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Abstract

Mutation in TAR DNA binding protein 43 (TDP-43) is a causative factor of amyotrophic lateral

sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Neurodegeneration may not

require the presence of pathogenic TDP-43 in all types of relevant cells. Rather, expression of

pathogenic TDP-43 in neurons or astrocytes alone is sufficient to cause cell-autonomous or non-

cell-autonomous neuron death in transgenic rats. How pathogenic TDP-43 in astrocytes causes

non-cell-autonomous neuron death, however, is not clear. Here, we examined the effect of

pathogenic TDP-43 on gene expression in astrocytes. Microarray assay revealed that pathogenic

TDP-43 in astrocytes preferentially altered expression of the genes encoding secretory proteins.

Whereas neurotrophic genes were down-regulated, neurotoxic genes were up-regulated.

Representative genes Lcn2 and Chi3L1 were markedly up-regulated in astrocytes from primary

culture and intact transgenic rats. Further, synthetic Chi3L1 induced neuron death in a dose-

dependent manner. Our results suggest that TDP-43 pathogenesis is associated with the

simultaneous induction of multiple neurotoxic genes in astrocytes, which may synergistically

produce adverse effects on neuronal survival and contribute to non-cell-autonomous neuron death.
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Introduction

Astrocytes, which are the most numerous non-neuronal cell types in the central nervous

system, communicate with and protect neurons under physiological conditions. For instance,

astrocytes express glutamate transporters that clear the neurotransmitter glutamate from

synaptic clefts (Rothstein et al., 1996), preventing glutamate from persistently stimulating

post-synaptic neurons. Receptors on astrocytes sense neuronal activity and form gap

junctions to propagate signaling (Escartin and Bonvento, 2008). Furthermore, astrocytes

synthesize and release cytokines, chemokines, and free radicals that modify neuronal

activity (Lee et al., 2007, Escartin and Bonvento, 2008, Landreth et al., 2008, Lee et al.,

2009). However, astrocytes are also associated with neurodegeneration in amyotrophic

lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) (Rothstein et al.,

1996, Howland et al., 2002, Nagai et al., 2007, Zhou et al., 2010), and are likely involved in

the initiation and propagation of neurodegenerative signaling. Indeed, non-cell-autonomous

death of motor neurons is induced by selective expression of ALS-linked genes in astrocytes

(Lobsiger and Cleveland, 2007, Nagai et al., 2007, Lepore et al., 2008, Tong et al., 2013).

Astrocytes enter a reactive state in response to neuron injury (Lee et al., 2007, Escartin and

Bonvento, 2008, Landreth et al., 2008, Lee et al., 2009, Huang et al., 2012a). Although

controlled astrocyte activation is beneficial to neurons (Okada et al., 2006), over-activation

can be harmful (Custer et al., 2006). For example, overactive astrocytes secrete Lcn2, which

stimulates the activation of quiescent astrocytes and microglia and thereby promotes

neuronal death (Lee et al., 2007, Lee et al., 2009, Bi et al., 2013). How astrocytes contribute

to ALS and FTLD pathogenesis, however, is not fully understood.

Mutation of TAR DNA binding protein 43 (TDP-43) is linked to ALS and FTLD (Neumann

et al., 2006). Whereas mutant TDP-43 is a causative factor of familial ALS and FTLD

(Kabashi et al., 2008, Rutherford et al., 2008, Sreedharan et al., 2008, Van Deerlin et al.,

2008), aggregation of normal TDP-43 is commonly observed in sporadic ALS and FTLD

(Neumann et al., 2006, Kwong et al., 2007, Kwong et al., 2008). TDP-43 is a major

component of ubiquitin-positive inclusions in several neurodegenerative diseases, including

ALS and FTLD. The TPD-43 gene is highly conserved among mammals, flies, and

Caenorhabditis elegans (Wang et al., 2004, Ayala et al., 2005). TDP-43 belongs to the

family of heterogeneous nuclear ribonucleoproteins, which is characterized by the ability to

bind DNA and RNA sequences through RNA recognition motifs (RRMs). TDP-43 contains

two RRMs, RRM1 and RRM2, and a glycine-rich region in its C-terminus. RRM1 is

required for nucleotide binding, RRM2 is required for correct complex formation (Buratti

and Baralle, 2001, Ayala et al., 2005, Ayala et al., 2008), and the C-terminus is required for

the formation of ribonucleoprotein complexes (Buratti et al., 2005). Pathogenic mutations in

TDP-43 are concentrated in the glycine-rich domain (Pesiridis et al., 2009), but how

mutation alters TDP-43 functionality is currently unknown. Studies in rodent models show

that over-expression of both wild-type and mutant forms of TDP-43 causes neuron death and

disease phenotypes (Tsai et al., 2010, Zhou et al., 2010, Igaz et al., 2011, Swarup et al.,

