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Abstract
Liver ischaemic preconditioning (IPC) is known to protect 
the liver from the detrimental effects of ischaemic-
reperfusion injury (IRI), which contributes significantly to 
the morbidity and mortality following major liver surgery. 
Recent studies have focused on the role of IPC in liver 
regeneration, the precise mechanism of which are not 
completely understood. This review discusses the current 
understanding of the mechanism of liver regeneration 
and the role of IPC in this setting. Relevant articles 
were reviewed from the published literature using the 
Medline database. The search was performed using the 
keywords “liver”, “ischaemic reperfusion”, “ischaemic 
precondit ioning”, “regeneration”, “hepatectomy” 
and “transplantation”. The underlying mechanism of 
liver regeneration is a complex process involving the 
interaction of cytokines, growth factors and the metabolic 
demand of the liver. IPC, through various mediators, 
promotes liver regeneration by up-regulating growth-
promoting factors and suppresses growth-inhibiting 
factors as well as damaging stresses. The increased 
understanding of the cellular mechanisms involved in 
IPC will enable the development of alternative treatment 
modalities aimed at promoting liver regeneration 
following major liver resection and transplantation.
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INTRODUCTION
Ischaemic-reperfusion injury (IRI) is an inevitable 
phenomenon that results following major liver surgery, 
including partial hepatectomy and liver transplantation. 
As a consequence, parenchymal cell injury and liver 
dysfunction[1,2] of  varied severity leads to significant 
morbidity and mortality post-surgery[3-5], in particular, in 
patients with liver cirrhosis and steatosis[6-9]. In addition, 
IRI significantly impairs liver regeneration following 
hepatectomy[10,11]. 

Due to the inevitability of  ischaemia and reperfusion 
in liver surgery, various investigators have attempted to 
elucidate methods to limit the detrimental effects of  
IRI and improve liver function and regeneration of  the 
remnant liver[12,13]. These include hypothermic perfusion 
of  the liver[14], intermittent liver inflow occlusion[15,16] 
and ischaemic preconditioning (IPC)[17]. Liver IPC is an 
endogenous mechanism consisting of  a short period of  
vascular occlusion followed by reperfusion that renders 
the liver more tolerant to subsequent prolonged episodes 
of  ischaemia. Besides having protective effects on IRI 
following major liver resection and transplantation[17-19], 
it has been suggested that IPC is also beneficial in 
liver regeneration[20]. This article describes the current 
understanding of  the liver regeneration cascade as 
published and gives a balanced review on the mechanisms 
by which IPC influences liver regeneration. 

MECHANISMS OF LIVER REGENERATION
Liver regeneration is a complex and multi-factorial process 
that is mediated by interactions between regenerative 
cytokines, growth factors and metabolic demand of  the 
liver following surgery and IRI. 

The regenerative cytokine network and the priming pathway
During the first few hours following IRI, regenerative 
cytokines are produced that render the resting hepatocytes 
responsive to growth factors required for cellular division 
and proliferation[21,22]. This period is known as the 
“priming phase”. Various mediators have been implicated 
as possible triggers of  the regenerative cytokine network 
including gastrointestinal lipopolysaccharide (LPS)[23,24], 
Toll-like receptor-myeloid differentiation factor 88 (Myd88) 
signaling pathways[25-27], components from the complement 
cascade[28], nitric oxide (NO)[29-31] and prostaglandins[32].

Studies have identified tumour necrosis factor-alpha 
(TNF-α) and interleukin-6 (IL-6) as important regenerative 
cytokines[21,33,34]. Akerman and co-workers showed that 



anti-TNF antibodies led to delayed DNA synthesis in the 
regenerating rat liver and inhibited the increase in IL-6 
levels following partial hepatectomy[35]. The initiation of  
liver growth by TNF-α was shown to be dependent on 
its binding to TNF-receptor type 1 (TNF-R1)[36]. Mice 
deficient of  TNF-R1 exhibited a delay in liver regeneration 
and increased mortal ity fol lowing l iver resection, 
which was subsequently reversed by recombinant IL-6 
injection[37]. However, IL-6 lacking mice demonstrated 
impaired liver regeneration despite the presence of  
TNF-α, suggesting that TNF-R1 signaling results in the 
release of  IL-6[38]. IL-6 deficient mice not only showed 
impaired ability to regenerate, but also had increased IRI 
following liver resection[39]. However, Wuestefeld et al[40] 
reported that mice deficient in IL-6 and its common 
signal transducer, glycoprotein 130 (gp130) had no defects 
in DNA replication following partial hepatectomy. The 
groups of  Zimmers and Blindenbacher have suggested 
that the levels of  serum IL-6 present following liver 
resection in mice are critical in modulating its regenerative 
effects[41,42]. This may account for the difference in results 
observed in studies attempting to determine the effect of  
IL-6 in liver regeneration. It has been suggested that other 
mediators such as stem cell factor and oncostatin M may 
play a role in enhancing the effects of  IL-6 on hepatocyte 
regeneration[43-45].

Non-parenchymal l iver cells [Kupffer cells and 
sinusoidal endothelial cells (SECs)] are involved in 
the priming phase (Figure 1)[46]. Following stimulation 
from cytokine triggering mechanisms, TNF-α binds to 
TNF-R1 on non-parenchymal liver cells and stimulates 
the production of  IL-6[47], via the activation of  the 
transcription factor nuclear factor-kappa B (NF-κB)[48-50]. 
Ping and colleagues demonstrated that the secretion of  
regenerative cytokines, such as IL-6 by rat liver SECs 
was mediated by the phosphatidylinositol 3-kinase (PI 
3-kinase)/Akt signaling pathway[51], via NF-κB activation[50]. 
The transcription factor NF-κB is also known to be an 
important component of  pro-survival cellular signaling 

responses, and hence its activation will not only stimulate 
IL-6 production but also activate survival genes[52,53]. 

