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Abstract

Objective—To increase the symbol rate of the electroencephalography (EEG) based brain

computer interface (BCI) typing systems by utilizing the context information.

Approach—Event related potentials (ERP) corresponding to a stimulus in EEG can be used to

detect the intended target of a person for BCI. This paradigm is widely utilized to build letter-by-

letter BCI typing systems. Nevertheless currently available BCI-typing systems still requires

improvement due to low typing speeds. This is mainly due to the reliance on multiple repetitions

before making a decision to achieve a higher typing accuracy. Another possible approach to

increase the speed of typing while not significantly reducing the accuracy of typing is to use

additional context information. In this paper, we study the effect of using a language model as

additional evidence for intent detection. Bayesian fusion of an n-gram symbol model with the

EEG features is proposed, and specifically regularized discriminant analysis ERP discriminant is

used to obtain EEG-based features. The target detection accuracies are rigorously evaluated for

varying language model orders, as well as the number of ERP-inducing repetitions.

Main Results—The results demonstrate that the language models contribute significantly to

letter classification accuracy. For instance, we find that a single-trial ERP detection supported by a

4-gram language model may achieve the same performance as using 3-trial ERP classification for

the non-initial letters of words.

Significance—Overall, fusion of evidence from EEG and language models yields a significant

opportunity to increase the symbol rate of a BCI typing system.

1. Introduction

Worldwide, there are millions of people with severe motor and speech disabilities which

prohibit them from participating in daily functional activities, such as personal care (Smith

and Delargy, 2005). While many individuals may understand language fully and retain

cognitive skills, they have no way to produce speech. Communication with other people,

especially with their family members and care providers, becomes a significant challenge.

Various assistive technologies have been developed to increase the quality of life and

functions for these individuals (Fager et al., 2012). These technologies depend on the

extraction and interpretation of various physiological signals at any anatomical site, such as

eye movements blinks, or movements of hand, foot or head. However there is a group of

individuals with locked-in syndrome (LIS) who may not have sufficient neuromuscular
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control to reliably and consistently use switches or intentionally direct their eye gaze,

putting them into a state referred to as total locked-in syndrome. Bypassing all

neuromuscular activity by relying on use of the brain activity as a switch activator has been

developed as an interface for assistive technologies that allow communication and

environmental control (Wolpaw and Wolpaw, 2012; Sellers et al., 2010).

Brain computer interface(BCI) is a technology that uses neural signals as the physiological

input for various assistive technology applications (Brunner et al., 2011; Pfurtscheller et al.,

2000; Farwell and Donchin, 1988; Renard et al., 2010; Pfurtscheller et al., 2010). BCI

systems are based on invasive or noninvasive recording techniques. The noninvasive use of

scalp electroencephalography (EEG) has drawn increasing attention due to portability,

feasibility, and relative low cost. EEG has been used in BCIs for various communication and

control purposes, such as typing systems or controlling robot arms. One of the biggest

challenges encountered by most of these systems is to achieve sufficient accuracy or speed

with the existence of a low signal-to-noise ratio and the variability of background activity

(Schalk, 2008; Cincotti et al., 2006). To ameliorate this problem in letter-by-letter BCI

typing systems, researchers have turned to various hierarchical symbol trees (Wolpaw et al.,

2002; Serby et al., 2005; Treder and Blankertz, 2010). Additionally, there exist attempts to

make stimuli more interesting to increase the attention level of the subjects (Kaufmann et

al., 2011). Even though using various approaches on the presentation of the options may

improve the performance, most BCI researchers agree that BCI is a maturing field and there

is still a need for improvement on the typing speed (Brunner et al., 2011; Mak et al., 2011;

Wolpaw and Wolpaw, 2012; Millán et al., 2010). Low accuracy rates for symbol selection

considerably reduce the practical usability of such systems. One way to overcome this

condition is to increase the number of the repetitions of the stimuli to achieve a sufficient

level of typing accuracy, by sacrificing the typing speed (Aloise et al., 2012; Kaufmann et

al., 2011). Another approach is to incorporate the context information directly to the

decision making process to obtain speedups and to improve the efficiency of such systems.

In the case of letter-by-letter typing BCIs, placing a computational language model, which

can predict the next letter from the previous letters, within the decision making process can

greatly affect performance by improving the accuracy and speed. If the symbol decisions are

made using only the EEG evidence, that is, without using the context information in the

language, decisions might not be sufficiently accurate with low number of repetitions. Under

such conditions further word prediction without improving decision accuracy might not be

feasible (Ryan et al., 2010). Thus, we propose to incorporate context information directly to

the decision making process and to make symbol classification based on the tight fusion of

language model and EEG evidence.

As the application of this proposed language model (LM) and EEG feature fusion

methodology, we investigate the performance of context based decision making in RSVP

KeyboardTM, a BCI typing system that uses rapid serial visual presentation (RSVP) (Mathan

et al., 2008). RSVP is a paradigm that presents each stimulus, in this case letters and

symbols, one at a time at a visually central location on the screen, instead of using the matrix

layout of the popular P300-Speller (Krusienski et al., 2008; Farwell and Donchin, 1988) or

the hexagonal two-level hierarchy of Berlin BCI (Treder and Blankertz, 2010). In RSVP

based BCI, the sequence of stimuli are presented at relatively high speeds, each subsequent
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stimulus replacing the previous one, while the subject tries to perform mental target

matching between intended and presented stimuli. Accordingly, RSVP does not require an

individual to perform extensive visual scanning or precise direction of gaze control. The

RSVP KeyboardTM is particularly suited for the most severely restricted users including

those with LIS.

