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Abstract

Growth competition assays have been developed to quantify the relative fitness of HIV-1 mutants.
In this article, we develop mathematical models to describe viral/cellular dynamic interactions in
the assay system from which the competitive fitness indices or parameters are defined. In our
previous HIV-viral fitness experiments, the concentration of uninfected target cells was assumed
to be constant (Wu et al., 2006). But this may not be true in some experiments. In addition, dual
infection may frequently occur in viral fitness experiments and may not be ignorable. Here, we
relax these two assumptions and extend our earlier viral fitness model (Wu et al., 2006). The
resulting models then become nonlinear ODE systems for which closed-form solutions are not
achievable. In the new model, the viral relative fitness is a function of time since it depends on the
target cell concentration. First, we studied the structure identifiability of the nonlinear ODE
models. The identifiability analysis showed that all parameters in the proposed models are
identifiable from the flow-cytometry-based experimental data that we collected. We then
employed a global optimization approach (the differential evolution algorithm) to directly estimate
the Kinetic parameters as well as the relative fitness index in the nonlinear ODE models using
nonlinear least square regression based on the experimental data. Practical identifiability was
investigated via Monte Carlo simulations.

Keywords

Differential evolution; Global optimization; HIV/AIDS; Model identifiability; Ordinary
differential equation (ODE); Statistical inverse problem; Viral fitness

© Society for Mathematical Biology 2008
"Corresponding author. hwu@bst.rochester.edu (Hulin Wu).



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Page 2

1. Introduction

Replicative fitness is the ability of a virus to replicate under the selective forces present in its
environment. HIV-1 replication fitness in vivo is postulated to influence which variants
predominate in a quasispecies, as well as affecting treatment responses and disease
progression (Quinones-Mateu et al., 2000; Nijhuis et al., 2001; Quinones-Mateu and Arts,
2001). A critical question is whether assays that measure HIV-1 replication fitness in vitro
correlate with fitness in vivo, and whether such assays can be used to predict prognosis or
response to therapy. If so, fitness assays might be used to determine how aggressively to
initiate treatment and the optimal time to switch a failing regimen.

Viral fitness is one of the most important areas in HIV research because of its potential
prognostic value for antiviral outcome. A common element to all fitness assays is the
comparison of the mutant or “test” virus to a reference strain (usually a drug-sensitive,
“wild-type” strain). Assays to measure HIV-1 replication fitness in vitro can differ in a
number of ways, including use of growth competition versus parallel infections, use of
whole virus versus recombinant virus assays, use of multiple-cycle versus single-cycle
assays, and use of a reporter gene versus a viral gene or gene product to monitor virus
growth (Nijhuis et al., 2001; Quinones-Mateu and Arts, 2001). Parallel assays are generally
less labor-intensive than growth competition assays, although they suffer from greater
experimental variability and reduced sensitivity compared to growth competition assays.
Growth competition assays are generally considered to be the gold standard for measuring
HIV-1 replication fitness in vitro. They are more sensitive to subtle differences in fitness
than parallel infections, and are not subject to artifact due to differences in culture conditions
(Collins et al., 2004; Prado et al., 2004).

It is critical to develop mathematical models and statistical methods to support viral fitness
assay development and to estimate viral fitness parameters. Several studies have
investigated the relative growth kinetics of two virus variants growing in competition either
in vivo (Goudsmit et al., 1996, 1997) or in vitro (Holland et al., 1991; Croteau et al., 1997;
Harrigan et al., 1998; Martinez-Picado et al., 1999). In these studies, a measure of fitness is
typically derived by plotting the ratio of the two competing variants on a logarithmic scale
against time and estimating the linear slope of this graph as the measure of fitness. Goudsmit
et al. (1997) and Marée et al. (2000) introduced a new definition of relative fitness as the
ratio of the production rates of two viral strains based on a viral dynamic model. Bonhoeffer
et al. (2002) presented a new approach called the growth-corrected method (GM) to estimate
the production rate ratio between two virus variants using time-series data (multiple data
points). However, the definition of relative fitness in these papers is inconsistent with the
conventional definition of relative fitness in population genetics and their methods are not
efficient and accurate (Wu et al., 2006). We have designed a multiple-cycle, recombinant-
virus, growth competition assay to measure relative viral fitness in cell culture using flow
cytometry (Dykes et al., 2006). We also developed mathematical models and statistical
methods to estimate the viral fitness parameters based on experimental data (Wu et al.,
2006). From the population genetics perspective, we clarified the confusion and corrected
the inconsistency in the definition of relative fitness in the HIV-1 viral fitness literature.
Calculation and estimation methods based on two data points and multiple data points were
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proposed and were carefully studied (Wu et al., 2006). A user-friendly web-based
computational tool of our methods has also been developed (http://www.urmc.rochester.edu/
bstools/vfitness/virusfitness.htm).

However, in our previous work (Wu et al., 2006), we assumed that the target (uninfected)
cell concentration is constant during an experiment and that dual infection of cells does not
occur. In this case, a closed-form solution could be obtained from the proposed viral
dynamic model. However, these key assumptions may not be true in many experiments.
Recent work has shown that multiple infections of cells occurs far more frequently than
previously thought both in vivo (Jung et al., 2002; Levy et al., 2004) and in vitro (Levy et
al., 2004; Dang et al., 2004; Chen et al., 2005). Mathematical models of multiple infections
have also been developed (Dixit and Perelson, 2004, 2005). In this paper, we extend our
mathematical model of experiments in vitro to include dual infection. The assumption of
constant uninfected cell concentration is also relaxed. In this case, there is no closed-form
solution to the proposed model, and we use nonlinear least squares (NLS) methods
combined with numerical solutions of the proposed nonlinear ordinary differential equation
(ODE) models to estimate kinetic parameters and the relative fitness. Interestingly, in this
case, the relative fitness is not a constant parameter; instead, it varies with the concentration
of uninfected target cells. We propose this new concept and methods to estimate the varying
relative fitness.