IL-6 acts directly on hepatocytes by binding to the IL-6 
receptor complex and induces the translocation of  signal 
transducer and activator of  transcription-3 (STAT-3) to 
the nucleus. This initiates a cascade of  events that leads to 
progression of  the cell cycle, culminating in the synthesis 
of  DNA and subsequent cellular mitosis[54,55].

Growth factors and growth-factor signaling systems in 
liver regeneration
Following this priming phase, cell cycle progression is then 
dependent on growth factors, such as hepatocyte growth 
factor (HGF), transforming growth factor-alpha (TGF-α) 
and epidermal growth factor (EGF)[56,57]. The two main 
growth-promoting signaling systems involved in liver 
regeneration are the HGF and its receptor (Met) and the 
epidermal growth factor receptor (EGFR) and its relatively 
large family of  ligands. The effect of  growth factors and 
their corresponding signaling systems may be dependent 
on the metabolic state of  the hepatocytes and the presence 
or absence of  other effectors[58]. 

HGF is produced by non-parenchymal cells of  the rat 
liver following liver injury[59-61] and partial hepatectomy[62], 
and acts on its receptor on hepatocytes. Several authors 
have demonstrated that HGF is crucial in promoting liver 
regeneration following partial hepatectomy and trans-
plantation in animal models[63-67]. HGF administration to 
recipients of  reduced-size liver grafts in rats illustrated 
early regeneration and provided hepatoprotection against 
rejection-related injuries[64,68,69]. These essential signals are 
regulated by HGF, via c-met, the gene on the HGF-receptor. 

EGF is mainly produced in the salivary glands in ro-
dents and plays an important role in hepatocyte prolifera-
tion by binding to the EGFR on hepatocytes[57]. Siaload-
enectomy-induced decrease in circulating EGF in mice and 
rat models resulted in impaired liver regeneration following 
partial hepatectomy, which was reversed by the administra-
tion of  EGF[70,71]. In addition, combined administration of  

Figure 1  Current proposed mechanisms 
of the priming pathway of liver regeneration. 
IRI: Ischaemic reperfusion injury; LPS: 
Lipo-polysaccharide; TLR: Tol l- l ike 
receptor; MyD88: Myeloid differentiation 
f a c t o r  8 8 ;  N O :  N i t r i c  o x i d e ;  P G : 
Prostaglandins; NPCs: Non-parenchymal 
cells; TNF: Tumour necrosis factor; TNFR1: 
TNF receptor type I; NF-κB: Nuclear 
factor-kappaB; IL-6: Interleukin-6; IL-6 
RC: IL-6 receptor complex; ERK-1/2: 
Extracellular regulated kinases 1/2; 
STAT-3: Signal transducer and activator 
of transcription-3.
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EGF and insulin increases the DNA synthesis following 
liver resection in cirrhotic rats[72]. Results from these stud-
ies suggest that EGF has a direct effect on hepatocyte pro-
liferation. 

TGF-α is produced in non-parenchymal cells, mainly 
the Kupffer cells. Mead and Fausto demonstrated that 
TGF-α may function as a physiological inducer of  hepato-
cyte DNA synthesis during liver regeneration by an au-
tocrine mechanism by binding to EGFR in both rat and 
culture models[73]. Besides TGF-α, there are many ligands 
for EGFR, including EGF, amphiregulin, heparin-binding 
EGF-like growth factor (HB-EGF) and epiregulin[57].  
Although TGF-α expression increases following partial 
hepatectomy in mice, TGF-α lacking mice do not display 
diminished liver regeneration[74,75]. This may be due to the 
fact that ligands such as EGF can also stimulate EGFR 
and activate common intracellular growth signaling path-
ways. Studies have shown that other growth factors, such 
as HB-EGF[50,76,77], amphiregulin[78], insulin and gluca-
gon[79,80] may also play a role in liver regeneration. 

Although these two growth-promoting signaling sys-
tems are largely independent, some integration may exist. 
Scheving et al[81] demonstrated that EGFR kinase inhibition 
by PKI166 (selective, potent inhibitor of  EGFR kinase) 
blocked the mitogenic effects of  HGF in cultured rat he-
patocytes, suggesting EGFR may regulate HGF-mediated 
hepatocyte proliferation. Nevertheless, various regenera-
tive pathways are initiated by HGF/c-met and the EGFR 
signaling mechanisms (Figure 2), which include the activa-
tion of  mitogen-activated protein kinases (MAPKs), such 
as extracellular signal-regulated kinases 1 and 2 (ERK-1/2; 
aka p42/44 MAPKs), c-jun-NH2-terminal kinases 1 and 
2 (JNK-1/2; aka p46/p54 SAPK) and p38 MAPKs. Col-
lectively, these MAPKs have been shown to play essential 
roles in cell growth, transformation differentiation and 
apoptosis[82-84].

ERK-1/2 activation has been shown to correlate with 
hepatocyte proliferation in animal studies and in vitro mod-
els[85-87]. Besides being responsive to growth factor signals, 
studies have demonstrated that ERK-1/2 activity can also 
be induced by cytokines such as TNF-α[88]. Hence, the 

ERK-1/2 may be a signaling pathway that integrates both 
growth factor and cytokine signaling. Serandour et al[89] 
demonstrated that a combination of  EGF and TNF-α in-
duced hepatocyte proliferation by 30%, compared to EGF 
alone in a hepatocyte-liver epithelial cell co-culture model. 
This study suggested that TNF-α mediated extracellular 
matrix remodeling was required for continued hepato-
cyte replication and proliferation. Hence, this study re-
iterates the importance of  the interaction of  cytokines and 
growth factors in the liver regeneration cascade. Although 
ERK-1/2 has been identified to have a key role in hepa-
tocyte growth, inhibition of  ERK-1/2 does not signifi-
cantly alter proliferation of  regenerating rat hepatocytes. 
However, inhibition of  p38 MAPKs results in decreased 
DNA synthesis, suggesting that p38 MAPKs activation 
is prerequisite for hepatocyte proliferation[90]. JNK-1 and 
p38 MAPKs are involved in the regulatory control of  
the induction of  nuclear proteins, such as cyclin D1. The 
activation of  cyclin D1 is one of  the earliest steps in the 
pathway of  resting cells to enter the pre-replicative phase 
of  the cell cycle. 

