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INTRODUCTION
Inflammatory reaction is a common pathophysiological 
process. Appropriate inflammatory reaction has protective 
effects, but excessive reaction often induces injury. The 
underlying pathological changes of  inflammation include 
exudation, alteration, and proliferation, which are the 
outcomes mediated by inflammatory mediators such as 
platelet-activating factor (PAF), leukotriene, tumor necrosis 
factor alpha (TNF-α), and interleukin-1 (IL-1). Numerous 
researches have shown that PAF is one of  the most potent 
mediators in many inflammatory processes, and not only 
induces inflammatory reaction but also mediates synthesis 
and release of  other mediators to aggravate the degree of  
inflammation.

Acute pancreat i t i s (AP) i s a common c l in ica l 
inflammatory disease. A single injection of  PAF into the 
superior pancreaticoduodenal artery of  rabbits induces 
dose-dependent morphologic alterations of  pancreatic 
tissue and increases serum amylase levels[1]. Murine 
pancreatic acini synthesizes PAF[2] and pancreatic vascular 
endothelium expresses PAF receptor[3]. These findings 
suggest that this mediator may have a role in AP. AP is 
usually classified into mild and severe type. Severe acute 
pancreatitis (SAP) still has a high mortality rate, while the 
pathogenesis of  AP is not well-defined. There is growing 
evidence that pathogenetic factors deciding the severity of  
AP are complicated. PAF has been strongly implicated in 
the development of  AP.

Here we have reviewed the role of  PAFs such as 
excessive leukocyte stimulation, microcirculatory disorder, 
gut endothelial barrier dysfunction, bacterial translocation, 
acinar cell necrosis and apoptosis in the pathogenesis of  
AP.

BIOLOGICAL CHARACTERISTICS OF PAF
Phospholipids are the major components of  cellular 
membrane and are a l so known to be the source 
of  a rach idon ic ac id , wh ich i s metabo l i zed in to 
bioactive eicosanoids. Some phospholipids, including 
lysophosphatidic acid, sphingosine-1-phosphate, and PAF, 
exert bioactive effects. The term PAF is used because it 
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Abstract
P l a t e l e t - a c t i v a t i n g f a c t o r ( PA F ) i s a p o t e n t 
proinflammatory phospholipid mediator that belongs 
to a family of biologically active, structurally related 
alkyl phosphoglycerides with diverse pathological 
and physiological effects. This bioactive phospholipid 
mediates processes as diverse as wound healing, 
physiological inflammation, angiogenesis, apoptosis, 
reproduction and long-term potentiation. PAF acts 
by binding to a specific G protein-coupled receptor 
to activate multiple intracellular signaling pathways. 
Since most cells both synthesize and release PAF 
and express PAF receptors, PAF has potent biological 
actions in a broad range of cell types and tissues. 
Inappropriate activation of this signaling pathway is 
associated with many diseases in which inflammation 
is thought to be one of the underlying features. Acute 
pancreatitis (AP) is a common inflammatory disease. 
The onset of AP is pancreatic autodigestion mediated 
by abnormal activation of pancreatic enzyme caused by 
multiple agents, which subsequently induce pancreatic 
and systemic inflammatory reactions. A number of 
experimental pancreatitis and clinical trials indicate 
that PAF does play a critical role in the pathogenesis 
of AP. Administration of PAF receptor antagonist can 
significantly reduce local and systemic events that occur 
in AP. This review focuses on the aspects that are more 
relevant to the pathogenesis of AP.
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was first described as the substance responsible for the 
aggregation of  platelets released from rabbit basophils 
after IgE stimulation[4]. Although PAF is still commonly 
used, it has diverse and potent physiological effects[5,6]. 
The chemical structure of  PAF is 1-O-alkyl-2-acetyl-sn-
glycero-3-phosphocholine determined in 1979 by three 
independent laboratories[7-9].

