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Abstract
The development and progression of gastric cancer 
involves a number of genetic and epigenetic alterations 
of tumor suppressor and tumor-related genes. The 
majority of differentiated carcinomas arise from 
intestinal metaplastic mucosa and exhibit structurally 
altered tumor suppressor genes, typified by p53, 
which is inactivated via the classic two-hit mechanism, 
i.e. loss of heterozygosity (LOH) and mutation of the 
remaining allele. LOH at certain chromosomal loci 
accumulates during tumor progression. Approximately 
20% of differentiated carcinomas show evidence 
of mutator pathway tumorigenesis due to hMLH1 
inactivation via hypermethylation of promoter CpG 
islands, and exhibit high-frequency microsatellite 
instability. In contrast, undifferentiated carcinomas 
rarely exhibit structurally altered tumor suppressor 
genes. For instance, while methylation of E-cadherin  
is often observed in undifferentiated carcinomas, 
mutation of this gene is generally associated with the 
progression from differentiated to undifferentiated 
carcinomas. Hypermethylation of tumor suppressor 
and tumor-related genes, including APC, CHFR, DAP-
kinase, DCC, E-cadherin, GSTP1, hMLH1, p16, PTEN, 
RASSF1A, RUNX3,  and TSLC1,  can be detected in 
both differentiated and undifferentiated carcinomas 
at varying frequencies. However, the significance of 
the hypermethylation varies according to the analyzed 
genomic region, and hypermethylation of these genes 
can also be present in non-neoplastic gastric epithelia. 
Promoter demethylation of specific genes, such as 
MAGE and synuclein γ , can occur during the progressive 
stages of both histological types, and is associated with 
patient prognosis. Thus, while the molecular pathways 
of gastric carcinogenesis are dependent on histological 
background, specific genetic alterations can still be used 
for risk assessment, diagnosis, and prognosis.
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INTRODUCTION
Ever since the initial report of  frequent mutation of  the 
p53 tumor suppressor gene in primary gastric cancers[1], 
a growing number of  genetic and epigenetic alterations 
in tumor suppressor and tumor-related genes have been 
determined to be involved in gastric carcinogenesis. In 
addition to p53 mutations, epithelial (E)-cadherin mutations 
are also frequent and appear to be important in gastric 
carcinogenesis[2,3], such that germline mutations of  p53 
and E-cadherin have both been associated with hereditary 
gastric cancer[4,5]. These genes are frequently inactivated by 
the combination of  mutation and loss of  heterozygosity 
(LOH)[1,3], although E-cadherin can also be inactivated by 
promoter hypermethylation[6]. LOH at other chromosomal 
loci can accumulate during gastric cancer progression[7]. 
In contrast, mutations of  the DNA mismatch repair 
genes hMSH2 and hMLH1 are rare, despite the finding 
of  high-frequency microsatellite instability (MSI) in 
gastric cancers [8-10]. Recently, hypermethylation of  
the hMLH1 promoter CpG island was found to be 
responsible for the development of  the majority of  
gastric cancers exhibiting MSI[11]. Thus, inactivation of  
hMLH1 via promoter methylation leads to MSI, and 
subsequently to mutations in simple repetitive sequences 
contained within a number of  target genes associated 
with cell proliferation, apoptosis, or mismatch repair, e.g., 
transforming growth factor-β type II receptor (TGF-β RII), bcl-2-
associated X (BAX), hMSH3, and E2F-4[12]. In addition to 
hMLH1, promoter hypermethylation of  tumor suppressor 
and tumor-related genes such as APC, CHFR, COX2, 
DAP-kinase , DCC , E-cadherin , GSTP1 , HRK , LOX , 
MGMT , p14 , p15 , p16 , PTEN , RASSF1A , RUNX3 , 
14-3-3 sigma, THBS1, TIMP-3, and TSLC1 has also been 
described in gastric cancer[6,11,13-36]. Hypermethylation 
can occur in both neoplastic and non-neoplastic gastric 
epithelia, and therefore is regarded as an early event in 
gastric carcinogenesis. Another epigenetic alteration, 
hypomethylation, also appears to be involved in gastric 
carcinogenesis. Global DNA hypomethylation is thought 
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to occur during the early stages of  tumor development 
in gastr ic and other t i ssues, s imi lar to promoter 
hypermethylat ion described above[37-40]. However, 
demethylation of  individual genes, such as MAGE 
and synuclein-γ, probably occurs during the progressive 
stages of  gastric carcinogenesis, after global DNA 
hypomethylation[41,42].