In Section 2, we briefly introduce our viral fitness experiment. We extend our earlier viral
fitness model to accommodate varying concentrations of uninfected target cells in Section 3.
In this case, the relative viral fitness is also a varying quantity. In Section 4, we further
generalize our model to incorporate dual infections. We adopt a technique from engineering
(Xia, 2003; Xia and Moog, 2003; Jeffrey et al., 2005) to study the structure identifiability of
the proposed nonlinear ODE models in Section 5. In Section 6, a global optimization
approach (the differential evolution algorithm) is employed to fit the nonlinear ODE models
to experimental data and obtain the NLS estimates of kinetic parameters and the relative
fitness. Monte Carlo simulations are performed to study practical identifiability and to
evaluate the performance of parameter estimates in Section 7. We conclude the paper with a
discussion of results in Section 8.

2. Growth competition assay

The design and evaluation of a growth competition assay in which viral variants are detected
using flow cytometry is described in detail in Dykes et al. (2006). We designed two vectors,
pAT1 and pAT2, that are identical to the lab strain pNL4-3, except that they have the mouse
Thy1.1 or Thy1.2 genes cloned in place of nef, respectively. The Thyl.1 and Thy1.2 proteins
differ by only one amino acid and are expressed on the surface of infected cells. A site
directed mutant of RT, K103N, that is resistant to the non-nucleoside reverse transcriptase
inhibitor efavirenz, and has been shown to have a mild reduction in replication fitness was
cloned into pAT2 to produce pAT2K103N (Dykes et al., 2006; Koval et al., 2006). Wild-
type and mutant virus stocks were produced as previously published (Dykes et al., 2006),
and the two variants were used to co-infect PM1 cells, a T cell line in an equal ratio. At
hours 70, 94, 115, 139, and 163, half the culture was removed and replaced with fresh
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media. The number of viable cells per mL of culture was determined before cells were
removed by staining with trypan blue and counting in a hemocytometer. Cells removed
during this process were singly and dually stained with the Thy1.1 (1:200 dilution) and
Thy1.2 (1:100 dilution) antibodies (BD Biosciences). Cells were analyzed using a
FACScaliber flow cytometer (Becton Dickinson), as previously published (Dykes et al.,
2006). The number of viable wild-type or mutant infected cells was calculated by
multiplying the total number of viable cells in the original culture by the percent of wild
type or mutant as determined by flow cytometry. Under these conditions, approximately
0.03%, 0.05%, 1.08%, and 20.63% of cells were infected with both viruses at 94, 115, 139,
and 163 hours, respectively.

3. Viral fitness models ignoring dual infections

Wu et al. (2006) proposed a five-compartment model to describe viral fitness experiments in
vitro. We make a minor modification to the model in Wu et al. (2006) by including
proliferation of infected cells. The new model is written as follows:

4L = \T — Kk}, MT — k}, WT — 4T,
Do = Ny Ttk MT — 6, T,

o = Ny Ttk WT —6,Tw, ()
o = N,y 6 Ty — ¢ M,

v = Ny 6w T — co W,

where T, T, Tw, M, and W are numbers of uninfected target cells, cells infected by mutant
virus, cells infected by wild-type virus, mutant virus, and wild-type virus, respectively.
Parameters (4, A, Ay represent the proliferation rates of uninfected target cells, cells
infected by wild-type virus, and cells infected by mutant virus. Note that A, and A, were
assumed to be zero in Wu et al. (2006). Parameters x* and i* are the respective infection
rate constants that describe the rates at which T cells become infected by M and W; Ny, and
N,y are the respective number of new virions produced from each of the infected cells during
their life-time; parameters &, &y and & are the respective death rates of T, T, and Ty,; Cn
and ¢, are the respective clearance rates of mutant and wild-type virions.

The model assumes that both viral population densities are proportional to their
corresponding infected cell densities. The dynamics of free virus are typically fast in
comparison with the infected cells (Quinones-Mateu and Arts, 2001; Prado et al., 2004).
This generally implies that a quasi-steady state is rapidly established. We, therefore, do not
explicitly distinguish between free virus and infected cell load. Thus, we write the quasi-
steady-state equations for virus as follows

M= H'm TTIL ) W= 0111 ,I‘?U » ()

where Gy = Ny dm/Cmand &, = Ny, du/Cy, and reduce model (1) to the following form
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i = N=80)T - kT, T -k, T, T,
% = (km T+>\m - 5m)T'm)
% - (kw T+Aw - 5w)Tw7

where k,,=6,, k* and k,=0,, k. Clearly parameters, A and &, Ay, and &y, and Ay and dy,
are not identifiable in the above equations. We define p=1 - 6, py = Aw = dw, aNd g = Am —
Sme and then we rewrite the above model as

dd_?; = pT—kamT_kwTwTa
dg_;n = (B T+pm) Tins ©))
Lo = (ky T4pu) T

Wau et al. (2006) performed simulation studies and showed that the approximation of model
(1) by model (3) is quite reasonable.

In Wu et al. (2006), it was further assumed that the uninfected cell concentration T is
approximately constant during the one week experiment. Then a closed-form solution of Ty,
and T,y to Eq. (3) can be obtained. Some kinetic parameters and viral fitness parameters can
be estimated from the closed-form solution using linear regression techniques. However, the
assumption of constant uninfected cell concentration T may not be realistic in many
experiments. Fortunately, our flow-cytometry based growth competition assay can quantify
the concentrations of uninfected cells (T), wild-type virus infected cells (T,,) and mutant
virus infected cells (T, at distinct time points during an experiment. This allows us to
estimate the kinetic parameters in Eq. (3) directly by fitting the data to the nonlinear ODE
model (3) using the nonlinear least squares (NLS) method.

If we can estimate all kinetic parameters in model (3), the pure reproduction rates of the
mutant and wild-type viruses can be defined as

g’nL = kT’L T+p7n7

Guw = kw T‘pr, @

respectively. Note that the uninfected cell concentration (T) in Eq. (4) varies during an
experiment, but can be measured at different time points. In Eq. (4), it can be replaced by its
measurements directly or by its predicted values from the regression analysis using model
(3) directly.