Two distinct pathways for the synthesis of  PAF have 
been demonstrated: the remodeling pathway and de novo 
pathway[10]. The remodeling pathway is mainly involved in 
the synthesis of  PAF by stimulated inflammatory cells. The 
activities of  lyso-PAF acetyltransferase (lyso-PAF AcT) 
and PAF-synthesizing phosphocholine transferase (PAF-
PCT) are directly responsible for PAF synthesis. Lyso-
PAF AcT catalyzes the transfer of  acetyl moiety from 
acetyl CoA to free hydroxyl at sn-2 position of  1-alkyl-
sn-glycero-3-phosphorylcholine. PAF-PCT catalyzes the 
conversion of  1-alkyl-2-acetyl-sn-glycerols to PAF[11]. The 
synthesis and catabolism of  PAF are highly regulated. 
The final molecular composition of  PAF in tissues and 
the expression of  its biological activities depend on the 
activation of  catabolic pathways. The most important 
enzyme in limiting the PAF bioactivity is a PAF-specific 

acetylhydrolase (PAF-AH), which cleaves the short acyl 
chain at sn-2 position and forms biologically inactive lyso-
PAF[12].

A diverse array of  cells has been shown to synthesize 
PAF upon appropriate stimulation. In particular, PAF 
is produced by a variety of  cells such as monocytes/
macrophages, polymorphonuclear leukocytes (PMN), 
eosinophils, basophils, platelets, mast cells, vascular 
endothelial cells, and lymphocytes, which may participate 
in the inflammatory reaction[5,13]. Murine pancreatic acini 
can also synthesize PAF induced by cerulein[2].

PAF is a phospholipid mediator possessing a wide 
spectrum of  potent proinflammatory action. In vitro, PAF 
promotes chemotaxis, aggregation, granule secretion, and 
oxygen radical generation of  leukocytes and adherence of  
leukocytes to the endothelium. Moreover, PAF is involved 
in allergy, wound healing, atherosclerosis, angiogenesis, 
apoptosis, reproduction, and long-term potentiation[5,6,13]. 
Recent findings have revealed some novel effects of  PAF. 
Through inflammatory cytokines, estrogen depletion 
enhances PAF production as a unique autocrine factor 
for osteoclast functions. Inhibition of  PAF function 
might pave the way for a new strategy to prevent post-
menopausal bone loss without disturbing osteoblast 
functions[14]. The study investigating the functional PAF 
receptor on cell and nuclear surfaces of  leukemic B cells 
in chronic lymphocytic leukemic patients showed that the 
potent immunoregulatory role of  PAF in B cell physiology 
and the presence or absence of  PAF receptor on leukemic 
B cells may profoundly affect their in vivo behavior[15]. In jet 
fuel-induced immune suppression, PAF receptor binding 
can modulate immune function and is an early event in 
the induction of  immune suppression by immunotoxic 
environmental agents targeting the skin[16]. PAF can amplify 
the heterogeneity between ischemic and normal cardiac 
myocytes during ischemia/reperfusion which might play 
a vital role in the pathogenesis of  arrhythmia induced by 
ischemia/reperfusion[17], increase the expression of  nerve 

growth factor mRNA and protein in human astrocytes 
under hypoxia which may protect the nervous tissue by 
promoting neuronal survival[18]. PAF is also involved in the 
etiopathogenesis of  type 1 diabetes[19] and the pathogenesis 
of  acute liver failure as well as in augmented compensatory 
liver tissue repair post-acetaminophen treatment[20].

PAF acts by binding to a specific receptor, subsequently 
activates multiple intracellular signaling pathways in 
various cell types. PAF receptor belongs to G protein-
coupled receptor subfamily[21,22]. Most cells that produce 
PAF possess PAF receptors and are targets for PAF action. 
The pancreatic vascular endothelium also expresses PAF 
receptor[3]. It has been demonstrated that PAF binds to the 
receptor and activates the associated G protein. In turn, G 
protein activates a phosphatidylinositol-specific PLC which 
hydrolyzes a membrane phospholipid, phosphatidylinositol 
4, 5-bisphosphate (PIP 2) , to generate two second 
messengers: diacylglycerol and inositol 1,4,5-trisphosphate 
(IP3). These compounds mediate the release of  Ca2+ from 
intracellular store (ER) and activation of  protein kinase C 
(PKC), respectively. Moreover, it has been shown that PAF 
can activate mitogen-activated protein kinases (MAPKs), 
including extracellular signal-regulated kinase (ERK)[23-27], 
p38 MAPK[25-27], and c-Jun N-terminal kinase (JNK)[28]. 
Using human umbilical vein endothelial cells (HUVECs) 
as a model system, Deo et al.[29] suggested for the first time 
that PAF activates pertussis toxin-insensitive Gαq protein 
upon binding to its seven transmembrane receptors and 
adenylate cyclase, as well as elevates cAMP levels, which 
activate protein kinase A (PKA). PAF exposure induces 
the expression of  TIMP2 and MT1-MMP and binding of  
p130Cas, Src, SHC, and paxillin to FAK. It was found that 
PAF is capable of  stimulating nuclear factor kappa B (NF-
κB) activation and transcription of  c-fos and c-jun genes 
in inflammatory cells[30,31]. 

