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Abstract
Cardiovascular abnormalities accompany both portal hy-
pertension and cirrhosis. These consist of hyperdynamic 
circulation, defined as reduced mean arterial pressure 
and systemic vascular resistance, and increased cardiac 
output. Despite the baseline increased cardiac output, 
ventricular inotropic and chronotropic responses to 
stimuli are blunted, a condition known as cirrhotic car-
diomyopathy. Both conditions may play an initiating or 
aggravating pathogenic role in many of the complications 
of liver failure or portal hypertension including ascites, 
variceal bleeding, hepatorenal syndrome and increased 
postoperative mortality after major surgery or liver 
transplantation. This review briefly examines the major 
mechanisms that may underlie these cardiovascular ab-
normalities, concentrating on nitric oxide, endogenous 
cannabinoids, central neural activation and adrenergic 
receptor changes. Future work should address the com-
plex interrelationships between these systems.
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INTRODUCTION
The cardiovascular system in patients with cirrhosis or 

portal hypertension is abnormal. The circulation becomes 
hyperdynamic, characterized by increased cardiac output 
and decreased peripheral vascular resistance and arterial 
pressure. Moreover, despite the increased cardiac output at 
rest, with stressful stimuli such as hemorrhage, surgery or 
vasoactive drug administration, the ventricular response is 
blunted, a condition known as cirrhotic cardiomyopathy. 
These cardiovascular abnormalities have been suggested 
to induce or aggravate several complications of  cirrhosis 
such as renal salt and water retention, variceal bleeding, 
hepatopulmonary syndrome, and increased cardiovascular 
fragility under stress. Recent reviews have detailed the 
clinical aspects of  hyperdynamic circulation[1,2] and 
cirrhotic cardiomyopathy[3-5]. This review will summarize 
the recent work on pathogenic mechanisms underlying 
these two conditions.

HYPERDYNAMIC CIRCULATION
Peripheral vasodilatation is central to hyperdynamic 
circulation and portal hypertension in cirrhosis. However, 
the factors directly initiating vasodilatation remain 
obscure. A hypothesis that has received much attention 
over the past three decades is the “humoral factor” 
theory. In cirrhosis, increased intrahepatic resistance 
induces portosystemic collateral formation, allowing gut-
derived humoral substances to directly enter the systemic 
circulation without detoxification by the liver. The 
following gut-derived or locally-produced humoral factors 
have been implicated as possible mediators of  peripheral 
vasodilatation in cirrhosis or portal hypertension.

Endocannabinoids
Endocannabinoids are lipid-like substances that act on two 
inhibitory G protein-coupled receptors, CB1 and CB2. 
The vasodilatory effect of  endogenous cannabinoids in 
cirrhosis was first reported in 2001[6]. Anandamide, an 
endogenous cannabinoid or endocannabinoid, is increased 
in monocytes of  cirrhotic rats[6,7], and its receptor CB1 is 
also upregulated in the vascular endothelium of  patients 
with cirrhosis[6]. Infusing monocytes isolated from 
cirrhotic rats into normal rats decreases the mean arterial 
pressure in the recipients. Furthermore, administering 
a CB1 receptor antagonist SR141716A to cirrhotic rats 
increases the total peripheral resistance[6,7], both studies 
demonstrated that SR141716A significantly increases 
the reduced arterial pressure in cirrhosis, and blocks the 
hypotension induced by the infusion of  isolated cirrhotic 
monocytes into normal rats[6,7]. Batkai and colleagues also 
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found that SR141716A decreases mesenteric blood flow 
and portal venous pressure in cirrhotic rats[6]. All of  these 
data indicate that the vascular tone in cirrhosis is regulated 
by CB1 receptors in both the splanchnic and systemic 
circulations.
    Besides vasodilatation, anandamide rapidly and dose-
dependently induces apoptosis in primary culture-activated 
and in vivo-activated hepatic stellate cells, with over 70% 
cell death after 4 h at 25 µmol/L[8]. This effect could 
alter the hepatic sinusoidal microcirculation and enhance 
the development of  portal hypertension that leads to 
hyperdynamic circulation.
    How does cirrhosis leads to increased endocannabinoids? 
Varga and co-workers found that bacterial endotoxin 
stimulates endocannabinoid production in cirrhosis[9]. 
The upregulation of  CB1 receptors in cirrhotic vascular 
endothelium and thus increased end-organ sensitivity may 
also enhance endocannabinoid vasodilator tone[6].