We can define d, the log-relative fitness (LRF) of mutant virus as:

d(t):ln (1+9) =9m — gw:(km - kw)T(t)_'_(pm - pw)' ®)

The relative fitness (RF) of mutant virus versus the wild-type virus at time t is defined as
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RF(@) = Vrsmespld(O=erplon —gu
exp [ (km — kw) T ()4 (pm — pw)]v

where t = ty, t,..., t, are measurement times and s s the selection coefficient.

After we obtain the parameter estimates (kn; k\,\; pn; p\,\; ,o)Afrom fitting the experimental
data, we can also get the fitted value for T(t), say, T(t). Then the estimated LRF and RF are

A

d(t):(]%m - icw)f(t)+(ﬁm - ﬁw)v (7)
RE(t)=exp d()]=czp| (km — ko) TO+(Pp — )l @

Thus, we can see that the relative fitness is not constant, instead it is a function of the
concentration of uninfected cells (T), which varies during the experiment. Consequently, the
relative fitness is also a function of time. The relative fitness (RF) during an experiment can
be summarized by the average of the relative fitness (ARF) estimates at different time
points,

1 n
ARF:E;RF(Q). ©)

If T(t) is a constant over time, the ARF reduces to the constant relative fitness definition
introduced in Wu et al. (2006).

4. Viral fitness models with dual infections

For both the recombinant-virus assay and the whole-virus assay, we cannot completely rule
out the presence of dually infected cells. Sometimes the dual infection rate is very small and
we can ignore it. But sometimes it may be too large to simply ignore. Thus, we develop
mathematical models and statistical methods to estimate viral fitness parameters in the
situation of nonignorable dual infection. The mathematical model can be specified as

AL = AT -k, MT — ki, WT — k% RT — 4T,
Do = Ny Ttk MT+pn k5 RT — ¢, W, — 6,0 T,
o = N\, Ttk WT+py, k% RT — ¢, MT,, — 6, T,,,
Tow = Ny, Tyt @ W4y MTy4(1 = P — ) kY RT — Sy Ty (10)
M = Ny Ty — € M,
DV = NuouTy — e WV,
9B = NuwSmwTmw — cr R,

where T, Ty, Tw, and Ty, are numbers of uninfected cells, cells infected by mutant virus,
cells infected by wild-type virus, and cells infected by both mutant and wild-type viruses
(dual-infection); M, W, and R are mutant viruses, wild-type viruses, and viruses produced by
dually-infected cells, respectively. Recall that each HIV-1 virion contains two RNA
molecules. Thus, virions produced by dually infected cells may contain two wild-type
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RNAs, two mutant RNAS, or one wild-type and one mutant RNA molecule (heterozygous
virus). For simplicity, we shall ignore the possibility of recombinant viruses being produced
as we are studying a short-term assay. The impact of recombination in vivo has been studied
by others (Fraser, 2005). Note that mutant and wild-type RNAs may not be produced at
equal levels within dually infected cells, or be packaged into virions at equal efficiency.
Thus, we assume T, produce a fraction py, of viruses with only mutant RNA, a fraction p,,
of viruses with only wild-type RNA and a fraction (1 — py — pw) Of viruses with
heterozygous RNA. The viruses with heterozygous RNA can infect target cells and turn the
target cells into Ty, directly. The “mutant” and “wild-type” viruses produced by dually
infected cells are not included in the M and W equations, as these virions may contain a
mixture of proteins produced by the wild-type and mutants provirus DNA in the dually
infected cells. For this reason, these virions may infect cells at different rates than the true

mutant and wild-type virions and are kept track separately. Parameters (k;,,, k., k7, ) are

infection rates of mutant virus, wild-type virus, and virus produced by dually infected cells,
respectively. Parameters (A, Am, Aws Amw) represent the proliferation rate of T, Ty, Ty, and
Trw- Parameters 6, om, dw, and dmy are the death rates of T, Ty, Ty, and Ty and ¢, and ¢
are dual infection rates. Let o= A= 6, o= Am— S 2w = Aw — Sy and P = A — Smw be
the pure growths rates of T, Ty, Ty, and Ty cells which are the differences between the
corresponding proliferation rate and death rate. If the proliferation rate is zero, then the
death rate of the corresponding cells can be estimated. Otherwise we cannot distinguish
between the proliferation rates and the death rates. Parameters (Npm, Ny, Nmw) represent the
number of virions produced from each of T, T,y and Ty cells during their life time. Other
notations are similar to model (1). In this model, we do not consider cells dually infected by
the same virus population, and we ignore cells infected with more than two viruses.
However, variations of model (10) that incorporate these effects may easily be investigated.

Note that we have not included recombination in the model, because previous studies have
demonstrated that it is very unlikely to be detected under the conditions present in our
assays. First, Levy et al. (2004) demonstrated that recombination rates drop dramatically
with the frequency of infected cells. Secondly, recombinant virus does not result from cells
dually infected with each parental strain, and HIV recombination requires that a
heterozygous virus infects the cell (Hu and Temin, 1990). We have also evaluated the
concordance between mutant prevalence as measured by bulk sequence analysis and the Thy
marker, and found that they give very similar results under experimental conditions that are
the same as we have used here (Dykes et al., 2006). This suggests that recombination is not
frequent enough to disrupt the linkage between the Thy marker and RT for the dominant
strains during the time course of the experiment. We do acknowledge that low-frequency
recombinant events could have an impact on replication fitness over longer time frames, if
the resultant recombinant mutant has substantially different fitness than either parent. This,
however, is not the case in these growth competitions between a wild-type and drug resistant
mutant that differ at only a single codon.

If we make the same assumption as in model (1), that the infected cell densities are
proportional to their corresponding virus densities, then we can simplify model (10) to
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(fi_,{ = (,0 - kam - kwTw - kR me)Ta
d’.[li';m = (,Om-i-ka —qm Tw)Tm+pm kR me Ta (11)
% = (pw+kwT — Qu Tm)Tw+pw kR me Ta
dTpy, _ [

me‘f'(l - pm - pw) kR T] Tm,'w_'_(q"f"qw) T’w Tma

where (km, ky, kr) are new parameters that are re-parameterized from (;,,, &, k7). In the
second equation of (11), pm Tmw are basically mutant viruses while in the third equation, py
Tmw are basically wild-type viruses. Thus, the pure reproduction rates of mutant and wild-
type viruses can be defined as

9m= pm+ka+kRT = qmTw,
Ju= p'l11+ku) T+k3 T — quTi, 2
respectively.