INVOLVEMENT OF PAF IN THE PATHOGENESIS 
OF AP
AP is a common clinical condition and is usually classified 
into mild and severe type. SAP is characterized by acute 
morbidity, rapid progression, multiple complications, and 
high mortality rate. While the pathogenesis of  AP is not 
well-defined, considerable advances have been made in 
this research field. At present, it is considered that severity 
of  pancreatitis is associated with excessive leukocyte 
stimulation, microcirculatory disorder, gut endothelial 
barrier dysfunction, bacterial translocation, and acinar cell 
necrosis and apoptosis. In the pathogenesis of  AP, PAF 
has been strongly implicated (Table 1).

Role of PAF in excessive leukocyte stimulation
In the course of  AP, abnormal intra-acinar cell activation 
of  digestive enzymes induced by diverse stimuli triggers 
morphopathological changes in pancreatic and adjacent 
tissues, such as inflammation, edema, hemorrhage, 
necrosis, and even systemic manifestations. In 1988, 
Rinderknecht[32] proposed the hypothesis of  excessive 
leukocyte stimulation. Consequently, a great number of  
studies have demonstrated that the initial injury results in 
the expression of  inflammatory mediators such as PAF. 
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These mediators mediate activation and infiltration of  
leukocytes, a subsequent systemic inflammatory response, 
and multiple organ injury.

In vivo and in vitro studies suggest that proteolytic 
enzyme trypsin stimulates cytokine production from 
macrophages [33]. In an idealized in vitr o experiment 
mimicking cerulein-induced AP, cerulein induces amylase 
release, increases [Ca2+]i and PAF synthesis of  cultured 
pancreatic acini [2]. PAF plays a role in inflammatory 
reaction and induces expression of  adhesion molecules 
that mediate neutrophil accumulation. However, PAF 
antagonists reduce expression of  adhesion molecules and 
the severity of  inflammation when given immediately 
after the induction of  mild AP in mice[34]. Another 
research showed that PAF mediates macrophages to 
release thermolabile neutrophil chemotactic protein that 
induces neutrophil migration[35]. Moreover, activation 
of  neutrophils with zymosan leads to the activation of  
PAF receptors followed by activation of  CD11/CD18, 
phagocytosis of  zymosan particles and subsequent IL-8 
release. The production of  IL-8 by neutrophils in response 
to particulate stimuli may play a role in the recruitment 
and activation of  neutrophils in inflammatory reaction[36]. 
In addition, PAF is able to enhance superoxide production 
of  PMN, expression of  CD11b, and release of  elastase, 
which are essential factors in the pathophysiology of  
multiple-organ failure[37]. PAF can delay apoptosis of  PMN 
and amplify the inflammatory response by activating ERK 
signaling pathway[38,39]. Furthermore, PAF induces NF-
κB activation and regulates gene expression through G 
protein-coupled transcription factor activation pathway[40]. 
NF-κB is a key element in inflammatory responses based 
on its ability to regulate the expression of  inflammatory 
mediators. Activation of  NF-κB within the pancreas is 
sufficient to initiate an inflammatory response[41]. 

The above findings indicate that PAF is involved 
in adhesion, chemotaxis, degranulation and, the whole 
procedure of  activation of  leukocytes. Besides, it can 
amplify inflammatory response via delaying apoptosis of  
PMN. PAF receptor is almost ubiquitous in diverse type 
cells and acts not only on local pancreas but also on distant 
organs to induce systemic inflammatory response and 
multiple organ injury. 