Nitric oxide
NO has been extensively studied. It is now clear that in 
cirrhosis, changes in NO activity affect different vascular 
beds in variable ways. In the liver microcirculation, 
endothelial-constitutive NO synthase (eNOS or NOS3) 
expression is decreased in a cirrhotic rat model[10]. 
Simvastatin enhances hepatic nitric oxide production 
and decreases the hepatic vascular tone in patients with 
cirrhosis[11]. An NO donor[12] or NOS3 gene transfection[10], 
which compensates for the decreased hepatic NOS3 
expression, significantly lowers the increased portal 
pressure in cirrhosis.
    In contrast, systemic NO production is increased in 
cirrhotic patients and animal models[13-15]. Moreover, 
normalization of  NO production in cirrhotic rats, by 
achieving normal concentrations of  aortic cGMP with 
small doses of  the NOS inhibitor L-NAME, normalizes 
the decreased peripheral vascular resistance and the 
increased cardiac output[16]. In vitro, an NO inhibitor 
reverses the hyporeactivity of  blood vessels from cirrhotic 
rats to vasoconstrictors[17].
    All these results strongly support the hypothesis 
that increased NO production is a major factor in the 
peripheral arterial vasodilation of  cirrhosis. Agents 
promoting nitric oxide production include inflammatory 
cytokines and endotoxin. In that regard, selective intestinal 
decontamination with norfloxacin partially reverses the 
hyperdynamic circulatory state in cirrhotic patients, 
suggesting a role for the endotoxin-NO pathway[18]. 
Where does this endotoxin come from in cirrhosis? First, 
alcohol is a major cause of  cirrhosis in Western countries, 
and alcoholic gastrointestinal mucosal damage[19], could 
potentially facilitate transfer of  bacteria into the circulation. 
Second, portosystemic shunting allows gut-derived 
bacterial endotoxins passage to the systemic circulation. 
Third, cirrhotic patients with portal hypertension show 
intestinal structural abnormalities characterized by 
vascular congestion and edema, which leads to increased 
intestinal permeability to bacterial toxins[20]. Fourth, 
intestinal bacterial overgrowth and bacterial translocation 
are increased in cirrhosis[21]. Besides endotoxins, the 
other possible factors stimulating NO production include 