As in the case without dual infection, we define the log-relative fitness (LRF) of mutant
viruses versus wild-type virus as:

[Ptk T(8)+k, T(t) = 4 T (1))
= [pwtkw T(t)+k, T(t) — quTm (t)] (13)
(pm - pw)+(l€m - kw)T(t)+Qme (t) - quw (t)

d(t) =9m — Guw

The relative fitness (RF) of mutant viruses versus the wild-type viruses can be defined as

RF(t) = 1+s=exp|[d(t)]

e2p[(pm — pu)+(km — k) T(O) 400 T (1) — @ T (1)) 9

Thus, the relative fitness of mutant virus versus wild-type virus depends on three factors:
their pure growth rate difference (on — o), infection rate difference (ky, — ky), and the dual
infection rate difference [y Tm(t) = dm Tw(D)]-

Note that our flow-based assay can measure the concentrations of T, Ty, Ty, and Ty, Where
Tmw IS the concentration of cells infected by both mutant and wild-type viruses or cells
infected by viruses with heterozygous RNA, but our assay cannot distinguish between these
two categories of infected cells. However, if we can estimate all the kinetic parameters in
Eq. (11), we can define the viral fitness of “heterozygous” viruses using the first term of the
fourth equation in (11), i.e., define the pure reproduction rate of heterozygous viruses as

gm1u:pm,w+(1 — Pm — pw) kR T.
Thus, we can define the log-relative fitness (LRF) and the relative fitness (RF) of
heterozygous viruses versus the wild-type viruses as

d(t): g’"L'LU - gw:[pmw_'_(l - pm - pw) kR T(t)]

— [Put ko T(E)+h, T(E) — qu T (1)), &)
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RF(t)=1+s=exp[d(t)|=ezp(gmw — Guw), (16)

respectively. Similarly we can define the relative fitness of heterozygous viruses versus the
mutant viruses. This definition of the relative fitness of heterozygous viruses, as well as
model (10), ignores the production of heterozygous viruses by direct infection of a target
cell by a mutant and a wild-type virus simultaneously. In model (10), we have assumed one
virus infects first and then the singly infected cell is infected a second time with a different
type of virus to become dually infected. In the definition of relative fitness of heterozygous
virus, we also ignore the term (qm + gw) Tw Tm in the last equation of model (11) that
corresponds to these types of sequential infections. Although this term contributes to the
amount of T, We consider it as the “replenishment” of T, from an external source
instead of direct reproduction of Ty,,. After we obtain the parameter estimates and the
estimates of T(t), T(t), and T,(t), we can get the estimates of the LRF and RF by plugging
these estimates in formulas (13)-(16).

5. Identifiability analysis

Identifiability (observability) is important for biomedical system modeling. Consider a
general nonlinear system,

) 2=f(z,u,0),
Zo‘{ y=h(z,u,0), (n

where x € R is the state variable vector, u € RMthe input vector, y € RP the output vector,
and & € Rdthe parameter vector. The system Xy is identifiable if the parameter &can be
uniquely determined from the input u and the corresponding output y. See Ljung and Glad
(1994), Xia and Moog (2003), and Jeffrey et al. (2005) for a more detailed introduction of
identifiability concepts.

The identifiability problem for linear systems has been well addressed, especially for
compartmental models (Audoly et al., 1998). However, for nonlinear ODE models, a general
algorithm for global identifiability analysis needs to be further investigated. Techniques
based on differential algebra have been successfully applied to low dimensional problems
(Ljung and Glad, 1994; Audoly et al., 2001). For a formal introduction to differential
algebra, the reader is referred to Ritt (1950). These techniques are used to address
differential polynomial problems to which most biomedical dynamic models belong.
However, the differential algebra methods come with high computational complexity. The
efficiency of differential algebra algorithms needs to be improved. Xia and Moog (2003)
proposed a simple alternative method based on the implicit function theorem, which has
been successfully applied to HIV dynamic models (Xia and Moog, 2003; Jeffrey et al.,
2005). In this study, the procedure described in Xia and Moog (2003) and Jeffrey et al.
(2005) is used to analyze the identifiability of the proposed viral fitness models.

Considering the model (11) with the assumption that parameters py, and p,, are known, i.e.,
Pm= Pw=0.25and 1 - py, — py = 0.5, we have
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(f’_'{ = (p=knTn = kT — kRme)Tv

Do = (pptkmT — @ To) Trn+0.25k, Ty T,

Lo = (pythyT — guT) Ty+0.25k, Ty T, 0
Do = (9, 405k, T) T+ (@n-+w) T T

In our experiments, all state variables (T, Ty, Ty, Tmw) are measurable, which gives the
outputs of the system as

n=T, y2=Tn, y3=Ty, Ys=Tnw- (19

By taking derivatives up to the 4th order of the first equation of Eq. (18), the four parameters
(o, km ks Kr) are found to be identifiable if

{ Y1 —Y1 y2( : —Y1 ys( ) —Y1 y4< :

i —y) Gy =)

Rank " =4. (20

{ o ~y2)? ~(ys)? —(yiya)? J @)
Z/§ ) —(yl yz)(g) —(yl 93)(3) —(yl y4)(3)

Since the 4th order derivative of y; = T is needed to obtain the equation above, at least five

measurements are necessary to evaluate y§4). Similarly, the parameters (o, qm) are
identifiable if

Y2 —yzys(l) ] =2, @1

Rank
Yo —(y2y3)

and the parameters (o, Qy) are identifiable if

Y3 —Y2Y3
) }22 (22)

Rank
Ys — (y2 Y3

Finally, if (o, K, Kws KRy 2m» Ome O Ow) @re identifiable, then o, is identifiable if

Ranklys=1. (23)

To satisfy Eq. (23), the measurements of Ty, cannot be zero.