2011, Huang et al., 2012b, Tong et al., 2012), suggesting that a functional gain in TDP-43

mutation is a major contributor to TDP-43 pathogenesis. We previously reported that

selective over-expression of mutant TDP-43 in motor neurons or astrocytes alone is
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sufficient to induce cell-autonomous or non-cell-autonomous motor neuron death in rats

(Huang et al., 2012b, Tong et al., 2013). Previous findings indicate that disease induction

does not require the presence of pathogenic TDP-43 in all relevant cell types, although the

molecular mechanism underlying non-cell-autonomous neuron death is not yet understood.

To extend the findings of our previous studies (Tong et al., 2013), we examined the gene

expression profiles of astrocytes isolated from transgenic rats that selectively over-express

mutant TDP-43 in astrocytes and develop an ALS-like phenotype. We found that genes

encoding secretory proteins were preferentially altered by expression of pathogenic TDP-43

in astrocytes. In particular, the secretory protein Chi3L1 was markedly up-regulated in

astrocytes, and synthetic Chi3L1 caused dose-dependent neuron death. These findings

suggest that pathogenic TDP-43 alters the expression of secretory proteins and thereby

contributes to non-cell-autonomous neuron death.

Materials and Methods

Study approval

Animal use was in accord with NIH guidelines and the animal use protocol was approved by

the Institutional Animal Care and Use Committees at Thomas Jefferson University. Both

male and female rats were used in this study.

Astrocyte culture and microarray assay

Primary cells were taken from GFAP-tTA/TRE-TDP43M337V double-transgenic rats, which

were previously described (Huang et al., 2012b, Tong et al., 2013). Mixed glial cells were

isolated from the cortex of 3-day-old postnatal rats, and astrocytes were separated from

other glial cells by shaking. Purified astrocytes were deprived of doxycycline (Dox) to allow

TDP-43M337V transgene expression. Total RNA was isolated from induced astrocytes for

microarray assay, which was performed at SABiosciences-QIAGEN in Frederick, Maryland.

Microarray data were deposited to the National Center for Biotechnology Information

(NCBI) database with an assigned accession number (GSE42091). Microarray data were

analyzed with DAVID 6.7 software, and genes with altered expression were clustered based

on functionality. Selected genes were further validated by quantitative polymerase chain

reaction (PCR) as previously described (Huang et al., 2012b).

Primary neuron culture and cytotoxicity assay

Cortical neurons were isolated from wild-type rat embryos (embryonic day 19) using

published protocols (Liu et al., 2003). Cortical neurons were initially cultured in complete

neuron medium for 10 days and then treated with recombinant Chi3L1 protein (Sino

Biological Incorporation, China) at varying concentrations for 4 days before viability assay.

Cell viability was quantified with a Live/Dead assay kit for mammalian cells (Invitrogen,

L3224) as previously described (Bi et al., 2013).

Immunofluorescence staining

Co-localization of human TDP-43 with related proteins (GFAP, Iba-1, APC, and Chi3L1)

was examined by double-labeling immunofluorescence staining. Immunofluorescent
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staining was performed on cultured primary glia or cross-sections of the rat spinal cord. The

following primary antibodies were used: mouse monoclonal anti-APC (Calbiochem), mouse

monoclonal anti-human TDP-43 (Abnova, clone 2E2-D3), rabbit anti-GFAP (DAKO North

America), and rabbit anti-Iba-1 (Wako Chemicals USA). Immunostained tissue sections

were examined using a Nikon microscope for immunohistochemistry or a confocal

microscope (Imaging Facility of Kimmel Cancer Center at Jefferson). Single-layer images

were scanned using a Zeiss LSM510 META confocal system, and Z-stacks of confocal

images (at 1-μm intervals) were projected to reconstruct astrocyte structure.

Statistical analysis

Cortical neurons isolated from a same animal were cultured in paired wells and were treated

with or without Chi3L1. Cell viability between Chi3L1-treated and untreated cells were

analyzed using paired t-test. Statistical significance was set at p < 0.05.

Results

Expression of mutant TDP-43 in primary astrocytes

To dissect the molecular mechanisms of TDP-43-induced non-cell-autonomous neuron

death, we isolated and purified astrocytes from GFAP-tTA/TRE-TDP43M337V transgenic

rats that selectively express pathogenic TDP-43 in astrocytes and develop an ALS-like

phenotype (Tong et al., 2013). These astrocytes express a sufficient quantity of pathogenic

TDP-43 to induce non-cell-autonomous neuron death and therefore are the ideal model for

mechanistic studies. Mixed glial cells were taken from postnatal rats and cultured in glia-

preferred medium to diminish the presence of neurons. Flasks containing mixed glial

cultures were aggressively shaken overnight to detach microglia and oligodendrocytes from

the flask surface. The astrocyte purity of retained cells was examined by immunostaining

with an antibody recognizing the astrocyte marker glial fibrillary acidic protein (GFAP).