Metabolic demand of the liver
The increased metabolic demand imposed on the remnant 
liver following partial hepatectomy are likely to be inter-
connected with the activation of  the mechanisms involved 
in DNA replication to sustain liver function. This is likely 
to be dependent on energy levels and nutrient availability.

Mitochondria are the predominant source of  the high 
energy phosphates that are essential for energy-dependent 
processes in cells. Mitochondrial activity has been shown 
to be correlated with the recovery of  liver function and 
subsequent regeneration[91,92]. Maruyama et al[93] showed 
the recovery of  liver weight following hepatectomy was 
proportional to the energy (ATP) levels of  the remnant 
liver in rats.

Amino acid deprivation has been shown to inhibit 
the regeneration process in rat livers following liver 
resection[94]. Nelsen et al[95] showed that selective amino 
acid deprivation in culture and protein deprivation in 
mice impaired hepatocyte cyclin D1 expression and that 

Figure 2  Potentiation of growth factor 
signaling pathways involved in cell cycle 
progression in liver regeneration. NPCs: 
Non-parenchymal cells; HGF: Hepatocyte 
growth factor; EGF: Epidermal growth 
factor; TGF-α: Transforming growth 
factor-α; EGFR: Epidermal growth factor 
receptor; ERK-1/2: Extracellular regulated 
kinases 1/2; JNK: c-jun-NH2-terminal 
kinase; PI 3K/Akt: Phosphatidylinositol 
3-kinase/Akt-signal pathway.
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transfection of  cyclin D1 promoted cell cycle progression 
under these conditions. Hence, amino acids regulate 
hepatocyte proliferation via cyclin D1.

The absence of  bile acids in the intestine has been 
shown to delay liver regeneration following partial 
hepatectomy in rats[96]. Following liver surgery or injury, 
bile flow is stimulated[97] which results in the release of  bile 
from the gallbladder and its return through the entero-
hepatic circulation exposes the remnant hepatocytes to 
an increase in relative bile acid flux. This early phase of  
bile acid overload and subsequent bile acid signaling is 
necessary for normal liver regeneration. However, liver-
specific functions such as synthesis of  clotting factors and 
albumin and the continuous formation of  bile are impaired 
following partial hepatectomy and results in transient 
cholestasis[98]. The formation of  bile is dependent on the 
active secretion of  bile salts and other biliary constituents 
into the bile canaliculus by specific bile acid and organic 
anion transporters[99]. Gerloff  et al[100] demonstrated that 
the expression of  two ATP-dependent transporters [bile 
salt acid pump (Bsep) and multi-organic anion transporter 
(Mrp2)] was unchanged or slightly increased following 
partial hepatectomy in rats and this provided a potential 
mechanism by which the regenerating liver cells maintained 
or increased bile secretion. The authors in this study also 
suggested that the down-regulation of  certain transporters 
[sodium-taurocholate cotransporter (Ntcp) and organic 
anion transporting polypeptides (Oatp1 and Oatp2)] 
could be a protective mechanism against the potentially 
hepatotoxic bile salts[100]. The differential regulation of  
hepatobiliary transporters during the regeneration process 
are likely to be mediated by cytokines such as TNF-α[101]. 
Recently, Huang et al[102] showed that bile acid activation of  
nuclear receptor-dependent signaling pathways regulated 
the regeneration process by sensing the liver’s functional 
capacity following partial hepatectomy in mice. When 
inadequate function causes bile acids to build up, the 
resultant nuclear receptors activation not only induces 
negative feedback pathways that protect hepatocytes from 
bile acid toxicity but also increases the capacity of  the liver 
to manage the overload by promoting liver growth[102].

Results from recent studies have implicated the 
mammalian target of  rapamycin (mTOR) complex as 
a sensor of  nutrient-energy levels and its downstream 
mediators, such as p70 S6 kinase, are thought to regulate 
protein translation and cell growth[103,104]. Inhibition of  
the mTOR complex leads to diminish DNA replication 
following partial hepatectomy in mice and rat models[105,106]. 
The activity of  p70 S6 kinase has been shown to increase 
following partial hepatectomy[106] and mice lacking 
the S6 kinase demonstrated diminished hepatocyte 
proliferation[107]. Hence, energy is required for energy-
dependent signaling pathways and processing the available 
nutrients for the regeneration process to proceed.

ISCHAEMIC PRECONDITIONING IN LIVER 
REGENERATION
Since IPC was first described by Murry et al [108], this 
strategy has been developed more widely and is currently 

practiced in major liver surgery in several centers. The 
mechanism of  IPC is thought to be divided into two 
phases; early (classical/acute) pre-conditioning and delayed 
pre-conditioning. The hepatoprotective effects of  early 
preconditioning occur within minutes after reperfusion and 
are maintained for 1 to 2 h[109]. This phase is thought to be 
mediated by pre-existing substances. The “second window 
of  protection”, delayed pre-conditioning, re-appears 24 to 
72 h following IPC. The underlying mechanism is thought 
to rely on the modification of  gene expression resulting in 
protein production as its effectors[110]. Various substances 
have been implicated as key effectors in liver IPC including 
adenosine[111-114], protein kinase C[115-117], NO[118-121], heat-
shock proteins[122,123], tyrosine kinases[124], MAPKs[117], 
oxidative stress[125,126] and NF-κB[127,128]. 