Note that the basic assumptions of the above identifiability analyses are that the model
structure is absolutely accurate and that the measurements are exact (no measurement error),
which is not realistic in practice. The practical identifiability with measurement errors is
studied via Monte Carlo simulations in Section 7. However, this analysis provides important
information on the necessary condition for a model to be identifiable and the minimum
number of measurements needed. Similar techniques can also be used to analyze the
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identifiability of models (3) and (11). We summarize the identifiability analysis results for
the three models in Table 1.

6. Model fitting and parameter estimation

Parameter estimation can be based on the maximum likelihood (ML) principle or the least
squares (LS) principle. The LS method, which is the focus of this paper, is robust against the
distribution assumption of measurement errors and is equivalent to the ML method if the
measurement errors are normally distributed and independent with a common variance. The
LS estimates can be obtained by minimizing the objective function, i.e., the sum of squared
residuals of all measurements. There are two main categories of minimization methods for
solving the LS problem: gradient methods and direct search methods (or global optimization
methods). The gradient methods, such as the Levenberg—Marquardt method and the Gauss—
Newton method, can efficiently search for local minima based on the Jacobian or Hessian
matrix of the objective function. For details of gradient methods and their applications to
ODE parameter estimation, the reader is referred to Nocedal and Wright (1999) and
Englezos and Kalogerakis (2001).

The gradient methods perform well only if the initial guess of the solution is very close to
the true solution and the objective function behaves well. However, gradient methods can be
easily trapped in the local minima if the objective function has multiple local minima or is
not differentiable. This defect of gradient methods can be overcome by direct search
methods such as the Luus—Jaakola method (Luus and Jaakola, 1973). For instance, Linga et
al. (2006) compared the Luus—Jaakola method to the Gauss—Newton method for parameter
estimation of ODE models. They found that the solutions produced by the Luus—Jaakola
method and the Gauss—Newton method can be very different for the same problem and the
objective function value achieved by the Luus—Jaakola method is much smaller than that
found by the Gauss—Newton method.

Various direct search or global optimization methods are currently available. Moles et al.
(2004) compared the performance and computational cost of seven global optimization
methods, including the Luus—Jaakola method and the Differential Evolution (DE) method
(Storn and Price, 1997). Their results indicate that the DE method outperforms the other six
methods with a medium computational cost. In addition, our preliminary results (not shown)
indicate that the gradient methods, including the Gauss—Newton method, the Levenberg—
Marquardt method, and the quasi-Newton method failed to obtain good parameter estimates
even if the initial guess of the parameter values is just 5% away from the true parameter
values. So, for this problem, a global optimization method such as the DE method should be
employed. Note that global optimization methods are very computationally intensive, but
that computational cost can be improved by combining stochastic global optimization
methods and deterministic methods such as the scatter search method proposed by
Rodriguez-Fernandez et al. (2006).

For our study, the DE method is employed to solve the LS problem and to estimate the
parameters in the proposed HIV-viral fithess models. For details of the DE algorithm the
reader is referred to Storn and Price (1997). The basic idea of the DE method is to use the
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concept of biological evolution theory to design the search strategy. Within a region
specified by constraints in the parameter space, a number of parent vectors are randomly
generated, then the next generation of vectors (child vectors) are generated from parent
vectors according to some strategies similar to chromosome pairing. For different strategies,
different numbers of groups of randomly shuffled parent vectors are involved in generating
one child vector. If the fitness (the objective function) of child vectors is better than the
fitness of their parents, the parents are replaced by children, and this procedure is repeated
until convergence is attained. We implemented the DE algorithm in both C++ and
MATLAB®, based on a MATLAB® prototype developed by Price et al. (2005). The ODE
system is solved using a 4th order Runge—Kutta scheme. Our results suggest that the
computational time of the C++ implementation is less than 10% of the MATLAB®
implementation for the same problem.

In this study, the number of infected and uninfected T cells was rmeasured at 5 time points
with three replicates at each time point (Table 2). The cell number in Table 2 refers to the
total number of cells in the culture vessel. The measurement models are

,_.:
—~
o~
.
~

T(ti)+ei(ts),  Ya(ti)=Tm(t;)+ea(ts),

Ty (t)tes(t),  Yi(t) =T (t:)+ealts), @V

S
—~
~+
ER
~

wherei =1, 2,..., 5and {&(t;), &(t), e3(t)), €4(tj))} are assumed to be independent with mean
zero and common variance o2. If they are not independent with heterogeneous variance, the
weighted (generalized) least squares method can be used. Based on the identifiability
analysis (Table 1) in the previous section, all the parameters are theoretically identifiable.
Thus, we fitted the dual infection model (18) to the experimental data to estimate 9 kinetic
parameters and 4 ODE initial conditions simultaneously using the aforementioned
differential evolution (DE) method.

Since the measured number of cells is on the order of 107, we took a log transformation of
the experimental data in model fitting in order to stabilize the computational algorithm.
Also, note that the five parameters (kmn, Ky, Kr, Gm, Gw) have to be positive to make
biological sense. Thus, we also used a natural log transformation for these parameters to
accommodate this constraint. Confidence intervals of all the estimated parameters were
obtained using the bootstrap method (Shao and Tu, 1995; Davison and Hinkley, 1997). The
search regions for all parameters (o, Om, Aws P Kme K Ky Ome Gw) @re given in Table 3.
The fitted results for the logarithm of the numbers of infected and uninfected cells are
plotted in Fig. 1 with all the experimental data superimposed on the fitted curves, which
indicates good agreement between the model prediction and the experimental data.

Note that the number of uninfected T cells decreased from hour 139 to 163. To confirm this
decrease is due to infection and is not a problem with the culture system, a control
experiment using uninfected cells was done using the same five sampling time points (hours
70, 94, 115, 139, and 163), as listed in Table 2. The total cell number in the culture vessel
was 1.51 x 108 at hour 139 and 3.52 x 108 at hour 163. Thus, the number of uninfected T
cells at hour 163 in the control group is much greater (>300%) than the total number of cells
(infected and uninfected) in the infection experiments at hour 163. This comparison suggests
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that the culture did not approach or exceed its saturation density toward the end of the
experiment, and the slow down of the growth rate of uninfected cells is due to viral infection
and not growth saturation or other culture effects.