cytokines such as TNF-α, IL-1, IL-6, and IFN-γ[22-24] 
Among these, TNF-α has been studied the most. Lopez-
Talavera et al found that anti-TNF-α antibody increases 
mean arterial pressure and systemic vascular resistance, 
and decreases cardiac index and portal pressure[25]. In 
our 4-week BDL rats, in parallel with increased serum 
TNF-α, aortic NOS3 expression and serum nitrate/nitrite 
concentrations were increased[26].
    Although the evidence is strong that the increased 
NOS activity in cir rhosis plays an important role 
in hyperdynamic circulation in cirrhosis, it remains 
obscure which NOS isoform is involved. The majority 
of  previous studies have used a nonspecific NOS 
inhibitor to diminish NO production. However, a recent 
study used aminoguanidine, a preferential inhibitor of  
NOS2 (inducible NOS), and showed that in vivo, the 
hyperdynamic circulation in portal hypertensive rats is 
reversed[27]. But in another study aminoguanidine had 
no in vitro effect on the hyporeactivity of  aortic rings 
from cirrhotic rats[28]. We have recently evaluated the 
activity of  the L-arginine-NO pathway at different 
levels[26]. Although NOS2 mRNA was detectable in the 
cirrhotic aorta, no NOS2 protein was observed in our 
Western blots. It is unclear why the mRNA was not 
expressed as a protein. It might have been degraded or 
not been transcribed. It is also possible that our method 
of  Western blotting did not allow the detection of  small 
amounts of  NOS2 protein.
    A consistent augmentation in the expression of  NOS3 
mRNA and protein levels is observed in cirrhotic rats. 
Because NOS3 can be upregulated by stimuli such as shear 
stress and mechanical deformation, some have suggested 
that hyperdynamic circulation is the cause rather than the 
consequence of  the activation of  the NO pathway[14,29,30]. 
In addition, there may be other reasons for the increased 
NOS3. Cirrhosis is associated with increased levels of  
estrogens[31,32], and these compounds have been shown 
to upregulate NOS3 activity[33]. Other factors which may 
stimulate NOS3 expression need further investigation.
     What is the role of  another isoform of  NOS, neuronal 
NOS (nNOS or NOS1)? Xu and his colleagues have 
demonstrated that nNOS expression is significantly 
increased in rat cirrhotic aortae[34]. Furthermore, an nNOS-
specific inhibitor, 7-nitroindazole (7-NI), significantly 
decreased the sodium and water retention and normalized 
the hyperdynamic indices such as cardiac index, mean 
arterial pressure, and systemic vascular resistance in these 
rats[34]. Biecker et al also showed that nNOS partially 
compensates for the absence of  eNOS in producing 
hyperdynamic circulation in eNOS-gene knockout mice[35]. 
These data indicate that the nNOS isoform plays a major 
pathogenic role in hyperdynamic circulation, and perhaps 
even in renal salt and water retention in cirrhosis.
    It seems that endocannabinoids and nitric oxide may 
both play an important role in hyperdynamic circulation, 
but what is the relationship between them? The literature 
remains inconclusive. In a kidney study, Deutsch et al found 
that the vasodilatation of  anandamide is NO dependent, 
because the NOS inhibitor L-NAME completely blocked 
the vasodilatory effect of  anandamide, similar to a CB1 
antagonist[36]. However, another study showed no effect 
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of  L-NAME infusion on the hypotensive effects of  
anandamide[7].
    Some studies suggest the possible involvement of  other 
humoral vasodilators, but a definitive pathogenic role for 
any of  these substances remains elusive. This list includes: 
glucagons[37], prostaglandins[38], GABA[39], VIP[40], bile 
acids[41], endotoxin, histamine[42] and adenosine [43].

Central neural mechanisms
Although most research has focused on the humoral 
mediators, in recent years we and others have shown 
an important mechanistic role of  central nervous 
system (CNS) activation. A decade ago, our laboratory 
demonstrated that primary afferent denervation by 
capsaicin reversed the hyperdynamic circulation in rats with 
cirrhosis or portal hypertension due to portal vein stenosis 
(PVS)[44]. What is the relationship between the CNS and 
hyperdynamic circulation in portal hypertension? Using 
c-fos, an immediate-early gene (whose protein product can 
be detected by immunohistochemistry as Fos), as a marker 
of  central neuronal activation, we have showed that the 
brainstem and hypothalamic cardiovascular-regulatory 
nuclei are activated at the first day after PVS, whereas the 
hyperdynamic circulation does not start up until 3-5 days 
after PVS. This time sequence suggests that central neural 
activation is the initiating signal in the pathogenesis of  
hyperdynamic circulation.
    Subsequent ly, in por ta l hyper tensive rats, we 
microinjected c-fos antisense oligonucleotide into one of  
the major cardiovascular-regulatory brainstem nuclei, 
the nucleus tractus solitarius (NTS), to block local 
Fos expression. This treatment completely blocked 
the development of  the hyperdynamic circulation, i.e., 
abnormalities in cardiac output, mean arterial pressure and 
systemic vascular resistance were completely eliminated[45]. 
In normal control rats, c-fos antisense oligonucleotides 
had no effect [45]. These results indicate that central neural 
activation is a sine qua non for the development of  the 
hyperdynamic circulation in portal hypertension.
    The CNS, as the controller of  the circulation, 
presumably would not arbitrarily activate the cardiovascular 
system without reason. This raises the question of  what 
the initiating signal is? Likely, it is somehow related to 
the portal hypertension per se. Moreover, the exact route 
of  signaling from the periphery to the CNS remains 
unclear. The aforementioned capsaicin study suggests 
that primary afferent nerves may be the signaling pathway 
from the periphery to the CNS[44]. Our subsequent study 
showed that capsaicin-treated BDL rats improve the 
renal function and do not develop ascites[46]. Moreover, 
both BDL-cirrhotic and portal hypertensive rats show 
diminished Fos expression in NTS after capsaicin-
induced denervation of  the afferent nerves as neonates[46]. 
These observations indicate that intact primary afferent 
innervation is necessary for the central neuronal activation 
and development or maintenance of  hyperdynamic 
circulation. Additionally, sodium retention and ascites 
formation is also dependent on either the presence of  
hyperdynamic circulation or intact afferent innervation, or 
both. The complex relationship between CNS activation, 
local or neurohormonal humoral factor stimulation, 