The beneficial effects of  IPC on the liver following 
IRI include decrease in severity of  liver necrosis[129], anti-
apoptotic effects[130], preservation of  liver microcirculati-
on[131,132] and improvement in survival rate[119], and more 
recently, its role in liver regeneration is currently being 
evaluated. For IPC to influence liver regeneration, its key 
effectors must be involved in either promoting or up-
regulating mediators that are involved in the regeneration 
cascade or exert an inhibitory effect on growth-inhibitory 
factors of  liver regeneration or vice versa (Figure 3). 

Up-regulation of the regenerative cytokine network
Tumour necrosis factor-alpha and interleukin-6: 
The initiation of  the regenerative response is dependent 
on the early activation of  TNF-α and IL-6 responsive 
transcription factors[38,54]. Studies evaluating the effect of  
IPC in stimulating the release of  TNF-α and IL-6 have 
produced conflicting findings. Tsuyama et al[133] reported 
that IPC prolonged survival, suppressed liver necrosis 
induced by IRI and inhibited the release of  TNF-α at 1 
h, and IL-6 at 2 and 5 h of  the reperfusion phase in mice. 
IPC has also been shown to reduce TNF-α production in 
normothermic and cold ischaemic conditions[125,134,135]. 

In contrast, Bedirli and others demonstrated that 
IPC inhibited the production of  TNF-α, but not IL-6 
during the late (24 and 48 h) phases of  reperfusion in rats 
following partial hepatectomy[136]. This study suggested 
that IL-6 is an important mediator in IPC-treated rats 
in promoting hepatocyte proliferation following liver 
resection[136]. Using a TNF gene-deleted mice model, 
Teoh et al[137] demonstrated that pre-treatment with low 
dose IL-6 prior to hepatic ischaemia conferred equivalent 
hepatoprotection and earlier cell cycle entry as IPC 
compared to non-IPC-treated mice at 2 h of  reperfusion. 
Taken together, these studies emphasize the importance of  
IL-6 as a hepatoprotective and pro-proliferative mediator 
during the early and late phases of  reperfusion following 
IRI. Although IPC attenuates the late onset prolonged 
release of  TNF-α (up to 44 h) that mediates liver IRI in 
rats[138,139] and mice[140], IPC itself  is associated with the 
early increase (10 min) in liver and serum TNF-α following 
hepatic ischaemia[140]. Injection of  low dose TNF-α 30 min 
prior to liver ischaemia conferred similar hepatoprotection 
as IPC[140]. Both IPC and pre-treatment with low dose 
TNF-α injection were shown to stimulate earlier and more 
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vigorous cell cycle entry following liver IRI compared 
to naïve mice during the first 24 h of  the reperfusion 
period[140]. 

The differences reported among studies investigating 
the influence of  IPC on the regenerative cytokine network 
may be related to the differences in experimental models 
and protocols employed. In addition, both TNF-α and 
IL-6 are known to be important components in other 
cellular signaling responses. For example, high levels of  
serum TNF-α following liver ischaemia in rats is thought 
to mediate liver IRI[138,139]. Investigators have suggested 
that the mechanism of  action of  IL-6 in promoting liver 
regeneration appear to be separate from those involved 
in the modulation of  IRI[39,141]. The hepatoprotective 
mechanisms against IRI may involve the anti-inflammatory 
properties of  IL-6 and the down regulation of  TNF-α 
production[39,142,143]. This could potentially explain the 
differences in results obtained. 

Nevertheless, the influence of  IPC in promoting the 
early release of  TNF-α and the up regulation of  IL-6 
during the reperfusion phase, and subsequent modulation 
of  the hepatocellular proliferation process should not 
be discounted. In addition, these conflicting results may 
indicate that IPC can potentiate hepatocyte proliferation 
via at least two different pathways; liver regeneration via a 
TNF-α/IL-6-dependent pathway and a mitogen-induced 
proliferative pathway that does not require TNF-α or 
IL-6[144,145].

Down-regulat ion of inhibi tory mediators of l iver 
regeneration 
Hepatocyte growth is controlled by a balance of  both 
growth-promoting and growth-inhibiting factors[65,146]. 
While those cytokines and pathways previously described 
promote liver regeneration following liver resection, there 
are various mediators that are involved directly or indirectly 
in inhibiting the liver regeneration process. 
Interleukin-1 and transforming growth factor-beta 
as inhibitors of  liver regeneration: IL-1 is a mediator 
of  acute inflammation[147] and is a significant down-

regulator of  hepatocyte proliferation[148]. IL-1β delays 
and inhibits hepatocyte proliferation in both culture 
models[149] and following partial hepatectomy in rats[148]. 

Other investigators have implicated IL-1α as a mediator 
of  IRI and an inhibitor of  liver regeneration[150]. Besides 
antagonizing the stimulatory effects of  growth factors 
such as HGF[150], IL-1 strongly inhibits hepatocyte 
DNA synthesis leading to impaired liver regeneration in 
primary culture models[149]. TGF-β is another inhibitor 
of  hepatocyte DNA synthesis[151-153] and antagonizes the 
stimulatory effects of  HGF during liver regeneration in 
both in vitro and experimental hepatectomy models[152,154]. 
This anti-regenerative effect of  TGF-β is thought to 
be modulated by the induction of  oxidative stress in 
hepatocytes[155,156].