From a histopathologic point of  view, gastric cancers 
are classified as either differentiated carcinomas, which 
form tubular or papillary structures (roughly corresponding 
to the intestinal type), or undifferentiated carcinomas 
in which such structures are inconspicuous (roughly 
corresponding to the diffuse type)[43,44]. It was thought 
that differentiated carcinomas, with a predominantly 
intestinal cellular phenotype, originated from gastric 
epithelial cells that had undergone intestinal metaplasia, 
while undifferentiated carcinomas rose from native gastric 
epithelial cells[43-45]. However, recent advances in mucin 
histochemistry and immunohistochemistry indicate that 
some differentiated carcinomas have a predominantly (and, 
on occasion, exclusively) gastric cellular phenotype and 
appear to be derived from foveolar epithelial cells[46,47]. It 
also appears that gastric cancers can undergo changes in 
cellular phenotype over time, from gastric to intestinal[48]. 
Thus, differentiated carcinomas may develop from native 
gastric mucosa or intestinal metaplastic mucosa. Therefore, 
although it has been proposed that different genetic 
pathways exist for differentiated and undifferentiated 
histological types[49], the tumor types must share some 
common genetic alterations as a significant proportion 
of  differentiated carcinomas progress to become 
undifferentiated carcinomas[50]. Indeed, recent studies 
have indicated that tumor cell phenotype is a marker of  
particular genetic aberrations[46,47].

In this article, genetic and epigenetic alterations 
involved in the development and progression of  gastric 
cancer are reviewed in relation to tumor histogenesis.

GENETIC AND EPIGENETIC ALTERATIONS 
IN GASTRIC CANCER
p53
The p53 gene product functions as a cellular gatekeeper 
and plays important roles in cell growth and division. It 
assists DNA repair by effecting G1 arrest in the presence 
of  DNA damage, induces DNA repair genes, and initiates 
apoptosis if  DNA strand breaks fail to repair[51]. Mutation 
of  p53 is one of  the most prevalent genetic alterations in 
human cancer, including gastric carcinoma. The gene is 
usually inactivated through the classic two-hit mechanism, 
i.e. LOH and mutation of  the remaining allele, rather than 
by DNA methylation[52]. The frequency of  p53 mutations 
in early and advanced differentiated gastric carcinomas is 
consistent at around 40% each, similar to that observed for 
advanced undifferentiated carcinomas[53,54]. However, p53 
mutations are rare in early undifferentiated carcinomas[17,55]. 
Thus, p53 gene mutation is thought to be an early event, 
critical in the development of  differentiated carcinomas, 
and the frequent detection of  p53 mutations in advanced 
undifferentiated carcinomas is postulated to be due to 
the frequent conversion of  differentiated cancers to an 

undifferentiated phenotype as the tumors progress[50].

hMLH1
Epigenetic methylation-associated inactivation of  the 
hMLH1 mismatch repair gene is a potent trigger of  MSI, 
especially high-frequency MSI (MSI-H)[56]. Since the first 
report of  hMLH1 inactivation associated with DNA 
methylation in colorectal cancer[56], similar epigenetic 
alterations have been described in gastric cancer[11,13,16]. 
DNA methylation of  hMLH1 promoter region CpG island 
is tightly associated with the loss of  hMLH1 expression in 
gastric cancers exhibiting MSI[11,13,16]. About 20% of  early 
differentiated carcinomas exhibit MSI-H[47], while early 
undifferentiated carcinomas show no evidence of  MSI 
(as described below)[17]. hMLH1 methylation is frequently 
observed in gastric cancers from elderly patients[31] and 
has also been described in non-neoplastic gastric epithelia 
surrounding gastric cancers with MSI[16,57]. Thus, this field 
defect may increase the risk of  subsequent neoplasia as 
MSI-H has also been observed in patients with multiple 
gastric cancers[58].