LIS might be the result of traumatic brain injury, brain-stem stroke, spinal cord injury or a

neurodegenerative condition such as amyotropic lateral sclerosis (ALS). It is characterized

by near total paralysis, despite the individual being cognitively intact. Motor control

deterioration might extend to eye movements even though vision is intact. Even achieving a

reliable twitch of a muscle or eye blink might become challenging. Therefore, using

complex interactions requiring precise control of muscles or eyes might not be feasible for

users with the most severe conditions. Consequently, simpler interactions via BCI holds

great promise for effective text communication by such individuals. Yet, these simple

interfaces have not been taking full advantage of language models (LM) to ease or speed-up

typing.

In this paper, we demonstrate a methodology to expand the EEG-LM fusion concept

introduced earlier (Orhan et al., 2011). We use a graphical model between EEG features and

previously written text. An estimation of conditional probability density functions of the

EEG features, assuming they are continuous-valued, and a predictive n-gram language

model are employed. This approach can be used with most letter-by-letter typing systems

including the audio BCI systems and most EEG feature extraction methods, including linear

or nonlinear projections, and classification algorithms with a probabilistic output. To test the

proposed method, an offline analysis using EEG data collected with RSVP Keyboard TMcan

be obtained using this fusion framework. Based on experimental work, we designed an

operational real time typing system, RSVP KeyboardTM (Hild et al., 2011; Orhan et al.,

2012).

2. Rapid Serial Visual Presentation based BCI

RSVP is an experimental psycho-physics technique in which visual stimuli are displayed on

a screen over time at a fixed focal area and in rapid succession (Mathan et al., 2006; Huang

et al., 2009). In contrast, the Matrix-P300-Speller (Krusienski et al., 2008; Farwell and

Donchin, 1988) used by Wadsworth and Graz groups relies on spatially distributed

presentation of the symbols, highlighting them using various subset organizations (e.g. a

column, a row, checkerboard or an individual symbol) and orders to elicit responses to

detect the intent of the user. Berlin BCI’s recent variation of their Hexo-Spell utilizes a 2-

layer tree structure (Treder and Blankertz, 2010) where the subject chooses among six units

(symbols or sets of these) while the subject focuses on a central focal area that uses RSVP-

like paradigm to generate responses induced by the intent. Recently, the researchers started

to investigate and compare these alternative presentation methodologies (Treder et al.,

2011). In both of these BCIs an awareness of the full screen is required. On the other hand,

the approach in RSVP KeyboardTM is to distribute the stimuli temporally and present one

symbol at a time using RSVP. Correspondingly, a binary answer is sought for each

presented symbol. The latter method has the advantage of not requiring the user to fixate at
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different regions of the screen. This can be particularly useful for users with with weak or no

gaze control, and for those whose cognitive skills do not allow processing of a matrix

presentation (Brunner et al., 2010). Two example screens from the matrix presentation and

RSVP are given in Fig. 1.

The presentation paradigm of RSVP KeyboardTM includes stimulus sequences consisting of

the 26 letters in the English alphabet, plus symbols for space and backspace. The set of

symbols can easily be extended to a set containing various symbols for word completion or

additional commands and punctuation. During the presentation of the sequence, the symbols

are ordered randomly for the purpose of strengthening the response for the intended symbol.

During the selection of a single symbol in the typing process, which we call an epoch, all

symbols might be shown multiple times or sequences to improve accuracy. We call the

single presentation of a symbol as a trial, which represents a single stimulus. The user is

expected to react positively only for the target symbol. The problem reduces into decision

making between positive and negative intended target for each symbol.

The human brain generates a natural response, an event related potential (ERP), to the

infrequent target stimulus shown in RSVP sequences. The most prominent component of the

target ERPs is the P300 wave. It is a positive deflection in the scalp voltage mainly in the

centro-parietal areas with a latency of roughly 300 ms. However, the regions, latency, and

amplitude of this signal may significantly vary between subjects. This target matching

response allows us to build BCI systems by detecting them.

The detection of single trial ERPs solely from EEG is not accurate enough using current

approaches. Therefore, it would be extremely beneficial to use additional context

information during the sensing of ERPs. For a given probabilistic EEG feature extraction

methodology for detecting ERPs, we propose the incorporation of a probabilistic language

model, which is explained next.