The parameter estimates with their bootstrap confidence intervals for model (18) are given
in Table 3. From Table 3, we can see that the infection rates of the wild-type virus and
mutant virus, ky, and k, are very similar, but the infection rate of heterozygous virus (kg) is
about 3-fold smaller than k, and k,, although the confidence intervals of k, ky and kg
significantly overlap with each other. Our simulation studies in the next section show that
the estimate of kg is less reliable than those of k,, and ky,. The dual infection rate from two
different routes, q,, and g, are also similar. The estimate of the pure growth rate of
uninfected target cells, p= 1 - &, is reasonable and is positive which indicates that the
proliferation rate (1) is larger than the death rate (5) during the experiment. However, the
estimates of the pure growth rates of infected cells, pm, 2n, @and P, are not reliable since
their confidence intervals include zero. This may indicate that the parameters, om, A, and
P are too small to be reliably estimated from the measurements with error although they
are theoretically identifiable. Their practical identifiability is further investigated via Monte
Carlo simulations in the next section.

Based on the fitted model, the log-relative fitness d(t) and relative fitness RF(t) as well as
their corresponding 95% confidence intervals are calculated at the five time points of
experimental measurements for both mutant virus versus wild-type virus and heterozygous
virus versus wild-type virus, respectively, using the formulas (13)-(16). These results are
given in Table 4 and plots of d(t) and RF(t) versus time t are shown in Fig. 2. From Table 4
and Fig. 2, we see that the relative fitness (RF) of mutant virus versus the wild-type virus
was increasing from hour 70 to 139, but decreased at hour 163, while the relative fitness
(RF) of heterozygous virus versus the wild-type virus was decreasing initially from hours 70
to 139, and then increased on hour 163. However, the variation of RF(t) of both mutant virus
and heterozygous virus is relatively small (Table 4). The estimated time-varying trend may
not be statistically significant. This is presumably because the concentration of uninfected
target cells, T (t), is approximately constant in our experiment (Fig. 1) and other time-
varying terms in RF formulas (14) and (16) are relatively small compared to the term related
to T (t). The results also indicate that the heterozygous virus is less fit than the mutant virus.

For the purpose of comparison, we ignored the dual infection and fitted the 3D viral fitness
model (3) to the same experimental data (Table 2). The parameter estimates and their
corresponding bootstrap confidence intervals are given in Table 5. Comparing the results
from the 3D model in Table 5 to those of the 4D model in Table 2, we find that the estimates
of parameters (o, km, ky) are similar between the two models. But the estimates of the two
parameters, pm and py, may not be reliable and even the sign of the estimates of g, from the
two different models are different. These results are consistent with our practical
identifiability analyses in the next section.
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7. Simulation studies and practical identifiability

To study the practical identifiability and sensitivity of the kinetic parameters in the ODE
models when the state variables are measured with errors, we conducted intensive Monte
Carlo simulations and numerical sensitivity analyses based on the 4D model (18). In the
simulation studies, we used the estimated parameter values from the experimental data in
Section 6 and generated the simulation data sets based on the ODE model (18). The
measurement errors are assumed to be identically and independently distributed (iid) with a
normal distribution N (0, 02), where we took o to be 0%, 5%, and 30% of the average
logarithm number of all measurements, respectively, in our simulations. To study the large
sample behavior of our estimates, we generated 1,000 replicates at each of 5 experimental
time points for each simulation data set (compared to only 3 replicates at each time point in
our current experiment). We generated 1,000 simulation data sets for each of the three
different measurement error levels (o = 0%, 5%, and 30%), respectively. We define the

average relative estimation error (ARE) as ARE:%Z;;\GJ» — 9j\/|0j| x 100%, where GJA
is the estimate of parameter ¢ from the j th simulation data set and N = 1,000 is the total
number of simulation runs. We use the ARE to evaluate the parameter estimates. The same
search regions for the real experimental data fitting in Table 3 are employed in our
simulation studies.

The AREs of all 9 parameters in model (18) for three measurement error levels (0%, 5%,
and 30%) are reported in Table 6. Parameters (Kmy, K, Kr: dm» Gw) are forced to be positive
by taking a log-transformation in the estimation. Parameters (0, pm, A Prmw) €an be positive
or negative, depending on whether the proliferation rate is larger than the corresponding
death rate. In Table 6, we also report the percentages of simulation runs that did not
correctly identify the sign of the parameters (sign change). From Table 6, we can see that
when there is no measurement error (o = 0%), all the 9 parameters can be well identified
(the maximum ARE is 0.4%), which confirms our theoretical identifiability analysis in
Section 5. This also indicates that our parameter estimation method converges to the true
parameter values when the sample size is large enough and the measurement error is small
enough. However, as the measurement error increases to 5% or 30%, the ARE of parameter
Pmw rapidly increases to 556% or 2062%, respectively, and the sign of parameter o, cannot
be correctly identified in about 50% of simulation runs. The ARE of g, also increases to
39% and 201%, while the ARE of kg increases to 28% and 106%, respectively. When the
measurement error is large (o= 30%), the sign of parameter p,, cannot be correctly
identified in 43% of simulation runs. The AREs of parameters (qy, pm) are reasonable for
the case of small measurement error (o = 5%), but increase to 49% and 59% for the large
measurement error case (o = 30%), respectively. The AREs for other four parameters (o, Km,
kw, Om) are reasonable for all cases.

It is also important to investigate the reliability of parameter estimation under our current
experimental conditions. The estimated measurement error level from our experimental data
is 0= 1.5% of average measurements. We repeated the above simulations using this actual
measurement error level and studied the effect of using different numbers of time points and
a different number of replicates at each time point. Besides the standard 5 time points (hours
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70, 94, 115, 139, and 163) as in our current experiment, we also performed the simulations
for 9 time points (hours 70, 82, 94, 106, 115, 127, 139, 151, and 163). We used the number
of replicates at each time point as 3, 6, 9, and 100, respectively. Note, if the number of
replicates at each time point is 3, 6, or 9, this could be done in a real experiment, but 100
replicates at each time point may not be realistic and we only used it to evaluate the
performance of our estimates in a large sample with an actual measurement error level. We
report the simulation results of all cases (the AREs and sign change) in Table 7.