Results from several studies have suggested that IPC 
antagonizes the effects of  these inhibitory cytokines. 
Previous studies have shown that the release of  IL-1 is 
potentially influenced by NO during IRI in a variety of  cell 
types[157-159]. In IPC-treated rats that underwent reduced 
size liver transplantation, an increase in IL-1α levels were 
noted following NO synthesis inhibition[150]. This practice 
abolished the benefits of  IPC on hepatic IRI, oxidative 
stress and liver regeneration[3,150]. Furthermore, the 
detrimental effects of  NO inhibition were not observed 
when rats subjected to this treatment were subsequently 
treated with an IL-1 receptor antagonist (IL-1-RA)[150]. 
IL-1α has also been shown to be involved in pulmonary 
injury following liver IRI. IPC mediated by NO, reduced 
IL-1α release and protected against pulmonary damage[160]. 
Data from these studies suggests that IPC, through 
increased NO availability, inhibits the release of  IL-1, 
thereby protecting the liver graft and the lungs against 
liver IRI and preventing inhibition of  liver regeneration. 
Hence, one proposed mechanism by which IPC promotes 
liver regeneration is by inhibiting the release of  growth-
inhibitory cytokines from Kupffer cells, such as IL-1, 
which is dependent on up-regulation of  the NO pathway. 

The mechanism by which IPC inhibits IL-1 production 
may also be related to the induction of  intracellular 

Figure 3   The effect  of  ischaemic 
preconditioning and its effectors on the 
signaling pathways of liver regeneration. 
TK: Tyrosine kinase; PKC: Protein 
kinase C; NF-κB: Nuclear factor-kappaB; 
IκBα: Inhibitory binding protein for NF-
κB; ERK-1/2: Extracellular regulated 
kinases 1/2; HSPs: Heat shock proteins; 
NO: Nitric oxide; IL1-RA: Interleukin-1 
receptor antagonist; HGF: Hepatocyte 
growth factor; ROS: Reactive oxygen 
species; PI 3K/Akt: Phosphatidylinositol 
3-kinase/Akt-signal pathway; JNK: c-jun-
NH2-terminal kinase; C-D1: Cyclin D1; 
IL-1: Interleukin-1; TGF-β: Transforming 
growth factor-β.
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stress proteins[161,162], such as heat shock protein 70 
(HSP 70). IPC induces over-expression of  HSP 70 in 
isolated hepatocytes[163], and reduces liver IL-1 synthesis 
under normothermic conditions[164]. Besides expressing 
cytoprotective effects[165,166], HSP induction leads to the 
down-regulation of  IL-1 synthesis in pancreatic[161,167] and 
lung[162,168] cell studies. The induction of  HSP mediated 
by IPC may be independent of  the NO pathway as the 
increase in HSP by IPC was not modified when NO 
synthesis was inhibited[150]. These results suggest that 
IPC potentiates the overexpression of  HSP, via an NO 
independent pathway, leading to hepato-protection against 
IRI and ameliorates liver regeneration due to decrease 
inhibitor production. 

Another proposed mechanism by which IPC promotes 
liver regeneration could be due to the stimulation of  
IL-1-RA. IL-1-RA is an acute phase protein that has 
been shown to inhibit the effects of  IL-1α and IL-1β 
by competing for typeⅠand type Ⅱ IL-1 receptors[169]. 
This leads to a decrease in the inflammatory response[169] 
and abrogates liver IRI in vivo [170]. A recent study on 
gene expression profiling on patients undergoing partial 
hepatectomy revealed that IPC stimulated the expression 
of  the IL-1-RA gene[171]. Hence, liver over-expression 
of  IL-1-RA following IPC directly inhibits the effect of  
high IL-1 concentrations induced by IRI and results in 
reduced liver injury and necrosis[171]. Although no study 
has formally assessed the effect of  IL-1-RA on markers 
of  liver regeneration, IL-1-RA could be indirectly involved 
in the regeneration process by antagonizing the inhibitory 
effects of  IL-1 on hepatocyte proliferation. 
Inhibitory binding protein for NF-κB (IκB-α) and 
NF-κB activity: The transcriptional activities of  NF-
κB are tightly controlled by its inhibitory proteins, 
especially IκB-α [172]. The phosphophorylation and 
subsequent degradation of  IκB-α leads to the liberation 
of  NF-κB proteins allowing binding to a variety of  
promoters and triggers gene expression. Data from 
studies examining the role of  NF-κB as an effector of  
IPC have demonstrated conflicting results. IPC facilitated 
the activation of  transcription factor NF-κB in an in vivo 
murine model, and this was parallel to the degradation 
of  its inhibitory protein, IκB-α[173]. Ricciardi and co-
workers found that IPC increased IκB-α phosphorylation 
and NF-κB concentration prior to cold ischemia in 
pig liver grafts. Data from this study suggested that 
the underlying mechanism involved was related to the 
activation of  second messengers of  tyrosine kinase[127]. 
Another proposed mechanism for NF-κB activation and 
degradation of  IκB-α could be mediated by TNF-α. The 
release of  TNF-α by IPC and pre-treatment with low-
dose TNF-α was shown to increase IκB-α degradation 
and increase NF-κB DNA binding in a mouse model[140]. 
However, Li et al [174] observed that IPC inhibited the 
activity of  the transcription factor NF-κB during the early 
reperfusion phase (1 and 2 h), and this was accompanied 
by diminished TNF-α expression and reduced IRI in liver 
transplantation rat model. 

One explanation for this contradictory evidence might 
be the different experimental models and methodology 
used. Nevertheless, these results indicate that IPC does 

attenuate the nuclear levels of  the transcription factor NF-
κB. It is possible that other mediators may have an effect 
in determining the increase or inhibition of  NF-κB activity 
and its corresponding cellular signaling responses. 