3. Language Modeling

Language modeling is very important for many text processing applications, such as speech

recognition, machine translation, as well as for the kind of typing application being

investigated here (Roark et al., 2010). In BCI field, there exist recent attempts to use word

prediction to speed up the typing process (Ryan et al., 2010). Typically, these approaches do

not directly influence the decision making for an individual epoch, but instead give options

for word completion. On the other hand, if the language models are incorporated into the

decision making process, it might be possible to increase the speed and accuracy of the

selection. To utilize this idea, the prefix string (what has already been typed) is used to

predict the next symbol(s) to be typed, as the language model. Consequently, the next letters

to be typed become highly predictable in certain contexts, particularly word-internally. In

applications where text generation/typing speed is very slow, the impact of language

modeling can become much more significant. BCI-spellers, including the RSVP Keyboard

paradigm presented here, can be extremely low-speed letter-by-letter writing systems, and

thus can greatly benefit from the incorporation of probabilistic letter predictions from an

accurate language model during the writing process.
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The language model used in this paper is based on the n-gram sequence modeling paradigm,

widely used in all of the application areas mentioned above. An L-gram model, it estimates

the conditional probability of every letter in the alphabet given L − 1 previous letters using a

Markov model of order L − 1. In this context, let 𝗌t : Ω →  be the random variable

corresponding to the correct symbol for epoch t, i.e. during tth symbol selection, where  is

the set of possible symbols. Since there might be an operation of deletion, the total number

epochs might be larger than the number of characters written. Hence, we can define the

number of characters written as a function of epoch index; in other words let it be the

number of characters already typed until epoch t. With this notation, we have it < t.

Additionally, the corresponding random sequence of the last L − 1 characters written prior to

epoch t are represented as 𝗐j : Ω →  where j ∈ {it − L + 2, ⋯;, it − 1, it} and  ⊂  is

the set containing the symbols which are characters, e.g. letters, punctuation and space. For

representation simplicity, let 𝗐t = [𝗐it, 𝗐it−1, ⋯, 𝗐it−L+2] correspond to the random string of

last L−1 characters during the selection of the target of tth epoch and w = [w1, w2, ⋯, wL−1]

corresponds to a character string of length L − 1. In n-gram models, the symbol prediction is

made using the latest string of length L as

(1)

from Bayes’ Theorem. In this equation, the joint probability mass functions are estimated

using a large text corpus.

If the language model order is 1, the prediction probability is equal to the context-free letter

occurrence probabilities in the English language, which is not dependent on the previous

letters, i.e. P(𝗌t = s|𝗐t = w) = P(𝗌t = s). Zero-gram model is defined as, having no active

language model or equivalently P(𝗌t = s) is assumed to be a uniform distribution over the

alphabet, i.e. P(𝗌t = s) = 1/| |. If the number of characters that are already typed is less than

the language model order, a truncated model using all the characters that had been typed is

used. As an example, if the second letter is being written, a 6-gram model is truncated to a 2-

gram model. However this only happens in the very beginning of typing process, and it

doesn’t restart at the beginning of words.

For the current study, all n-gram language models were estimated from a one million

sentence (210M character) sample of the NY Times portion of the English Gigaword corpus.

Corpus normalization and smoothing methods were as described in (Roark et al., 2010).

Most importantly for this work, the corpus was case normalized, and we used Witten-Bell

smoothing for regularization (Witten and Bell, 1991). For the offline analysis conducted in

this paper, we sampled contexts from a separate 1M sentence subset of the same corpus.

More specifically, for each letter, 1000 contexts were randomly sampled (without

replacement).

4. Fusion of EEG Features and the Language Model

The evidence obtained from EEG and the language model can be used collaboratively to

make a more informative decision about the class that each symbol belongs to. An epoch,
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i.e. multiple repetitions of each sequence, is going to be shown for each symbol to be

selected. Each symbol is assumed to belong to the class of either positive or negative

attentional focus or intent. Let 𝖼 : Ω → {0, 1} be the random variable representing the class

of intent, where 0 and 1 corresponds to negative and positive intents, respectively and 𝗑 : Ω

→ ℝd be a random vector of EEG features corresponding to a trial. For example, an ERP

discriminant function that projects the EEG data corresponding to a trial into a single

dimension may be used as a feature extraction method. In this case, since d = 1, which

represents there is only one EEG feature per trial. The fusion methodology explained here

does not depend on the feature extraction method, and practically can be used with any

feature vector in ℝd. The only requirement is an estimate of the conditional probability

density function of EEG features given the class label, i.e. f(𝗑 = x|𝖼 = c) ∀c ∈ {0, 1}.

Specifically, let 𝗑t,s,r be the random EEG feature vector corresponding to a trial for epoch t

∈ ℕ, symbol s ∈  and repetition r ∈ {1, 2, ⋯, R}, R is the total number of repetitions or

sequences of the symbols per epoch. Furthermore, let 𝖼t,s be the random variable

representing the class of epoch t and symbol s. Consequently, for a symbol s, the posterior

probability of the class being c using the L−1 previous symbols and EEG features for all of

the repetitions of symbol s in epoch t can be written as,

(2)

where xR ∈ ℝd for r ∈ {1, 2, ⋯, R}. Using Bayes’ Theorem on (2), we obtain

(3)

We can assume that the EEG features corresponding to the symbol in question and the text

that has been written already are conditionally independent given the class label of the

symbol. This assumption is reasonable, because after the subject decides on a target symbol

by considering the previously typed text, he/she is expected to show positive intent for the

target and negative intent for the others, and after the class of a symbol is decided the EEG

response is expected not to get affected by the text already written. This assumption can

formally be written as 𝗑t,s,1, ⋯, 𝗑t,s,R ⫫ 𝗐t|𝖼t,s. Accordingly, (3) transforms to,