From Table 7, one can see that the ARE of parameter on,, ranges from 410% to 2130% and
the sign change ranges from 36% to 56%. This indicates that the pm, is practically
unidentifiable. Considering the practical case of 9 time points and 9 replicates for each time
point, the ARE of parameter g, is 86% and the sign change is 17%, which indicate that it
may be difficult to accurately identify the parameter g, unless the sample size is
unrealistically large (say, 100 replicates for each time point). For parameter kg, the ARES
are also large (ranging from 62% to 108%) for practical cases (the number of replicates is 3,
6, or 9). For parameters (om, Qw), the AREs are reasonable (ranging from 22% to 38%) for
most reasonable sample sizes. The parameters (o, km, kw, Gm) are very well identified (the
ARES ranging from 3% to 22%).

In summary, the simulation results in Table 7 suggest that if we can perform an experiment
for the sample size of 9 time points and 9 replicates at each time point, we can estimate the
four parameters (o, km, kw, Om) With a good accuracy (the AREs ranging from 3% to 10%).
In addition, we can estimate parameters (om, Gyw) With a reasonable accuracy (the AREs
ranging from 22% to 26%), but parameter kg can only be estimated with a large error (the
ARE is 62%). The parameter py, is difficult to identify since its ARE is as large as 87% with
17% sign change in this largest practical sample size (9 time points and 9 replicates at each
time point). In this case, the ARE of parameter pmy is 1190% with 49% sign change which
indicates that the parameter pn, is practically unidentifiable. These conclusions are
consistent with those derived from the simulation results in Table 6.

To further confirm the above results and conclusions and to investigate why the estimation
error is very large for parameter estimates of pmw, o, and kg even when the measurement
error is small, we numerically evaluated the Fisher information matrix FIM and the error
covariance matrix C (Seber and Wild, 1989; Rodriguez-Fernandez et al., 2006) based on our
experimental data. The FIM is

0= (DY (B0)

=1

C=FIM™', (26)

where y(t;) is the measurements of the state variables at time point tj, the @is the parameter
vector, and V = o2 - 14 is the variance-covariance matrix of the measurements with |4 being
an identity matrix of dimension 4. From our experimental data, we can obtain estimates of
the standard error (SE) of all parameters. For parameters gmw, A, and kg:
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SE(pmw)=0.15760, SE(p,)=0.15660, SE(log(k,))=14.410, (27)

where SE denotes the standard error of the parameter estimates. For example, with a 30%
measurement error, o = 4.29. Considering that the parameters gmw, 2w, and kg are of the
order of 1074, 1073, and 10710 (Table 3), respectively, the results (27) can clearly lead to a
large SE for these three parameters. These results further confirm the above conclusions.

8. Discussion and conclusion

In HIV viral fitness experiments that involve growth competition assays, the concentration
of uninfected target cells has been assumed to be constant. This was also a key assumption
in our earlier study (Wu et al., 2006). But this may not be true in some experiments. In
addition, dual infection may frequently occur in viral fitness experiments (Dang et al., 2004;
Levy et al., 2004) and may not be ignorable. In order to relax these two assumptions, we
have extended our earlier viral fithess model (Wu et al., 2006) to avoid these two
assumptions. The resulting models then become a nonlinear ODE system for which the
closed-form solutions are not achievable. In this case, the relative fitness becomes a function
of time since it depends on the cell concentrations at different time points. We studied the
structure identifiability of the nonlinear ODE models based on a technique developed in the
fields of engineering and differential algebra (Ljung and Glad, 1994; Audoly et al., 2001;
Xia and Moog, 2003; Jeffrey et al., 2005). We also employed a global optimization
approach (the differential evolution algorithm) to directly estimate the kinetic parameters in
the nonlinear ODE models using the least squares principle. Practical identifiability is
investigated via Monte Carlo simulations. We applied the proposed models and methods to
HIV viral fitness experimental data to estimate the kinetic parameters and the relative
fitness.

Xia and Moog (2003) and Jeffrey et al. (2005) proposed a system identifiability analysis
method based on the implicit function theorem. We employed their method to analyze the
identifiability of the proposed viral fitness models. We found that for the dual infection
model (18), we need at least 5 measurements for each state variable in order to identify all
the Kinetic parameters. This conclusion was confirmed by our numerical results. The
identifiability analysis methods, such as those proposed by Xia and Moog (2003) and Jeffrey
et al. (2005) and other similar methods using the framework of differential algebra (Ljung
and Glad, 1994; Audoly et al., 2001), which are called structural identifiability analysis,
cannot deal with practical identifiability (Rodriguez-Fernandez et al., 2006) when the
outcome variables are measured with error. To study the practical identifiability, Rodriguez-
Fernandez et al. (2006) proposed a method based on the correlation matrix of parameter
estimates to locate the practically non-identifiable parameters. They concluded that if the
correlation of two parameters is nearly one, the two parameters are not practically
identifiable. In this paper, we investigated the practical identifiability of the proposed
models using both Monte Carlo simulations and the covariance matrix of parameter
estimates (based on the Fisher information matrix). Similar approach has been applied to an
HIV dynamic model by Wu et al. (2008). We found that although all 9 parameters in model
(18) are theoretically identifiable based on the identifiability analysis, three of them (o,
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O and kg) are difficult to identify practically from the experimental data; two of them (o,
Ow) can be identified but with a large error; only four of them (o, km, kw, Gm) can be well
identified from the experimental data as summarized in Table 8.