E-cadherin
E-cadherin is a member of  a family of  transmembrane 
glycoproteins involved in calcium-dependent cell-to-cell 
adhesion and appears to play a role in organogenesis and 
morphogenesis[59]. Germline E-cadherin mutations have 
been reported in familial diffuse-type of  gastric cancers[5]. 
E-cadherin is frequently inactivated via the classic two-
hit mechanism in sporadic forms of  undifferentiated-
scattered (diffuse) type gastric carcinomas, but not in 
differentiated or undifferentiated adherent type gastric 
carcinomas[2,3]. While nearly half  of  the undifferentiated-
scattered (diffuse) type gastric carcinomas contain 
E-cadherin mutations[2,3], such mutations are rare in early 
undifferentiated carcinomas[3,60], and are only detected in 
the undifferentiated component of  mixed differentiated/
undifferentiated carcinomas[61]. This suggests that 
E-cadherin mutations are involved in the de-differentiation 
of  such tumors. In contrast, E-cadherin methylation, 
which is associated with decreased E-cadherin expression, 
is observed in >50% of  early stage undifferentiated 
carcinomas[6,17], and is also observed in surrounding non-
cancerous gastric epithelia[14,31]. Thus, the epigenetic 
inactivation of  E-cadherin via promoter methylation 
may play a major role in the development of  purely 
undifferentiated carcinomas of  the stomach, while 
mutation of  the gene may lead to the de-differentiation of  
differentiated gastric tumors.

Other tumor suppressor genes
APC gene mutat ion is a cr i t ica l genet ic event in 
both the familial and sporadic forms of  colorectal 
tumorigenesis[62,63]. APC mutations are rare in extracolonic 
cancers, including gastric carcinomas, with less than 
10% of  both differentiated and undifferentiated gastric 
carcinomas containing such mutations[17,46,54,64]. While APC 
promoter methylation has also been reported in colorectal 
and other human neoplasms[65], APC methylat ion 
(promoter 1A) does not appear to be oncogenic in gastric 
cancer[18]. Mutation and promoter methylation of  DCC, 
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p16, and PTEN genes have also been investigated in 
gastric cancer[14,23,24,66]. Although few mutations in these 
genes have been found, the promoter regions of DCC 
and p16, but not PTEN, exhibit frequent methylation, 
suggesting that epigenetic inactivation of  DCC and p16 
may be involved in gastric carcinogenesis[14,23]. DAP-kinase 
promoter methylation is more frequent in undifferentiated 
than in differentiated type tumors[21,30,32]. While RASSF1A 
gene mutations are uncommon, silencing of  the gene 
by promoter methylation is frequent in carcinomas, 
including gastric carcinomas[19,67]. RUNX3 , one of  
the three mammalian runt-related genes, was recently 
identified as a tumor suppressor gene that frequently 
shows loss of  expression due to hemizygous deletion 
and hypermethylation in gastric cancer[27]. RUNX3 
methylation is mostly cancer-specific, and is observed 
in about half  of  all gastric cancer cases[32]. TSLC1 has 
been shown to be inactivated by biallelic methylation 
in a proportion of  primary gastric cancers[25]. CHFR 
hypermethylation is found to occur concurrently with 
hMLH1 hypermethylation and is more frequent in patients 
over 70 years of  age[68].

Thus, many tumor suppressor and tumor-related genes 
are methylated in neoplastic and non-neoplastic gastric 
epithelia, although the significance of  hypermethylation 
is dependent on the analyzed genomic region[69]. In non-
neoplastic gastric epithelia, hypermethylation tends to 
initially occur in the 5’- and 3’-flanking regions of  CpG 
islands and then spreads toward the transcription start 
site, whereupon protein expression is shut down. This 
ultimately results in a field defect that places the affected 
tissue at an increased risk of  gastric cancer development[29]. 
Hypermethylation near a transcription start site, which 
can be cancer-specific and result in gene silencing, can 
be used as a diagnostic marker of  malignancy in tissues 
or other samples, such as serum or ascites. In addition, 
hypermethylation at a region next to such a critical region 
might indicate an early signal of  carcinogenesis.