(4)

It can be further assumed that the EEG responses for each repetition of the symbol are

conditionally independent given the class of the symbol. This assumption expects intents to

be independent and identically distributed for a symbol in an epoch. As an example, if the

subject shows a stronger intent for the second repetition, then the assumption fails. Since

estimating such a joint conditional probability density function would be difficult as the

number of repetitions gets higher, this assumptions constitutes a useful simplifying

approximation. More formally, this can be written as 𝗑t,s,1 ⫫ 𝗑t,s,2 ⫫ ⋯ ⫫ 𝗑t,s,R|𝖼t,s, reducing

(4) to,
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Using Bayes’ Theorem once again on P(𝗐t = wt|𝖼t,s = c), we obtain,

(5)

We can apply the likelihood ratio test for 𝖼t,s to make a decision between two classes. The

likelihood ratio of 𝖼t,s, can be written from (2) as,

where 𝖷t,s = {𝗑t,s,1, 𝗑t,s,2, ⋯, 𝗑t,s,R} and X = {x1, x2, ⋯, xR}. Using the form we obtained

after simplifications and approximations from (2) to (5), likelihood ratio can be rewritten as

In terms of the probabilities obtained from the language model, some of the probabilities can

be rewritten as P(𝖼t,s = 1|𝗐t = w) = P(𝗌t = s|𝗐t = w) and P(𝖼t,s = 0|𝗐t = w)) = 1 − P(𝗌t = s|𝗐t =

w). Finally, ratio of class posterior probabilities can be estimated as,

(6)

In this equation, f(𝗑t,s,r = xr|𝖼t,s = c) is to be estimated using the feature extraction algorithm

and P(𝗌t = s|𝗐t = w) is to be estimated using the language model. Therefore the decision on

the class label of symbol 𝗌t for epoch t, ĉt,s may be done comparing the likelihood ratio with

a risk dependent threshold, τ, i.e.

(7)

or in other words,
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5. EEG Feature Extraction Case Study with RSVP Keyboard

There exist numerous ways to extract features from EEG. They might consist of bandpass

filtering, artifact reduction, channel selection, linear or nonlinear projections, extraction of

power features from various frequency bands, spatial pattern analysis, extraction of

independent components, wavelet filtering etc. The method to extract features highly

depends on the application.

In RSVP Keyboard™, the goal for each stimuli is to decide if it corresponds to an intended

symbol or not. Consequently, intent detection for a stimulus is equivalent to deciding if its

ERP is induced from the target or non-target category. If we assume that ERPs last only for

a limited duration of time, the problem reduces into a binary classification problem. This can

easily be achieved by windowing the the signals after the stimuli using a sufficiently long

window. For the analysis in this paper, we apply a 500 ms window.

To extract well separated features, we use the following methodology. Firstly, the time

windowed EEG signals are filtered by a 1.5–42 Hz bandpass filter (FIR, linear phase, length

153) to remove low frequency signal drifts and noise at higher frequencies for each channel.

Secondly, temporal feature vectors containing the filtered&windowed signals from each

channel are further projected to a slightly lower dimensional space by linear dimension

reduction. For this paper, this is applied using principal component analysis (PCA) by

removing zero variance directions. Afterwards, the feature vectors corresponding to each

feature channel are concatenated to create a single aggregated vector. This process amounts

to a channel-specific energy preserving orthogonal projection of raw temporal features.

Finally, using regularized discriminant analysis (RDA) (Friedman, 1989), a nonlinear

projection to ℝ on the aggregate feature vector is applied. Without a doubt, one can employ

one of the numerous other feature extraction methodologies, which might perform better or

worse. The main purpose of this paper is not to find the best feature extraction methodology,

but to demonstrate the effectiveness of the usage of context information.

5.1. Regularized Discriminant Analysis (RDA)

RDA is a modified quadratic discriminant analysis (QDA) model. If the feature vector

corresponding to each class is assumed to have multivariate normal distribution, the optimal

Bayes classifier resides in the QDA family. This is due to the fact that the logarithm of the

ratio of two multivariate normal density functions is a quadratic function. Under the

Gaussianity assumption, QDA depends on class means, class covariance matrices, class

priors and a risk based threshold. All of these are to be estimated from the training data, in

this case, from a calibration session, except for the risk-dependent threshold. The calibration

session is a supervised data collection done to learn the signal statistics. When there exist a

small number of samples for high dimensional problems, singularities in the estimation of

these covariance matrices become problematic. This is generally the case for ERP-

classification, since the duration of the calibration session is limited. Henceforth the

maximum likelihood estimate of the covariance matrices will not be invertible, which is

needed for the corresponding QDA solution.
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RDA is proposed as a remedy to this obstacle. It modifies the covariance estimates to

eliminate the singularities by applying shrinkage and regularization on them. The shrinkage

procedure makes the class covariance matrices closer to the overall data covariance, and

therefore to each other. Thus, it makes the discriminant closer to being a linear function of

the feature vectors instead of a quadratic one. Let yυ ∈ ℝp be the set of feature vectors used

to learn the discrimination function of RDA from, where p is the number of features to

administer RDA on and υ ∈ {1, 2, ⋯, N} is the index of the samples. Correspondingly, the

maximum likelihood estimates of the means and covariances are given by

and

where c(υ) ∈ {0, 1} is the class label of sample υ, k ∈ {0, 1} represents the class label and

Nk is the number of samples belonging to class k, i.e. |{υ : c(υ) = k}|. The shrinkage

procedure is administered as, ∀k ∈ {0, 1}

(8)

where

and

with

The shrinkage parameter, λ, determines how much the individual covariance matrices are to

be shrinked towards the pooled estimate and takes a value between 0 and 1, i.e. λ ∈ [0, 1].