Increased production of growth factors 
Hepatocyte growth factor (HGF): Franco-Gou et al[175] 
demonstrated an increase in both liver and plasma HGF 
levels following IPC in reduced size liver transplantation 
rat model, and this was associated with an increase in 
hepatocyte proliferation. The modulation of  HGF levels 
by IPC could be mediated by the generation of  NO 
and its effect on TGF-β and HGF concentrations. IPC 
reduced the levels of  TGF-β with an associated increase 
in HGF levels[150]. Similar results were seen with NO 
preconditioning treatment[150]. This suggests that IPC 
reduced TGF-β levels with a parallel increase in HGF and 
subsequent hepatocyte proliferation, possibly mediated by 
NO. 

HGF may a lso exhib i t the abi l i ty to promote 
hepatocyte survival. In a liver IRI rat model, pre-treatment 
with HGF inhibited the production of  reactive oxygen 
species and its damaging effects[176]. Similar results were 
observed in a hypoxia-reoxygenation-induced oxidative 
stress model in hepatocytes[177]. These results suggest that 
the anti-apoptotic effect of  HGF could pave the way for 
hepatocyte proliferation following IRI. 

Activation of downstream mitogen-activated protein 
kinases (MAPKs)
Extracellular signal-regulated kinases 1 and 2 
(ERK-1/2): ERK-1/2 is predominantly activated by 
growth-promoting factors. Studies have shown that protein 
kinase C plays a pivotal role in the activation of  ERK-1/2 
signaling pathway[163,178] that participates in the preservation 
of  hepatocytes[163]. A number of  reports have indicated 
that protein kinase C was critical for the development of  
IPC in rat, rabbit and human myocardiocytes[179,180]. Gao 
and associates showed that the activation of  protein kinase 
C and its downstream ERK-1/2 mediators were increased 
in IPC-treated in vivo and in vitro models[163]. Data from this 
study also suggested that the expression of  HSP70 was 
reduced and the protective effect of  IPC was diminished 
when ERK-1/2 activity was reduced by a MAPK inhibitor 
(PD-98059). HSP70 expression and the cytoprotective 
effect of  IPC were also reduced by a protein kinase C 
inhibitor (chelerythrine) in both in vitro and in vivo settings. 
Hence, this suggests that IPC increased the activation of  
ERK-1/2, via protein kinase C. The increased activation 
of  protein kinase C-dependent ERK-1/2 by IPC may also 
increase the expression of  HSP70. The up-regulation of  
ERK-1/2 by IPC may help in promoting liver regeneration 
in both the priming phase and growth factor signaling 
pathways. 
p38 mitogen-activated protein kinases and c-jun-
NH2-ter minal kinase 1 : Both p38 MAPKs and 
JNK-1 are known to modulate proliferative or apoptotic 
signaling pathways[181]. The activation of  MAPKs and its 
corresponding downstream signaling pathway is regulated 
by specific stimuli and is also dependent on cell type. The 
co-activation of  NF-κB protects the hepatocyte from 
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apoptosis and is involved in the priming of  hepatocytes to 
enter the cell cycle[22,182]. 

Carini and co-investigators demonstrated that hypoxic 
preconditioning activated the p38 signaling pathway in rat 
hepatocytes subjected to hypoxia-re-oxygenation injury 
in vitro[117]. Teoh et al[173] demonstrated that proliferating 
hepatocytes were identified earlier in IPC-treated livers 
in a murine model of  partial liver ischaemia, and this 
corresponded with the earlier activation and sustained 
maintenance of  p38 and JNK-1. This suggests that IPC 
stimulus could prime quiescent hepatocytes to enter the 
cell cycle early, hence, setting up a regenerative response to 
compensate for hepatocyte injury by IRI. 

Activation of survival and proliferative pathways
Phosphatidylinositol 3-kinase (PI 3-kinase)/Akt 
signaling pathway: The activation of  the PI 3-kinase/
Akt cascade has been shown to have a positive impact on 
cell survival and proliferation[183-186], inhibition of  apoptosis 
and encourage the uptake of  glucose and amino acids 
following stimulation by various growth-promoting factors 
in certain cells[187-189]. Data from the Izuishi group showed 
significant Akt activation following IPC in an in vivo 
model and suggested that this might contribute to the up 
regulation of  glucose and amino acid transport after IRI 
required for liver regeneration[190]. 

Activation of nuclear proteins
Cyclin D1: Cyclin and cyclin-dependent kinases are 
involved in cell cycle regulation[191], in particular, the D 
group cyclins[192]. Cyclin D1 is a nuclear protein required 
for cell cycle progression in the G1 phase[192-194], and 
controls hepatocyte proliferation[195]. IPC-treated livers 
showed earlier expression of  cyclin D1 protein that 
corresponded with enhanced entry of  hepatocytes into the 
cell cycle[173]. Cai and co-workers demonstrated that IPC 
stimulated cyclin D1 mRNA and protein expression during 
the early reperfusion phase in IPC-treated rat livers[196]. The 
early production of  cyclin D1 could be mediated by the 
activation of  the p38 MAPK pathway[182]. The cyclin D1 
promoter region includes binding sites for NF-κB[197] and 
NF-κB activation is evident in hepatocytes during the early 
phase of  regeneration following partial hepatectomy[48,198]. 
There is a close link between the activation of  NF-κB by 
degradation of  IκB-α cyclin D1 activation and cell cycle 
progression. IPC can modulate these transcription factors 
and increase cell proliferation, which is possibly one of  the 
protective mechanisms against IRI. 