LOH
In differentiated carcinomas of  the stomach, frequent 
LOH has been reported for several chromosomal arms, 
including 2q, 4p, 5q, 6p, 7q, 11q, 14q, 17p, 18q and 
21q[7,70-73]. However, few reports have focused on the 
occurrence of  LOH in undifferentiated carcinomas, 
probably due to the difficulty in performing LOH 
analysis on tissue samples with low tumor cellularity. 
Nonetheless, frequent LOH at 5q has been reported for 
both differentiated and undifferentiated tumor types at 
advanced stages[74,75]. Apart from a few exceptions, such 
as the p53 gene on 17p, the target suppressor gene(s) in 
the LOH regions on these chromosomal arms remain(s) 
largely unknown. For example, IRF-1 on 5q31.1 and DPC4 
(Smad4) on 18q21.1 are both located at commonly deleted 
regions identified in gastric cancer, but exhibit infrequent 
mutations in gastric cancer[70,75,76]. The methylation status 
of  the IRF-1 and DPC4 (Smad4) gene promoter regions 
remains to be investigated.

MSI
MSI is defined as the presence of  replication errors in 

simple repetitive microsatellite sequences due to defective 
DNA mismatch repair, and can be classified as either 
high-frequency (MSI-H), low-frequency (MSI-L) or stable 
(MSS)[77]. The prevalence of  MSI in gastric cancer varies 
among different studies. While some reports suggest that 
differentiated carcinomas exhibit more frequent MSI than 
undifferentiated carcinomas[78], other reports observe 
the opposite findings[79]. Again, these contradictory 
observations may be due to the frequent conversion 
of  differentiated- to undifferentiated-type tumors[50], as 
described for p53 mutations. In a study where MSI analysis 
was restricted to early differentiated carcinomas (ordinary 
type), about 20% of  tumors were classified as MSI-H[47]. 
In contrast, no evidence of  MSI has been found in early 
undifferentiated carcinomas[17]. Gastric cancers with an 
MSI phenotype rarely exhibit structural alterations, such 
as mutations or LOH of  tumor suppressor genes[46,47,80], 
which suggests that the mutator and suppressor pathways 
are independent of  each other at least in the early stages 
of  gastric carcinogenesis. 

Promoter demethylation of MAGE and synuclein-γ
Melanoma ant igen (MAGE)-encoding genes are 
expressed in various tumor types via demethylation of  
their promoter CpG islands, which are silent in all non-
neoplastic tissues except for the testis and placenta. While 
the function of  the MAGE peptides is not known, their 
tumor-specific expression is clearly of  great significance 
to immunotherapy[81-83]. Demethylation of  both the 
MAGE-A1 and -A3 promoters is more frequently 
observed in gastric cancer patients with advanced clinical 
stages. These patients also exhibit a higher incidence of  
lymph node metastasis compared to patients without 
demethylation[41]. Furthermore, patients exhibiting 
MAGE-A1 and -A3 promoter demethylation tend to 
have a worse prognosis, as assessed by the log rank test[41]. 
Demethylation of  MAGE-A1 and -A3 tends to occur 
during the progressive stages of  gastric cancer, and may 
therefore act as a prognostic factor for gastric cancer 
patients. 

The synuclein-γ (SNCG) gene, also known as breast 
cancer specific gene 1 (BCSG1), is a member of  the synuclein 
neuronal protein family, along with synuclein-α (SNCA) and 
synuclein-β (SNCB)[84-86]. SNCG protein expression is highly 
tissue-specific, being expressed at presynaptic terminals in 
the brain and peripheral nervous system[85,86]. However, this 
tissue specificity is lost during breast and ovarian cancer 
disease progression[87]. While SNCG expression is normally 
silent in the breast and ovary, it becomes abundantly 
expressed in the vast majority of  advanced-stage breast 
and ovarian cancers[87]. SNCG demethylation is also found 
to be more frequent in primary gastric cancers positive 
for lymph node metastasis than in metastasis-negative 
cancers, and more frequent in stage II-IV cancers than 
in stage I cancers[42]. An increased tendency for gastric 
cancer patients with poor prognoses to show SNCG 
demethylation compared to gastric cancer patients with 
normal methylation has also been reported[42].