Further regularization is applied as,
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where Σ̂
k(λ) is given by (8), tr[·] is the trace operator and I is the p × p identity matrix. For a

given λ, the regularization parameter, γ ∈ [0, 1] controls the shrinkage towards the circular

covariance.

RDA provides a broad family of regularization options. The four special cases of λ and γ

represent various well-known classifiers:

• λ = 0, γ = 0 : quadratic discriminant analysis

• λ = 1, γ = 0 : linear discriminant analysis

• λ = 0, γ = 1 : weighted nearest-means classifier

• λ = 1, γ = 1 : nearest-means classifier

For γ = 0, varying λ corresponds to the models between QDA and LDA.

The illustrate how much these operations are effective on decreasing the singularities, we

can investigate the ranks of the covariance matrices before and after. Before shrinkage

rank[Σ̂
k] ≤ Nk, after shrinkage,

With the further application of regularization ranks of the covariance estimates become,

Since Nk ≪ p and N < p most of the cases, shrinkage and regularization steps are both

expected to be helpful to reduce the singularities.

After carrying out classifier shrinkage and regularization on the estimated covariance

matrices, the Bayes classifier (Duda et al., 2001) is defined by the comparison of log-

posterior-ratio with a risk-dependent threshold. The corresponding discriminant score

function is given by,

where μk, π̂
k are estimates of class means and priors respectively; f (y;μ, Σ) is the pdf of a

multivariate normal distribution and y is the feature vector to apply RDA on. In this paper,

we will consider the discriminant score function as a nonlinear projection from 𝗒 to 𝗑, i.e. 𝗑

= δRDA(𝗒). Subsequently, x = δRDA(y) will be the one dimensional EEG feature for the

fusion with language models as explained in Section 4.
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As a final step, the conditional probability density function of 𝗑 given the class label, i.e. f(𝗑

= x|𝖼 = k) needs to be estimated. It is nonparametrically done using kernel density estimation

on the training data using a Gaussian kernel as

(9)

where x(υ) is the discriminant score corresponding to a sample υ in the training data, that is

to be calculated during cross validation, and Khk(․) is the kernel function with bandwidth hk.

For Gaussian kernel, the bandwidth hk is estimated using Silverman’s rule of thumb

(Silverman, 1998) for each class k. This assumes the underlying density has the same

average curvature as its variance-matching normal distribution. Using the conditional pdf

estimates from (9) and language model probabilities from (1) in (6), we can finalize the

fusion process.

6. Experimental Analysis

6.1. Offline Study

Two healthy subjects, one man and one woman, were recruited for this study. Each subject

participated in the experiments for two sessions. In each session 200 letters are selected

(with replacement, out of 26) according to their frequencies in the English language and

randomly ordered to be used as target letters in each epoch. In each epoch, the designated

target letter and a fixation sign are each shown for 1s, followed by 3 sequences of randomly

ordered 26 letters in the English alphabet with 150 ms inter-stimuli interval.

Correspondingly each sequence takes 4.9 seconds including the 1 second fixation duration.

Subjects are asked to look for the target letter shown at the beginning of the epoch.

The signals are recorded using a g.USBamp biosignal amplifier using active g.Butterfly

electrodes from G.tec (Graz, Austria) at 256Hz sampling rate. The EEG electrodes are

applied with g.GAMMAcap (electrode cap) and the positioned according to the International

10/20 System were O1, O2, F3, F4, FZ, FC1, FC2, CZ, P1, P2, C1 C2, CP3, CP4. Signals

were filtered by a nonlinear-phase 0.5–60 Hz bandpass filter and a 60 Hz notch filter

(G.tec’s built-in design). Afterwards signals filtered further by the previously mentioned

1.5–42 Hz linear-phase bandpass filter (our design). The filtered signals were downsampled

to 128Hz. For each channel, stimulus-onset-locked time windows of [0,500)ms following

each image onset was taken as the stimulus response.

Let us denote by ej the jth epoch in a given session and let be the ordered set containing all

epochs in the session. is partitioned into 10 equal-sized nonintersecting blocks, k; for

every ej there is exactly one kj such that ej ∈ kj. For every ej acting as a test sample, the

ERP classifier is trained on the set kj. During training, the classifier parameters λ and γ

are determined using this 10-fold cross-validation approach and grid search within the set 

kj. The kernel density estimates of the conditional probabilities of classification scores for

EEG classifiers are obtained using scores obtained from kj. The trained classifiers are

applied to their respective test epochs to get the 10-fold cross-validation test results

presented in the tables.
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An example of the change in AUC during the grid search is given in Fig. 2 for single

sequence with no language model (0-gram). This figure demonstrates that the regularization

and shrinkage are both necessary and significantly effective. However if the regularization is

applied too much it might degrade the performance.