Energy metabolism
Results obtained from an experimental model of  70% 
hepatectomy indicated that liver regeneration was closely 
correlated to the ATP levels of  the liver remnant[93]. 
Studies have shown that IPC in normothermic conditions 
preserved the adenine nucleotide pool[199,200] and this is 
thought to be a consequence of  the down regulation of  
cellular metabolism[199,201]. In a rat model of  hypothermic 
transplant preservation injury, hepatocytes exposed to 
IPC had higher ATP concentrations and increased protein 
synthesis[202]. This improvement in energy metabolism is 

thought to contribute to hepatocyte viability following 
IRI[202]. Besides improvement in energy metabolism, 
Yoshizumi et al[203] also demonstrated an increase in bile 
production in IPC-treated rats. However, Franco-Gou and 
colleagues demonstrated similar energy metabolism (ATP, 
adenine nucleotides, ATP/ADP ratio and energy charge) in 
the IPC- and non-IPC-treated rat livers[175]. The difference 
in results obtained could be related to the difference in 
experimental models used. However, the role of  IPC in 
modulating liver energy metabolism, which involves the 
preservation of  ATP should not be discounted. 

CLINICAL IMPLICATIONS OF ISCHAEMIC 
PRECONDITIONING IN LIVER SURGERY
The use of  IPC as a surgical strategy to l imit the 
detrimental effects of  IRI during liver surgery has been 
extensively researched. Encouraging findings in animal 
studies in both warm ischaemia[203] and transplantation 
models[119], led to the first human trial which demonstrated 
that IPC reduced the severity of  post-operative liver injury 
as well as alleviating endothelial cell injury[17]. Further 
human liver resection studies have shown that IPC reduces 
post-operative serum aminotransferase levels in both 
steatotic[204] and cirrhotic[205] livers and improves post-
reperfusion haemodynamic stability[206] (Table 1). Although 
IPC is protective against IRI[207,208], it did not influence the 
morbidity and mortality rates in human studies[204,209,210]. In 
the transplant setting, Jassem et al[211] reported lower serum 
aminotransferase levels and shorter intensive care stay in 
IPC-treated cadaveric donor allografts. Other studies have 
not shown IPC to be beneficial in terms of  graft function. 
Azoulay et al [212] found that although IPC protected 
cadaveric liver grafts against IRI, this beneficial effect was 
counter-balanced by decreased early graft function. Cescon 
and colleagues demonstrated similar protective effects 
against IRI, but IPC showed no clinical benefit (primary 
graft function and survival rates) in liver transplantation 
from deceased donors[213]. Although gaining popularity, the 
incongruous evidence of  the clinical effects of  IPC has 
precluded its widespread adoption in liver transplantation 
units.

Following major liver resection and IRI, the ability of  
the liver to regenerate is crucial to maintain liver function. 
This also has implication in live donor orthotopic liver 
transplantation and transplantation of  segmental liver 
grafts. Since Yamada and co-workers first demonstrated 
that IPC significantly increased the regenerative capacity 
of  the remaining hepatocytes in a rat model of  IRI[20], 
various investigators have attempted to elucidate the role 
of  IPC on liver regeneration using both culture and animal 
model studies as described above. At present, although 
there is no clinical trial published on the effect of  IPC on 
liver regeneration, there are studies evaluating methods of  
monitoring liver regeneration. Special radiological imaging 
techniques currently available not only show volume of  
regeneration, but also determine functional ability of  the 
remnant and regenerated liver[214,215]. This is another step 
towards assessing the role of  IPC in liver regeneration in 
the clinical scenario.
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With the increasing laboratory evidence of  protection 
against IRI and improved liver regeneration by IPC, 
several aspects of  this strategy could be developed 
pharmacologically that may be more clinical applicable 
than IPC itself. This is especial ly in cases with a 
background of  chemotherapy-induced steatohepatitis[216] 
and cirrhosis[217,218]. Pharmacologic agents targeting 
mediators of  IPC that can be potentially developed include 
HGF, IL-6 and IL-1-RA. However, several issues such as 
the timing of  administration of  these agents, therapeutic 
doses and immunological response of  the recipient need to 
be determined. Further understanding of  the mechanistic 
pathways of  IPC may pave the way for the development 
of  these agents that are capable of  conferring protection 
against IRI and promote liver regeneration.
CONCLUSION

Liver regeneration is of  clinical significance in view of  
the increasing number of  major liver resections and the 
increasing use of  marginal donor liver and split-liver 
allografts for transplantation. Successful patient outcome 
often depends on liver regeneration, particularly in patients 
with cirrhotic and steatotic livers. Regeneration of  the liver 
following IRI and major liver surgery is a complex process 
that involves the integration of  a network of  cytokines, 
growth factors, kinases, transcription factors and metabolic 
demands of  the liver. 

In comparison with the evidence available on the 
effect of  IPC on IRI, its role in liver regeneration is 
stil l undetermined. However, current research has 
demonstrated that the beneficial effects of  IPC on 
liver regeneration is mediated by up regulating growth-

Table 1  Previous published human studies on the results of ischaemic preconditioning following liver resection and transplantation

Study group Sample1 Surgery IPC2 Ischaemia and reperfusion time (min)3 Parameters assessed Outcome of IPC

Clavien et al[17]

(2000)
24 (12) Liver 

resection
10I + 10R IPC and control (TI: 30) PT, Bilirubin, ALT, AST, 

Histology, Caspase-3 and 
8 activity, SEC apoptosis, 
Blood loss, Transfusion, 
ITU stay, LOS

Protective against IRI
Beneficial in patients 
with steatosis

Clavien et al[204]

(2003)
100 (50) Liver 

resection
10I + 10R IPC (TI: 36 ± 5.9, Op: 225 ± 73), 

Control (TI: 35 ± 6.8, Op: 240 ± 92)
PT, Bilirubin, ALT, AST, 
Histology, Hepatic ATP, 
Blood loss, Transfusion, 
ITU stay, LOS

Protective against IRI
Beneficial in younger 
patients, those with 
steatosis and longer 
periods of occlusion

Li et al[205]

