1.89e-09

kw (per cell per hour) 0 1.0e-08 1.11e-09 4.01e-10, 1.78e-09

kR (per cell per hour) 0 1.0e-08 4.36e-10 2.94e-23, 2.00e-09

qm (per cell per hour) 0 1.0e-08 4.15e-09 2.22e-09, 5.98e-09

qw (per cell per hour) 0 1.0e-08 1.10e-09 2.87e-11, 2.68e-09
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Table 4

The estimate of log-relative fitness (d) and relative fitness (RF) for mutant virus vs. wild-type virus and

heterozygous virus vs. wild-type virus for model (18). 95% confidence intervals of all estimates are listed

below each estimate using the bootstrap method

Time (hour) d(t) RF(t) d(t) RF(t)

Mutant vs. Wild Mutant vs. Wild Heterozygous vs. Wild Heterozygous vs. Wild

70 −1.66e-02 (−3.71e-02, −5.82e-03) 9.84e-01 (9.64e-01, 1.01e-00) −5.05e-02 (−1.19e-01, −1.98e-02) 9.51e-01 (8.88e-01, 9.80e-01)

94 −1.10e-02 (−2.08e-02, −9.66e-04) 9.89e-01 (9.79e-01, 9.99e-01) −6.89e-02 (−1.43e-01, −4.02e-02) 9.33e-01 (8.67e-01, 9.61e-01)

115 −4.86e-03 (−1.52e-02, 4,93e-03) 9.95e-01 (9.85e-01, 1.00e-00) −8.93e-02 (−1.73e-01, −5.86e-02) 9.15e-01 (8.41e-01, 9.43e-01)

139 −1.66e-03 (−1.92e-02, 1.50e-02) 9.98e-01 (9.81e-01, 1.02e-00) −1.01e-01 (−1.93e-01, −6.62e-02) 9.04e-01 (8.24e-01, 9.36e-01)

163 −4.13e-02 (−9.54e-02, 2.92e-02) 9.60e-01 (9.09e-01, 1.03e-00) −3.84e-02 (−9.54e-02, 4.22e-03) 9.62e-01 (9.09e-01, 1.00e-01)

Mean −1.51e-02 9.85e-01 −6.96e-02 9.33e-01

SD 1.57e-02 1.54e-02 2.60e-02 2.43e-02
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Table 5

Parameter estimation results for the 3D viral fitness model (3)

Parameter Search region lower
bound

Search region upper
bound

Parameter estimate Bootstrap 95% confidence interval

ρ (per hour) −6.0e-02 6.0e-02 1.13e-02 9.06e-03, 1.31e-02

ρm (per hour) −2.0e-01 6.0e-02 −3.25e-02 −5.59e-02, −3.61e-03

ρw (per hour) −6.0e-02 6.0e-02 −2.54e-03 −4.35e-02, 3.32e-02

km (per cell per hour) 0 1.0e-08 1.59e-09 1.11e-09, 1.93e-09

kw (per cell per hour) 0 1.0e-08 1.24e-09 6.36e-10, 1.91e-09
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Table 8

Practical identifiability of the 4D dual infection model (18)

Parameter Practical identifiability

ρmw Not identifiable

ρw Difficult to identify

kR Identifiable with a larger error

ρm, qw Identifiable with a medium error

ρ, km, kw, qm Identifiable with good precision
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