Additional shaking time was required when the astrocyte-enriched culture showed staining

for the microglia marker Iba-1 (Figure 1: A-C) or the oligodendrocyte marker APC (Figure

1: D-F). After at least two rounds of purification, Iba-1- (Figure 1: G-I) and APC-positive

(Figure 1: J-L) cells were eliminated from the culture. The high purity of the astrocyte

culture enabled us to determine gene expression profiles in astrocytes from non-transgenic

and TDP-43M337V transgenic cells and hence identify genes whose expression is altered by

pathogenic TDP-43. The mutant TDP-43 transgene is expressed from a tetracycline-

regulated promoter and thus is subject to regulation by Dox. Pathogenic TDP-43 was

initially not expressed in cultured astrocytes in the presence of Dox (Figure 2: A-B) but was

rapidly expressed after withdrawal of Dox from the culture (Figure 2: C-E). This inducible,

transient expression of mutant TDP-43 enabled us to identify genes highly related to

TDP-43 pathogenesis.

Mutant TDP-43 in astrocytes preferentially affects secretory protein-encoding genes

For the transient expression of pathogenic TDP-43, glial cells were initially cultured in Dox-

containing medium, which repressed the mutant TDP-43 transgene (Figure 2: A-B). Purified

astrocytes were then deprived of Dox, which rapidly induced mutant TDP-43 transgene

expression in astrocytes (Figure 1: M-O; Figure 2: A-E). By day 3 of Dox withdrawal,
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TDP-43 transgene was expressed in the majority of astrocytes. Gene expression profiles in

cultured astrocytes were determined by microarray assay on day 3, 4, or 6 after Dox

withdrawal (Figure 2: F). Genes with progressive change in expression were considered

relevant to TDP-43 pathogenesis and were further analyzed for functionality. Intriguingly,

clusters of genes encoding secretory proteins displayed the highest enrichment scores

(Figure 2: G-H). Representative genes were validated by quantitative PCR, and their

progressive changes in expression were verified in cultured astrocytes across all time points

examined (Table 1). Changes in the expression of selected genes were confirmed in the

spinal cord of transgenic rats that selectively expressed pathogenic TDP-43 in astrocytes

(Table 1). Collectively, these results confirm the authenticity of altered gene expression

profiles.

Mutant TDP-43 in astrocytes leads to down-regulation of neurotrophic genes but up-
regulation of neurotoxic genes

In-depth analysis of gene expression in astrocytes revealed that neurotrophic genes were

down-regulated whereas potentially neurotoxic genes were up-regulated (Table 1). In

response to pathogenic TDP-43 expression, some genes (i.e., Lcn2, CXCL10, and Chi3L1)

were up-regulated and others (i.e., LTBP1, Fbln2, and ITGA1) were down-regulated in

astrocytes from primary culture and transgenic rats (Table 1). Among these, Lcn2 belongs to

the lipocalin family and its up-regulation is associated with neurotoxicity (Bi et al., 2013).

Lcn2 stimulates the activation of quiescent astrocytes and microglia (Lee et al., 2007, Lee et

al., 2009), thereby amplifying glia-mediated neuron damage. CXCL10 is up-regulated in

astrocytes in response to excitatory neurotoxicity, and its deficiency diminishes NMDA-

induced neuron death (van Weering et al., 2011). LTBP1 targets complexes of transforming

growth factor beta to the extracellular matrix (Dobolyi and Palkovits, 2008), and its

deficiency may lead to a loss of neurotrophic effects. Chi3L1 was up-regulated in the

astrocytes of transgenic rats that selectively express mutant TDP-43 in astrocytes (Figure 3),

but its induction appeared to be independent of mutant TDP-43 presence (Figure 3: I-L). We

further examined the effect of Chi3L1 on neuron survival and found that synthetic Chi3L1

killed cortical neurons in a dose-dependent manner (Figure 4). Therefore, pathogenic

TDP-43 in astrocytes induced up-regulation of genes such as Lcn2 and Chi3L1, whose

protein products are cytotoxic to neurons.