and cardiovascular disturbances in cirrhosis/portal 
hypertension continues to be studied in several labs. 

CIRRHOTIC CARDIOMYOPATHY 
This syndrome was first described in the late 1960s, 
although for many years, it was mistakenly attributed to 
latent or subclinical alcoholic cardiomyopathy[47-49]. However, 
studies in human and animal models with nonalcoholic 
cirrhosis, dating from the mid-1980s showed a similar 
pattern of  increased baseline cardiac output with blunted 
response to stress[4]. The clinical features of  cirrhotic 
cardiomyopathy include blunted systolic and diastolic 
contractile responses to stress, in conjunction with evidence 
of  ventricular hypertrophy or chamber dilatation and 
electrophysiological abnormalities including prolonged QT 
interval. Recent studies suggest the presence of  cirrhotic 
cardiomyopathy may contribute to the pathogenesis 
of  hepatorenal syndrome precipitated by spontaneous 
bacterial peritonitis[50], acute heart failure after insertion of  
transjugular intrahepatic portosystemic shunts (TIPS)[51,52], 
and increased cardiovascular morbidity and mortality after 
liver transplantation[53]. Therefore this syndrome is more 
than an academic curiosity, but rather an important clinical 
entity. We herein review possible pathogenic mechanisms 
reported by our laboratory and others.

Endocannabinoids
Endocannabinoids are known to have a negative inotropic 
effect on cardiac contractility in both human[54] and 
rats[55]. The plasma level of  an endogenous cannabinoid, 
anandamide, is known to be increased in cirrhosis[6]. We 
recently demonstrated a major role for increased local 
cardiac production of  endocannabinoids in cirrhotic 
cardiomyopathy[56]. This conclusion is based on the 
restoration of  blunted contractile response of  isolated left 
ventricular papillary muscles from BDL-cirrhotic rats after 
preincubation with a CB1 antagonist, AM251. Additionally, 
endocannabinoid reuptake blockers (VDM11 and AM404) 
enhance the relaxant response of  cirrhotic papillary muscle 
to higher frequencies of  contraction in an AM251-sensitive 
fashion, suggesting an increase in the local production of  
endocannabinoids acting through CB1 receptors. Other 
in vitro evidence suggest a main neuronal source for the 
increase in local production of  endocannabinoids, as these 
effects were mostly abolished by pretreatment with the 
neurotoxin tetrodotoxin[56].

β-adrenergic signaling
Cardiac-adrenergic signaling is one of  the main regulators 
of  cardiac contractility. Adrenergic receptors increase 
adenylyl cyclase activity through stimulatory G proteins. 
Increased production of  cAMP in turn results in an 
increase in calcium influx and contractile force mainly 
through activation of  protein kinase A (PKA). We have 
previously shown that expression and responsiveness 
of  β-adrenergic receptors[57] as well as its post receptor 
signaling pathway is blunted in cardiac tissue of  cirrhotic 
rats. Post receptor impairment was found at different 
levels including content and function of  stimulatory Gs-
proteins[58], uncoupling of  the β-adrenoceptor-ligand 
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complex from G protein[59], and responsiveness of  adenylyl 
cyclase to stimuli[58,60].