Global DNA hypomethylation is thought to occur 
during the ear ly stages of  tumor development in 
gastric and other tissues[37-40]. However, MAGE-A1 
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and -A3 demethylation are very rare in various organs 
obtained at autopsy from various age groups[41], and 
only partial demethylation of  SNCG is present in non-
neoplastic gastric epithelia[42]. Therefore, we hypothesize 
that demethylation of  these genes occurs during the 
progressive stages of  gastric carcinogenesis, after global 
DNA hypomethylation.

GENETIC AND EPIGENETIC ALTERATIONS 
IN PRECANCEROUS LESIONS
Gastric adenoma/dysplasia
The histopathologic criteria for the diagnosis of  gastric 
intramucosal neoplasia are not universal, and differences 
in the diagnostic criteria used by Japanese and Western 
pathologists have been recognized[88]. It is reasonable 
to suggest that the discrepant results obtained from 
the genetic analyses of  lesions may be explained by 
the differences in histopathologic criteria, although a 
worldwide accepted histological classification has recently 
been proposed[89,90]. In my experience, gastric adenomas 
rarely exhibit genetic alterations, such as p53 mutation, 
LOH, or MSI[10,13,54], with mutations of  APC gene being 
the only relatively frequent (20%) DNA structural 
alteration[91]. Indeed, APC gene mutations are more 
frequent in gastric adenomas than in differentiated or 
undifferentiated gastric carcinomas[17,46,54,64]. More recently, 
we reported that results of  the Padova international 
classification[89] correlated with both molecular and 
cellular phenotypic profiles, and that p53 and hMLH1 
immunohistochemistry clearly discriminated these 
lesions[92]. Histopathologic observations have suggested 
that malignant transformation of  gastric adenomas 
is infrequent, occurring in only 2.5% of  conventional 
protruded and 5.0% of  depressed adenomas[93]. However, 
detection of  certain genetic alterations, such as p53 
mutations, LOH, or MSI, in adenomas may be indicative of  
malignant transformation[94]. It is noteworthy that gastric-
type intramucosal neoplasia, often diagnosed as adenoma 
or dysplasia[95], frequently shows a mutator defect[16].

Gastric intestinal metaplasia/non-neoplastic gastric 
epithelia
Intestinal metaplasia may be a precursor of  differentiated 
carcinomas. This concept is supported by the finding that 
p53 mutations are detected in gastric intestinal metaplasia, 
especially incomplete-type, in patients with gastric 
cancer[96]. Although frequent MSI has been reported in 
intestinal metaplasia[97], there is little evidence of  mismatch 
repair defects in this tissue[98]. Helicobacter pylori infection 
can accelerate the hypermethylation of  genes such as 
E-cadherin[99]. Hypermethylation of  tumor suppressor and 
tumor-related genes increases with age, and is thought 
to result in field defects in different organs[100], although 
the significance of  the hypermethylation appears to be 
dependent on the genomic region analyzed[69], as described 
above for gastric cancer. 

CONCLUSIONS
The molecular pathways of  gastric carcinogenesis are 

dependent on the histological background, such that 
different genes are affected in different histologies. DNA 
structural alterations, including p53 gene mutation and 
LOH, occur predominantly within intestinal metaplastic 
mucosa. Hypermethylation of  tumor suppressor and 
tumor-related genes can occur in both metaplastic and 
native gastric epithelial cells, although at least some of  the 
genes involved, such as E-cadherin, are more prone in the 
latter. Approximately 20% of  differentiated carcinomas 
display evidence of  mutator pathway tumorigenesis due to 
hMLH1 hypermethylation. Demethylation of  MAGE and 
synuclein-γ tends to occur during progressive disease stages. 
Thus, these genetic and epigenetic alterations can be used 
in the risk assessment, diagnosis and prognosis of  gastric 
cancer. 
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