The language model was trained as described in Section 3. For each letter in the alphabet,

1000 random samples were drawn from the same corpus (separate from the language model

training data) for testing purposes. For each letter sample we simulate the fusion of EEG

responses and the language model in the following way: (i) each sample is assumed to be the

target letter of a typing process using BCI; (ii) the predecessor letters of the target letter for

each epoch are taken from the corpus to calculate the letter probabilities of the n-gram

language models for each letter in the alphabet (Since subjects only focus on a single target

letter without knowing the predecessor letters of the typing process in this experiment, it is

assumed that the EEG responses created during an epoch are independent from the

predecessors.); (iii) under the assumption of independence of EEG responses with the

previous letters selected, for each epoch, the EEG responses for every letter is converted to

EEG classifier scores; (iv) matching model probabilities for each letter are obtained from the

language model; (v) and the fusion of ERP classifier scores and language model predictions

was achieved as described above, resulting in a joint discriminant score that needs to be

compared with a threshold depending on risk ratios for missing a target letter and a false

selection.

Fusion results were obtained for n-gram model orders L = 0, 1, 4, and 8. The EEG scores

were assumed to have been evaluated for R = 1, 2, and 3 sequences (to evaluate the

contribution of multi-trial information) to decide if a letter under evaluation was a desired

target letter or not. In the results, only EEG data from the first R sequences of each epoch

were used to classify each selected sequence count. Receiver operating characteristics

(ROC) curves were obtained using the decision rule given in (6) by changing the risk based

threshold, τ. An example ROC curve is given in Fig. 3. Area under the ROC curves were

calculated for different orders of the language model, for different number of sequences

used and for different positions of the sample target letter in the corresponding word from

the corpus. In Table 1, the area under the ROC curves (AUC) are compared. Each entry

contains the pair of minimum and maximum AUC over the sessions, i.e. each pair represent

the performance of the worst and best session. In Table 2, Table 3, and Table 4 the correct

detection rates are given for false positive rates of 1%, 5%, and 10%, respectively. These

correspond to different values of the τ, since selecting a point on the ROC curve correspond

to a false alarm rate, true positive rate and τ triplet.

The letter decisions after an epoch may be made by selecting the symbol with maximum

likelihood ratio. This corresponds to selecting the symbol with maximum Λ(𝖼t,s|𝖷t,s = X,𝗐t =

w) from (6). If applied with our offline analysis structure, the correct letter selection

probabilities averaged over subjects are given by Fig. 4. The plots show correct letter

selection probabilities vs inverse of number of repetitions. Since the number of repetitions is

a direct measure of epoch duration, we used its inverse as a speed indicator. These curves

indicate that usual speed/accuracy trade-offs apply to the proposed typing system and better

language models result in better performance.
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Obtaining expected typing duration from probability of correct decision—The

typing duration can be directly related to the correct decision accuracy. If the correct

decision making probability, p, is constant and greater than 0.5, the expected symbol

selection duration becomes

where Ts is the duration of the of a sequence, and Ns is the number of sequences. If p < 0.5,

with a nonzero probability the system will not be able to type the intended symbol, since it

won’t be able to correct its mistakes. Therefore p < 0.5 is considered to be failure as subject

might get stuck at a symbol. A similar relationship between expected time and probability of

detection is also independently obtained independently in (Dal Seno et al., 2010). An

alternative derivation for the formula is given in the Appendix.

Typing duration per symbol, estimated using this relation, for various number of sequences,

language model orders are given in Fig. 5 after averaging over sessions and subjects.

6.2. Online System

The proposed fusion approach is implemented in RSVP Keyboard™. Consequently, the real

time system is trialed in typing by healthy subjects as well as people with LIS. Both groups

were able to successfully operate the system for typing. To be able to demonstrate the

applicability of this approach, we present results from (Orhan et al., 2012). In the online

system, we employ a confidence based dynamic stopping criteria in addition to the online

setting proposed here, with a maximum of 6. The language model used in the online system

was limited to be a 6-gram model, due to the memory limitations in 32-bit Windows OS.

In the online setting, the symbol with the highest posterior probability is decided as the

intended symbol. Consequently, no risk based threshold, τ, is selected. This means we

employ a maximum a posteriori decision rule, which inherently assigns equal risk to every

discrete decision candidate. These candidates are the elements of the alphabet. The ROC for

the EEG discriminant is shown as an indicator for the quality of the EEG evidence, however,

that ROC is not directly used in the decision process. Therefore the risk assignments

associated with the τ that traces the ROC is not directly relevant to the final typing

performance. Hence, a value is not selected.

The experiments are done on two healthy subjects and one subject with LIS. The typing

performances corresponding to the healthy subjects are given in Fig. 6 and Fig. 7. The

locked-in subject successfully wrote HELLO_THERE_PEOP and THIS_IS_FAMILY__.