Parameter estimation of ODE models, especially for high-dimensional nonlinear ODEs with
a high-dimensional parameter space, remains challenging in biomedical modeling. When a
large number of unknown parameters with different orders of magnitudes need to be
estimated in a high-dimensional ODE system, it is difficult to find a global solution to the
problem of minimizing the objective function. Standard gradient methods are not suitable
for optimizing an objective function with multiple local maxima or minima since they are
easily trapped at the local solutions. Global optimization methods are needed to overcome
this problem. In this paper, we employed the differential evolution method (Storn and Price,
1997) implemented in C++ and MATLAB® to estimate the unknown parameters in the
proposed nonlinear ODE models. Note that the computational cost of the C++
implementation is much less than that of the MATLAB® implementation, which makes it
affordable on regular PCs. However, the computational efficiency of global optimization
methods may be improved in the future by considering hybrid algorithms (Rodriguez-
Fernandez et al., 2006).

Monte Carlo simulation is an important tool to validate the identifiability analysis results
and to perform sensitivity analyses for model parameters as well as to evaluate parameter
estimation methods. It also can be used to perform simulations for different experimental
scenarios so that it can provide guidance for the design of future experiments. Our intensive
simulation results indicate that measurements at 9 time points with 9 replicates at each time
point are necessary to reasonably estimate all the kinetic parameters in model (18) except for
parameters pmw: Aw and kg, since these three parameters are very sensitive to measurement
errors. We suspect that the terms involving these three parameters may be relatively small
compared to the other terms in the same equations. Thus, an interesting research topic,
which is currently under our investigation, is to use model selection methods, such as the
Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC), to evaluate
whether these small terms should be dropped from the model. We expect to report these
results in the near future.
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170

Experimental data and model fitting results (O replicate 1, O replicate 2, and A replicate 3)

and fitted curves for T (solid), Ty, (dotted), T,y (dashed) and T, (dash-dotted).
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Fig. 2.
(a) Estimates of log-relative fitness d(t) for mutant virus versus wild-type virus and

heterozygous virus versus wild-type virus; (b) Estimates of relative fitness RF for mutant
virus versus wild-type virus and heterozygous virus versus wild-type virus.
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Table 1

Identifiability analysis of 3-D and 4-D viral fitness models

Model  All parametersidentifiable?  Minimum number of measurements of (T, Tr, Tw, Trw)

®3) Yes 4
(11) Yes 5
(18) Yes 5
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Table 3

Parameter estimation results for the 4D dual infection model (18)

1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duasnuely Joyny vd-HIN

Parameter Search region lower Search region upper Parameter estimate Bootstrap 95% confidence interval
bound bound
p (per hour) -6.0e-02 6.0e-02 1.50e-02 1.29e-02, 1.71e-02
Pm (per hour) —2.0e-01 6.0e-02 —2.29e-02 -4.78e-02, 7.90e-03
w (per hour) —6.0e-02 6.0e-02 7.13e-03 -2.96e-02, 4.41e-02
Prw (Er hour) -2.0e-01 6.0e-02 5.68e-04 -3.94e-02, 1.83e-02
km (per cell per hour) 0 1.0e-08 1.51e-09 9.88e-10, 1.89e-09
ky (per cell per hour) 0 1.0e-08 1.11e-09 4.01e-10, 1.78e-09
kg (per cell per hour) 0 1.0e-08 4.36e-10 2.94e-23, 2.00e-09
Om (per cell per hour) 0 1.0e-08 4.15e-09 2.22e-09, 5.98e-09
O (per cell per hour) 0 1.0e-08 1.10e-09 2.87e-11, 2.68e-09
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Table 4

Page 25

The estimate of log-relative fitness (d) and relative fitness (RF) for mutant virus vs. wild-type virus and
heterozygous virus vs. wild-type virus for model (18). 95% confidence intervals of all estimates are listed
below each estimate using the bootstrap method

Time (hour)

d(t)
Mutant vs. Wild

RF(t)
Mutant vs. Wild

d(t)
Heter ozygous vs. Wild

RF(t)
Heterozygous vs. Wild

70

94
115
139
163
Mean
SD

-1.66e-02 (-3.71e-02, —5.82e-03)
-1.10e-02 (-2.08e-02, —9.66e-04)
—4.86e-03 (-1.52e-02, 4,93e-03)
-1.66e-03 (-1.92e-02, 1.50e-02)
-4.13e-02 (-9.54e-02, 2.92¢-02)
-1.51e-02

1.57e-02

9.84e-01 (9.64e-01, 1.01e-00)
9.89e-01 (9.79e-01, 9.99¢-01)
9.95e-01 (9.85e-01, 1.00e-00)
9.98e-01 (9.81e-01, 1.02e-00)
9.60e-01 (9.09e-01, 1.03e-00)
9.85e-01

1.54e-02

-5.05¢-02 (~1.19e-01, ~1.98e-02)
-6.89e-02 (~1.43¢-01, -4.02¢-02)
-8.93e-02 (~1.73e-01, -5.86¢-02)
-1.01e-01 (~1.93¢-01, -6.62e-02)
-3.846-02 (~9.54e-02, 4.22¢-03)
-6.960-02

2.60-02

9.51e-01 (8.88e-01, 9.80e-01)
9.33e-01 (8.67e-01, 9.61e-01)
9.15e-01 (8.41e-01, 9.43e-01)
9.04e-01 (8.24e-01, 9.36e-01)
9.62e-01 (9.09e-01, 1.00e-01)
9.33e-01

2.43e-02
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Table 5

Parameter estimation results for the 3D viral fitness model (3)

Page 26

Parameter Search region lower Sear ch region upper Parameter estimate  Bootstrap 95% confidence interval
bound bound

o (per hour) -6.0e-02 6.0e-02 1.13e-02 9.06e-03, 1.31e-02

Pm (per hour) -2.0e-01 6.0e-02 -3.25e-02 -5.59e-02, -3.61e-03

Aw (per hour) -6.0e-02 6.0e-02 -2.54e-03 -4.35e-02, 3.32e-02

ke (per cell per hour) 0 1.0e-08 1.59¢-09 1.11e-09, 1.93e-09

ky (per cell per hour) 0 1.0e-08 1.24e-09 6.36e-10, 1.91e-09
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Table 8

Practical identifiability of the 4D dual infection model (18)

Parameter Practical identifiability

LProw Not identifiable

P Difficult to identify

kr Identifiable with a larger error
Py O Identifiable with a medium error
P, Kmy Ky O 1dentifiable with good precision
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