Membrane fluidity
Biochemical and biophysical properties of  the cell 
membrane determines the mobility of  membrane-bound 
protein moieties. This mobility is known as membrane 
fluidity[61], which is shown to be an important factor in 
the function of  a number of  membrane-bound receptors 
including β-adrenergic receptors[62]. We have shown that 
membrane fluidity in cardiomyocytes from bile duct-
ligated rats is decreased in association with an increase 
in membrane cholesterol content and cholesterol/
phospholipid ratio[58]. Restoration of  these abnormalities 
in vitro results in normalization of  blunted response 
of  β-adrenergic receptors[58]. Alterations in membrane 
fluidity may also play a role in abnormal function of  other 
membrane-bound components in cirrhotic cardiomyocytes 
including ion channels. The significant decrease in K+ 
currents through Ca2+-independent transient outward K+ 
channel and the delayed rectifier current reported by Ward 
et al is an example that requires further investigation[63].

Nitric oxide
Nitric oxide is known to negatively regulate cardiac 
contractile function. It has been shown to be involved in 
some types of  cardiac dysfunction including ischemic heart 
disease[64]. Balligand et al have reported that non-selective 
blockade of  NOS augments the contractile response of  
rat ventricular myocytes to the β-agonist isoproterenol 
without affecting the baseline contractility[65]. Whether this 
effect is mediated by the inhibition of  adenylyl cyclase 
activity by NO[66] or through the second messenger, 
cyclic guanosine monophosphate (cGMP), remains to be 
elucidated. Possible effects of  NO on cardiac function 
in physiological and some pathophysiological states were 
extensively reviewed previously[67,68].
    As noted previously, cir rhosis is known to be 
associated with NO overproduction[29]. Involvement of  
NO overproduction in the development of  cirrhotic 
cardiomyopathy was first reported in 1996 by Van Obbergh 
et al in the BDL rat. They showed that a nonselective 
NOS inhibitor, L-NMMA, restored the blunted contractile 
function of  isolated heart from cirrhotic rats while it 
had no significant effect in control animals[69]. We have 
reported a similar effect in isolated left ventricular papillary 
muscles of  cirrhotic rats. Furthermore, we observed that 
iNOS and not eNOS mRNA and protein expression were 
significantly increased in the heart of  a cirrhotic rat[22]. 
Increased levels of  cGMP in cirrhotic ventricles and 
elevated serum and cardiac levels of  cytokines like TNF-α 
suggest a cytokine/iNOS/cGMP pathway for this effect[22].

Carbon monoxide
Carbon monoxide (CO) is mainly produced in the body 
through the action of  heme oxygenases. These enzymes 
are responsible for converting heme to biliverdin and 
CO. Like NO, CO activates soluble guanylate cyclase 
resulting in increased levels of  cGMP[70,71]. Expression of  
inducible heme oxygenase (HO-1) mRNA was increased 
in the right ventricle in a canine model of  congestive heart 

failure[72]. We previously reported an increase in mRNA 
and protein expression of  HO-1 in left ventricle of  bile 
duct-ligated rats, which was associated with an increase in 
left ventricular cGMP levels[73]. Furthermore, treatment of  
cirrhotic heart with an HO inhibitor, zinc protoporphyrin 
IX, restored the elevated cGMP levels[73]. These findings 
suggest the involvement of  an HO-CO-cGMP pathway in 
the development of  cirrhotic cardiomyopathy.

CONCLUSION
Cardiovascular abnormalities consisting of  hyperdynamic 
circulation and cardiomyopathy are frequent complications 
in cirrhotic patients and may contribute to significant 
morbidity and mortality, especially under stressful 
conditions. Underlying mechanisms of  cardiac dysfunction 
and vascular abnormalit ies in cir rhosis have been 
separately explored in recent years, but a number of  
vasoactive mediator systems may be common to the 
genesis of  both conditions. We believe that central neural 
activation plays an important initiating role in the genesis 
of  hyperdynamic circulation, eventually leading to an 
imbalance between the tonic vasodilator vs vasoconstrictor 
tone, with a predominance of  the former. Predominant 
among these peripheral vasodilator pathways are NO 
and endocannabinoids. The mechanisms of  cirrhotic 
cardiomyopathy include altered cardiomyocyte plasma 
membrane physicochemical properties, impairment of  
β-adrenergic receptor signaling pathways, and overactivity 
of  NO, carbon monoxide and endocannabinoid systems. 
Considering the undeniable interrelation of  these systems, 
further studies are required to elucidate the complex 
interactions between these mechanisms.
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