Unfortunately the sequence information for each decision was not recorded for the locked-in

subject. As extracted from the triggers, overall symbol typing duration was 74.7 and 45

seconds/symbol, respectively.
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7. Discussion

The analysis done in this paper supports the hypothesis that using context information to

support ERP classification can improve the performance of BCI typing systems. As the

number of stimulus repetitions and as the order for language models increase, the accuracy

of letter classification increases. A 0-gram language model (EEG only) performs the worst

and context priors from the the language model makes significant contribution in single-trial

decision making. The language model contributes more to letters that are internal in words

than those appear at the beginning. The language model is not as influential for the first

letters whereas the number of repetitions is. When the context is from the beginning of a

word, the language model has a high entropy, i.e. uncertainty on the symbols. Therefore it

doesn’t substantially improve the decision making process. However when the context is

more internal to the word, the language model becomes more peaked for some symbols.

Consequently, this phenomenon makes the language model more influential. Thus, the

results suggest that the BCI system increase the number of trials for the beginning of each

word and decrease it for the subsequent letters. Reduction in the number of stimulus

repetitions is a direct multiplier factor for reduction in time to type a given length text, hence

significant speed-up in typing may be possible.

The context information fusion approach proposed in this paper can be integrated with

almost any ERP-based BCI typing system in the field, e.g. P300-speller, by satisfying two

main requirements. Firstly, there needs to exist a language model that makes a probabilistic

prediction on the following selection based on the context. Secondly, a probabilistic

conditional likelihood estimator for the trials is required. This can easily be achieved while

using a probabilistic classifier. Alternatively, a parametric or non-parametric estimator, e.g.

KDE, may be used to estimate conditional likelihoods. Meeting these conditions allows a

BCI typing system to use the proposed approach to make a more informed decision,

consequently an increase in typing speed and accuracy is highly possible to be

accomplished.
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Appendix A. Accuracy and Speed Analysis

Catalan numbers: Catalan numbers arise in various counting problems (Stanley, 2011). One

of the problems that results with Catalan numbers is the nested parenthesis problem. The

number of the ways k left parenthesis and k right parenthesis can be ordered so that it

becomes a properly nested ordering, correspond to kth Catalan number. Explicitly it is,

. If we replace left parenthesis with 0 and right parenthesis with 1, the

problem can equivalently be restated as the number of ways to order k 0s and k 1s so that no

initial segment contains more 1s than 0s.
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Lemma 1: Let 𝖡n ∈ {0, 1} be i.i.d. Bernoulli random variables with success probability of p,

i.e. P(𝖡n = 1) = p. Let b1b2 ⋯ bl be a successful serie if following two conditions are

satisfied,

i. ∀r ∈ {1, 2, ⋯, l − 1} b1b2 ⋯ br, contains at least as many 0s as 1s,

ii. b1b2 ⋯ bl contains more 1s than 0s.

The probability of achieving a successful serie is

Proof. Using binomial series expansion

(A.1)

where  is the Binomial coefficient at y = −4z and ,

This converges if |4z| ≤ 1. Rearranging the equation,

(A.2)

Let sm be the number of 1s in b1b2 ⋯ bm. ∀m ∈ ℕ, sm+1 ≤ sm + 1, with the equality

condition is satisfied only if bm+1 = 1. If b1b2 ⋯ bl is a successful serie, sl ≥ ⌈(l + 1)/2⌉ from

condition (ii), and sl−1 ≤ ⌊(l−1)/2⌋ from condition (i), where ⌊․⌋ and ⌈․⌉ represent the floor

and ceil operators, respectively. Combining these three inequalities, we obtain
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Consequently, ≤ sl = sl−1 + 1, and ⌊(l + 1)/2⌋ = ⌈(l + 1)/2⌉. Hence bl = 1 and l is odd, i.e. l =

2k + 1. Therefore P(Success using 2k trials) = 0. Furthermore sl = ⌈(2k + 1 + 1)/2⌉ = k + 1.

As a conclusion, a successful serie of length l = 2k + 1 contains k zeros and k + 1 ones. Since

each element of the serie is obtained via independent Bernoulli trials, achieving a given

successful serie of length 2k + 1 has the probability of pk+1(1−p)k. The probability of

achieving success with 2k+1 trials is

(A.3)

where Ck is the number of different successful series with length 2k+1. In all successful

series, b2k+1 = 1, therefore Ck is the number of different ways k 0s and k 1s where ∀r ∈ {1,

2, ⋯, 2k}, b1b2 ⋯ br has no more 1s than 0s. Hence Ck is kth Catalan number,

. Correspondingly the probability of success becomes,

Using (A.2) for z = p(1 − p),

Corollary. If p < 0.5, with  probability there will never be a success.

Lemma 2: If p ≥ 0.5, the expected length of the series with success is 1/(2p−1), i.e.

where L is a rv representing the length of the successful series.

Proof. Similar to Lemma 1, using Binomial series for (A.1) for y = −4z and υ = −1/2,

For z = p(1 − p),
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(A.4)

Since from Lemma 1, all of the probability mass is contained by successful series for p >

0.5, using (A.3) we obtain,

Using A.4,

Appendix A.1. BCI perspective

Assume that the correctness of a decision at the end of each epoch be i.i.d. Bernoulli random

variables with success probability of p and the duration of the epoch, the duration a decision

is made, to be T.