Role of PAF in microcirculatory disorders
A number of  exper imenta l s tud ies sug ges t tha t 
pathogenesis of  AP correlates with microcirculatory 
disorders. Many complications of  SAP are due to the 
amplifying effects of  microcirculatory disruption. 
Constriction of  interlobular pancreatic arteries 2 min after 
intraductal infusion of  sodium taurocholate has been 
observed, indicating that microcirculatory changes may 
occur in early AP[42]. There is evidence that pancreatic 
microcirculatory changes are closely related to the process 
of  AP. Ligating duodenum over half  its circumference 
at 2 cm on either side of  the duodenal entry of  the 
biliopancreatic duct induces histopathologic alterations 
of  the pancreas such as edema, parenchymal necrosis, 
thrombosis and hemorrhage, indicating that tissue ischemia 
plays a role in increasing the severity of  pancreatitis[43]. 

Many vasoactive mediators activated during the 
inflammatory response to pancreatic injury can cause 
microcirculatory disorders in AP. PAF is one of  the most 
important mediator. Increased microvessel permeability 
caused by PAF may be related to direct endothelial cell 
activation, adhesion molecule expression, and leukocyte 
activation. Synthesis of  PAF by endothelial cells at the 
site of  plasmin generation may render the endothelial 
cell surface pro-adhesive for neutrophils and favor a local 
increase in vascular permeability[44]. Recent data suggest 
that PAF is able to directly modulate microvascular 
permeabil ity and increase venular permeabil ity [45]. 
Increased capillary permeability permits sequestration of  
macromolecules and fluid, which causes a deficiency of  
circulating blood volume and microcirculatory disorders. 
Predominant microcirculatory disorders are nutritive 
capillary perfusion failure, with the consequence of  
prolonged focal hypoxia or anoxia, and inflammation-
associated microvascular leukocyte recr ui tment , 
CD11b and intercellular adhesion molecule (ICAM)-
1-mediated leukocyte-endothelial cell interaction and 
loss of  endothelial integrity, which may result in both 
edema formation and necrosis. Moreover, vasospasm and 
microthrombi formation due to hypercoagulability can also 
lead to the deterioration of  pancreatic microcirculation 
and pancreatic necrosis.

It has been shown that the treatment of  AP with PAF 
antagonists can significantly improve capillary blood flow 
in the pancreas and colon, renal, and respiratory function 
as well as survival rate, stabilize capillary permeability, 
decrease fluid loss into the third space[46,47]. The partial 
protective effect of  PAF antagonists further supports the 
role of  PAF in microcirculatory disorders.

Role of PAF in gut endothelial barrier dysfunction
Gut endothelial barrier dysfunction is a critical factor for 
the development of  tissue injury and organ dysfunction 
in AP. The study on dogs colonized with a strain of  
Escherichia coli (E coli 6938K) bearing plasmid pUC4K 
showed that most dogs with severe pancreatitis have 
ischemic changes in the small bowel mucosa and E coli 
translocation to the pancreas and mesenteric lymph nodes 
(MLNs), suggesting that the gut is a primary source of  
infection in pancreatitis[48].

Table 1 Important roles of PAF in pathogenesis of AP

Main pathogenesis of AP Important roles of PAF

Excessive leukocyte 
stimulation

To facilitate adhesion, chemotaxis and 
degranulation and to mediate the production 
of inflammatory mediators of leukocytes, and 
to delay PMN apoptosis

Microcirculatory disorder To modulate indirectly/directly microvascular 
permeability

Gut endothelial barrier 
dysfunction

To upregulate adhesion molecules, 
intercellular signals and leukocyte–endothelial 
cell interactions

Bacterial translocation To depend on its ability to induce gut 
endothelial barrier dysfunction