(2004)
29 (14) Liver 

resection
5I + 5R IPC (TI: 18 ± 3.6, Op: 191.3 ± 74.9), 

Control (TI: 17.4 ± 2.3, Op: 208.2 ± 45.3)
Bilirubin, ALT, AST, 
Histology, Caspase-3 activity, 
SEC apoptosis, LOS

Protective against IRI, 
mainly HCC patients 
with cirrhosis 
Shorter hospital stay

Nuzzo et al[209]

(2004)
42 (21) Liver 

resection
10I + 10R IPC (TI: 54 ± 19, Op: 321 ± 92), 

Control (TI: 36 ± 14, Op: 339 ± 112)
PT, Bilirubin, ALT, AST, 
Transfusion, Morbidity, 
Mortality

Reduces operative bleeding
Protective against IRI 

Chouker et al[206]

(2004) 
68 (22) Liver 

resection
10I + 10R IPC (TI: 32 ± 6.3, Op: 251 ± 46), 

Control without PR (TI: NA, Op: 52 ± 30), 
Control with PR (TI: 35 ± 11, Op: 257 ± 83)

ALT, AST, Fluid loss, 
Transfusion, 4Cardiovascular 
status 

Protective against IRI
Improves haemodynamic 
stability

Chouker et al[207]

(2005)
75 (25) Liver 

resection
10I + 10R IPC (TI: 35.5 ± 2.7, LR: 32.2 ± 2.0), 

Control without PR (TI: NA, LR: 39 ± 4.5), 
Control with PR (TI: 35.6 ± 2.6, LR: 33.2 ± 2.3) 

IL-6, IL-8, Cytochrome c, 
Adhesion molecules 
[B2-integrins (CD18)], 
Histology (neutrophil 
infiltration)

Protective against IRI 
by attenuating 
neutrophil activation 
and IL-8 release

Chouker et al[208]

(2005)
73 (25) Liver 

resection
10I + 10R IPC (TI: 35.12 ± 13.6, LR: 31.50 ± 9.1), 

Control without PR (TI: NA, LR: 34.77 ± 16.5), 
Control with PR (TI: 34.2 ± 10.9, LR: 32.13 ± 10)

PT, ALT, AST, α-GST Protective against IRI
Prevented early rise 
of α-GST

Koneru et al[210]

(2005)
62 (34) Transplant 5I + 5R IPC (CI: 384 ± 92, WI: 41 ± 5.8), 

Control (CI: 415 ± 87, WI: 37 ± 5.6) 
INR, Bilirubin, ALT, AST, 
Histology (apoptosis, 
hepatocyte swelling), 
LOS, Survival (6 mo)

No beneficial effect 

Azoulay et al[212]

(2005) 
91 (46) Transplant 10I + 10R IPC (CI: 436 ± 116, Op: 441 ± 119), 

Control (CI: 461 ± 96, Op: 462 ± 98)
PT, Bilirubin, ALT, AST, 
Histology, Graft function, 
Morbidity, Mortality

Better ischaemic tolerance 
Decreased early 
graft function

Jassem et al[211]

 (2005)
23 (9) Transplant 10I + 10R IPC (CI: 620 ± 190, WI: 43.9 ± 13), 

Control (CI: 665 ± 280, WI: 40.4 ± 9)
AST, INR, Lactate, ITU stay, 
Histology (neutrophil 
infiltration, platelet 
deposition), Graft function

Protective against IRI 
Reduces inflammatory 
response 
Shorter ITU stay 

Cescon et al[213]

(2006)
47 (23) Transplant 10I + 15R 5IPC [TI: 388 (259-830), Op: 440 (225-725)], 

Control [TI: 383 (279-695), Op: 465 (280-1015)]
PT, Bilirubin, ALT, AST, 
Histology (neutrophil, 
lymphocyte infiltration, iNOS, 
apoptosis), Graft function, 
Survival (1 yr)

Protective against IRI 
No clinical benefit

1Patients stated in brackets are the number of patients who had ischaemic preconditioning treatment; 2IPC was performed by portal triad clamping in all 
these studies; 3Ischaemia and operative times are presented as mean ± SD unless otherwise stated; 4Cardiovascular status refers to mean arterial pressure, 
central venous pressure, heart rate, stroke volume index, systemic vascular resistance index, fluid infusion and catecholamines requirements; 5Ischaemia and 
reperfusion times in this study were presented as median (range). I: Ischaemia; R: Reperfusion; IPC: Ischaemic preconditioning group; PR: Pringle maneuver; 
TI: Total ischaemia time; CI: Cold ischaemia time; WI: Warm ischaemia time; Op: Total operative time; LR: Liver resection time; ITU: Intensive therapy unit; 
LOS: Length of hospital stay; PT: Pro-thrombin time; INR: International normalized ratio of pro-thrombin time; ALT: Alanine aminotransferase; AST: Aspartate 
aminotransferase; α-GST: Alpha-Gluthathione S-Transferase; iNOS: Inducible form of nitric oxide synthase; ATP: Adenosine triphosphate; HCC: Hepatocellular 
carcinoma; IL: Interleukin; SEC: Sinusoidal endothelial cell; IRI: Ischaemia-reperfusion injury.
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promoting factors, suppressing growth-inhibitory 
factors and preserving energy levels for regeneration. 
Nevertheless, more studies are still required to further 
delineate the underlying pathophysiology of  IPC and 
impact on mediators of  liver regeneration. It is also 
important to determine whether the beneficial effect of  
IPC in the laboratory setting is reproducible in clinical 
practice. By understanding the underlying mechanisms by 
which IPC influences liver regeneration, other strategies 
as alternatives to IPC, could be developed to modulate the 
regenerative pathways in the clinical setting and improve 
outcomes of  patients following major liver resection 
and transplantation. The assessment of  IPC on liver 
regeneration in human studies is clearly the next step. 
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