To be able to type a symbol accurately, we have the following tree.
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Whenever the number of correct selections is more than the number of incorrect selections,

the target symbol is typed correctly. The correct typing of a symbol is equivalent to having a

successful serie as defined in Lemma 1. As an example, the successful conditions using 7

epochs are,

0101011

0100111

0011011

0010111

0001111.

Let the duration of an epoch is T. If we assume that the success of the decisions are

independent and identically distributed, than the problem becomes equivalent to Lemma 2.

Correspondingly we can calculate the expected symbol typing duration. If p > 0.5, expected

duration of typing a symbol becomes  by Lemma 2. If p < 0.5, the system wouldn’t be

able to operate, since the there is a nonnegative probability of failure.
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Figure 1.
Sample visual presentation screens; matrix presentation (on the left) and rapid serial visual

presentation (on the right)
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Figure 2.
An example of the change in AUC while searching shrinkage (λ) and regularization (γ).

Highest AUC is obtained for λ = 0.6 and γ = 0.1.
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Figure 3.
An example of an ROC curve corresponding to single sequence and 0-gram language model.
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Figure 4.
The average correct letter selection probability vs inverse of the number of repetitions for

various language model orders and letter locations in the word.
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Figure 5.
The average expected value of typing duration vs inverse of the number of repetitions for

various language model orders and letter locations in the word. In the graphs 100 seconds

mark is used jointly with the failure case. If the subject has a probability of getting stuck it is

considered as a failure.
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Figure 6.
HS1 number of sequences used to type each symbol. If there are multiple epochs needed to

correctly type a symbol, unintended decisions and backspaces to correct it are represented

with different colors. Typing duration was 17.8 and 23.2 seconds/symbol, respectively.
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Figure 7.
HS2 number of sequences used to type each symbol. If there are multiple epochs needed to

correctly type a symbol, unintended decisions and backspaces to correct it are represented

with different colors. Typing duration was 17.1 and 23.8 seconds/symbol, respectively.
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Table 1

The minimum and the maximum values of the area under the ROC curves obtained using fusion classifier

under different scenarios. The comparison is made using different number of sequences for classification,

different letter positions in the word and different language model orders.

1 sequence 2 sequences 3 sequences

0-gram (0.812, 0.884) (0.907, 0.956) (0.957, 0.985)

1-gram (0.892, 0.922) (0.944, 0.973) (0.972, 0.986)

4-gram
If 1st letter (0.892, 0.941) (0.954, 0.983) (0.977, 0.991)

If not 1st letter (0.975, 0.983) (0.985, 0.992) (0.991, 0.997)

8-gram
If 1st letter (0.905, 0.945) (0.960, 0.984) (0.979, 0.992)

If not 1st letter (0.991, 0.993) (0.995, 0.997) (0.995, 0.998)
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Table 2

The minimum and the maximum values of the detection rates for 1% false detection rate using fusion

classifier under different scenarios.

1 sequence 2 sequences 3 sequences

0-gram (0.101, 0.348) (0.500, 0.532) (0.625, 0.698)

1-gram (0.255, 0.371) (0.468, 0.583) (0.591, 0.698)

4-gram
If 1st letter (0.263, 0.416) (0.434, 0.774) (0.621, 0.810)

If not 1st letter (0.597, 0.684) (0.748, 0.849) (0.848, 0.927)

8-gram
If 1st letter (0.294, 0.448) (0.465, 0.782) (0.647, 0.835)

If not 1st letter (0.810, 0.854) (0.886, 0.932) (0.936, 0.972)
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Table 3

The minimum and the maximum values of the detection rates for 5% false detection rate using fusion

classifier under different scenarios.

1 sequence 2 sequences 3 sequences

0-gram (0.453, 0.548) (0.700, 0.810) (0.828, 0.889)

1-gram (0.556, 0.660) (0.767, 0.841) (0.900, 0.953)

4-gram
If 1st letter (0.606, 0.688) (0.740, 0.884) (0.886, 0.971)

If not 1st letter (0.842, 0.899) (0.912, 0.966) (0.960, 0.989)

8-gram
If 1st letter (0.614, 0.716) (0.766, 0.905) (0.899, 0.971)

If not 1st letter (0.951, 0.971) (0.972, 0.990) (0.986, 0.996)
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Table 4

The minimum and the maximum values of the detection rates for 10% false detection rate using fusion

classifier under different scenarios.

1 sequence 2 sequences 3 sequences

0-gram (0.550, 0.661) (0.800, 0.906) (0.900, 0.969)

1-gram (0.633, 0.797) (0.817, 0.905) (0.917, 0.984)

4-gram
If 1st letter (0.692, 0.836) (0.857, 0.961) (0.948, 0.990)

If not 1st letter (0.933, 0.961) (0.966, 0.991) (0.983, 0.996)

8-gram
If 1st letter (0.729, 0.840) (0.873, 0.964) (0.950, 0.990)

If not 1st letter (0.983, 0.990) (0.992, 0.997) (0.995, 0.998)

J Neural Eng. Author manuscript; available in PMC 2014 December 01.