Acinar cell necrosis and 
apoptosis

To mediate neutrophil chemotaxis and delay 
neutrophil apoptosis in the pancreas, but 
neutrophils convert acinar cells undergoing 
apoptosis into necrotic cells
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PAF plays a key role in the development of  pancreatitis-
associated gut endothelial barrier dysfunction and acts 
via the upregulation of  adhesion molecules, intercellular 
signals and leukocyte-endothelial cell interactions. 
Leukocyte β2-integrins play an important role in PAF-
induced intestinal necrosis, and CD11b/CD18 are the 
main adhesion molecules involved in the pathogenesis 
of  injury[49]. Moreover, PAF can activate rapidly intestinal 
xanthine oxidase (XO) by converting proteolytic xanthine 
dehydrogenase (XD) to XO in the ileal epithelium. This 
effect is mediated by neutrophils. XO is an important 
source of  reactive oxygen species in the small intestine and 
its activation promotes PAF-induced PMN sequestration 
in the intestine, thus causing gut endothelial injury[50]. PAF 
can alter the cytoskeletal structure of  intestinal epithelium 
and cause the influx of  FD-4 (an index of  intestinal 
permeability) from intestinal lumen to systemic circulation, 
and induce tyrosine phosphorylation of  E-cadherin and 
cadherin-associated proteins. These findings reveal the 
possible mechanism of  PAF in modulating intestinal 
mucosal permeability, PAF modulates macromolecular 
movement across the intestinal mucosal barrier probably 
v ia tyros ine phosphor ylat ion of  E-cadher in and 
cytoskeletal alteration of  enterocytes[51]. In addition, gut 
microcirculatory disorder plays a pivotal role in endothelial 
barrier dysfunction.

Further support for the role of  PAF in gut endothelial 
barrier dysfunction is provided by the fact that the 
administration of  PAF antagonists improves pancreatitis-
associated gut barrier dysfunction characterized by 
increased endothelial permeability, albumin leakage from 
blood to the mucosal interstitium and intestinal lumen, and 
bacterial translocation[52-54].

Role of PAF in bacterial translocation
Bacterial translocation is an important source of  pancreas 
infection in AP and is responsible for the high incidence 
of  pancreas and distant infections occurring after AP. 
Support for the role of  PAF in bacterial translocation 
is provided by the fact that PAF antagonists reduce 
bacterial translocation. Pretreatment with PAF antagonists, 
WEB-2170, lexipafant and BN52021, reduces bacterial 
translocation to distant organs other than the pancreas[55]. 
Similar findings showed that AP induced by supramaximal 
cerulein stimulation significantly increases bacterial 
translocation in MLNs, pancreas, liver, spleen and blood[56]. 
Both recombinant PAF-acetylhydrolase (rPAF-AH) and 
PAF receptor antagonist, BN52021, can decrease bacterial 
translocation in the pancreas and blood. In addition, rPAF-
AH decreases bacterial translocation in MLNs. The action 
of  PAF involved in bacterial translocation may be due to 
its ability to induce gut endothelial barrier dysfunction in 
AP.

Role of PAF in acinar cell necrosis and apoptosis
Pancreatitis is characterized by inflammation and death 
of  acinar cells. Death can occur due to either necrosis or 
apoptosis. Kaiser et al.[57] have observed marked necrosis 
but very little apoptosis in severe pancreatitis models. 
In contrast to the findings in severe pancreatitis, mild 

pancreatitis is characterized by very little necrosis but a 
high degree of  apoptosis, suggesting that apoptosis may 
be a teleologically beneficial response to acinar cell injury 
in general, especially in AP. Deficiency of  pancreatic 
connexin converts reversible AP into severe disease and 
decreases the sensitivity of  acinar cells to apoptotic stimuli, 
demonstrating that apoptosis determines the severity of  
AP[58].

It has been reported that PAF is involved in acinar cell 
damage[59]. Treatment with antineutrophil serum (ANS) 
and BN52021 can prevent inflammatory responses caused 
by cerulein and decreases cell damage. Treatment with 
ANS increases apoptosis in cerulein-infused animals, 
indicating that cerulein stimulates pancreatic production 
of  PAF. PAF mediates both apoptosis and neutrophil 
chemotaxis in the pancreas. Neutrophils in turn may 
convert acinar cells undergoing apoptosis to necrotic cells.

THERAPEUTIC EFFECTS OF PAF ANTAGONISTS 
ON AP
Recent studies have established the critical role of  
inflammatory mediators such as TNF-α, IL-1β, IL-6, 
IL-8, IL-10, PAF, C5a, ICAM-1 and substance P, in the 
progression of  AP from local pancreatic inflammation 
to a systemic inflammatory disease. Elucidation of  the 
key mediators in AP coupled with the discovery of  
specific inhibitors makes it possible to develop clinically 
effective anti-inflammatory therapy. At present, a number 
of  inflammatory mediator antagonists are tested. PAF 
antagonists, including ginkgolide B (BN52021), lexipafant 
(BB-882), CV-6209, TCV309, and WEB-2170, etc., have 
shown beneficial effects on the manifestations of  AP. In 
experimental pancreatitis and clinical trials, administration 
of  several PAF antagonists significantly reduces the level 
of  serum amylase, leukocyte infiltration, and improves 
capillary blood flow in the pancreas and distant organs, 
renal and respiratory function, and survival rate.

In animal pancreatitis model, ginkgolide B could 
significantly reduce vascular permeability, pancreatic edema, 
hyperamylasemia, diminute superoxide dismutase (SOD) 
activity, and inhibit lipid peroxidation in pancreatic tissue. 
These changes are accompanied with significant reduction 
of  acinar cell vacuolization and remarkable inhibition of  
inflammatory cell infiltration in the interacinar space[60,61]. 
In addition, treatment with ginkgolide B has shown 
protective effects on slow mesenterio-angial small arteriolar 
and venular blood flow velocity and dilated mesenterio-
angial small venular diameter at the early phase of  AP[62]. 
Moreover, ginkgolide B reduces bacterial translocation to 
distant sites, has a significant effect on serum pancreatic 
enzymes and histologic score of  pancreatit is, and 
suppresses elevation in IL-6 levels. Preventing bacterial 
dissemination in early AP may have beneficial effects on 
the evolution of  this disease[55,56]. Furthermore, ginkgolide 
B reduces malondialdehyde accumulation in pancreatic 
tissue, prevents sulfhydryl depletion in lung tissue, necrotic 
and inflammatory changes in the pancreatic tissue, and 
improves survival rate[63]. Activation of  pulmonary alveolar 
macrophages (PAMs) might play an important role in 
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severe complications of  AP. Ginkgolide B reduces total 
and free activity of  lysosomal hydrolases of  PAMs and 
partly prevents labilization of  their lysosomal membranes. 
Therefore, an important mechanism of  ginkgolide B 
underlying pulmonary complications of  AP is to stabilize 
PAM lysosomes[64]. Moreover, BN50739 can reduce 
intestinal injury, levels of  endotoxin and bacterial counts 
in the portal blood, MLNs and pancreas and increase 
intestinal mucosal blood flow[54]. In pigs with SAP, pre- and 
post-treatment with BN50739 can effectively reduce PAF 
levels in lung and tracheal mucosa and the severity of  acute 
lung injury following SAP by reducing PMN sequestration 
and the amount of  elastase, or by inhibiting PLA2 activities 
in lung and tracheal mucosa[65].

In rats with AP induced by intraductal infusion of   
5 g/L sodium taurodeoxycholate, pretreatment with 
lexipafant could reduce pancreatic endothelial barrier 
dysfunction and severity of  pancreatitis-associated 
intestinal dysfunction as well as systemic concentrations of  
IL-1 and local leukocyte recruitment[53,66,67]. AP lexipafant 
reduces the activity of  serum cytokines (TNF-α, IL-
1β), lung myeloperoxidase (MPO) and serum amylase[68]. 
Lexipafant treatment can decrease bacterial spread to 
distant sites in AP induced by pressure injection of  3% 
taurocholate and trypsin into the common biliopancreatic 
duct[69].

In rats, TCV-309 administered prior to cerulein 
and/or PAF reduces cerulein-induced pancreatitis and 
prevents PAF-induced pancreatitis[70]. It was reported 
that treatment with TCV-309 before septic challenge 
effectively prevents hyperactivity of  bronchoalveolar 
macrophages and pancreatitis-associated lung injury by 
reducing serum concentrations of  cytokine-induced 
neutrophil chemoattractant (CINC) and CINC messenger 
RNA (mRNA) in the lung, as well as pulmonary infiltrates 
immunoreactive for CINC or Mac-1 (CD11b/CD18)[71].

CONCLUSION
In the pathogenesis of  AP, PAF exhibits pleiotropic 
function and is involved in both local pancreatic injury 
and systemic multiple organ damage. The effectiveness of  
PAF antagonists depends not only on their ability to block 
the effects of  inflammatory mediators but also on their 
administration early enough in the course of  pancreatitis 
before pancreatic necrosis or organ dysfunction occur. 
PAF antagonist therapy for systemic inflammatory 
response syndrome and multi-organ dysfunction syndrome 
in the management of  patients with SAP has been 
considered as an important advance in the treatment of  
these patients. 
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