Discussion

TDP-43, a multifunctional ribonucleoprotein, binds both DNA and RNA (Buratti, 2001). In

neurons, TDP-43 binds thousands of mRNA molecules as detected by sequencing TDP-43-

bound RNA (Sephton et al., 2011, Sephton et al., 2012). As we aimed to examine the

molecular mechanisms of non-cell-autonomous neuron death related to TDP-43

pathogenesis, we used microarray assay instead of RNA sequencing to detect genes affected

by pathogenic TDP-43 expression in astrocytes. We found that the expression of many

genes in astrocytes was altered upon pathogenic TDP-43 expression. The selected genes are

not necessarily the binding targets of TPD-43 but should reflect the functional status of

astrocytes expressing pathogenic TDP-43. Our findings thus suggest that TDP-43 has

numerous targets in astrocytes. Futher functionality analysis revealed that secretory protein-
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encoding genes were preferentially affected by pathogenic TDP-43 in astrocytes. Whereas

neurotrophic factors were down-regulated, expression of genes with potential neurotoxicity

were markedly up-regulated. Therefore, pathogenic TDP-43 in astrocytes differentially

affects genes with neurotoxic or neurotrophic effects.

Secretory proteins Lcn2 and Chi3L1 were up-regulated in cultured astrocytes and transgenic

rats that selectivley express pathogenic TDP-43 in astrocytes (Tong et al., 2013). Our

previous study contains multiple lines of evidence that reactive astrocyte-secreated Lcn2 is

highly and selectively toxic to neurons (Bi et al., 2013): 1) Lcn2 is induced in astrocytes of

transgenic rats that express mutant TDP-43 in neurons and develop progressive

neurodegeneration; 2) abundant Lcn2 is secreted into the medium of cultured rat brain slices

that expresses pathogenic TDP-43 in neurons; 3) the conditioned medium of cultured rat

brain slices is toxic to neurons, and this neurotoxicity is sigificantly reduced by depletion of

Lcn2 from the conditioned medium; and 4) synthetic Lcn2 is highly toxic to neurons but is

innocuous to glial cells (i.e., astrocytes, microglia, and oligodendrocytes). Up-regulated

Lcn2 therefore adversely and appreciably affects neuron survival. Similar to Lcn2 (Bi et al.,

2013), Chi3L1 adversely affected neuron survival in a dose-dependent manner as revealed in

our current study. Chi3L1 is reportedly induced in reactive astrocytes (Bonneh-Barkay et al.,

2010), and its levels are elevated in the cerebrospinal fluid of Alzheimer’s disease patients

(Craig-Schapiro et al., 2010). Although Lcn2 and Chi3L1 may not be the binding targets of

TDP-43, their induction in astrocytes likely reflects aberrant functionality. Thus, secretory

proteins such as Lcn2 and Chi3L1 could be targeted for treatment of neurodegenerative

disorders, and their levels could be used to monitor disease progression and therapeutic

outcome.

In contrast to neurotoxic factors, neurotrophic factors were largely down-regulated in

astrocytes upon expression of pathogenic TDP-43. Intriguingly, glutamate transporters

EAAT1 and EAAT2 are markedly down-regulated in astrocytes of transgenic rats that

selectively express pathogenic TDP-43 in astrocytes (Tong et al., 2013). However, EAAT1

and EAAT2 expression was unaltered in cultured astrocytes in the current study. These

differing results obtained from in vitro and in vivo studies are not surprising, as primary cells

may change their properties under culturing conditions. Whereas selective expression of

mutant TDP-43 in astrocytes of intact rats clearly causes non-cell-autonomous motor neuron

death and an ALS-like phenotype (Tong et al., 2013), expression of mutant TDP-43 in

cultured astrocytes does not adversely affect neuron survival (Serio et al., 2013). That is,

findings from in vitro studies do not always translate to live animals. Taken together, our

results suggest that drastic alteration in the expression of secretory protein-encoding genes is

a major contributor to non-cell-autonomous neuron death caused by expression of

pathogenic TDP-43 in astrocytes.
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Abbreviation used

Chi3L1 Chitinase-3-like protein 1

TDP-43 TAR DNA binding protein 43

ALS amyotrophic lateral sclerosis

FTLD frontotemporal lobar degeneration
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Figure 1.
Primary astrocytes were purified and induced to express mutant human TDP-43. (a-f)
Double-labeling fluorescent staining revealed that unpurified glial culture contained

astrocytes (GFAP), microglia (Iba-1), and oligodendrocytes (APC). Primary glia culture was

isolated from the cortex of GFAP-tTA#2/TRE-TDP43M337V transgenic rats at 3 days of age.

(g–l) Immunostaining showed that microglia and oligodendrocytes were eliminated from

primary astrocyte culture after three cycles of shaking. (m–o) Immunofluorescent staining

revealed that mutant human TDP-43 (hTDP43) was robustly expressed in purified

astrocytes. Purified astrocytes were plated on 6-well plates and deprived of Dox on day 2

after plating. All scale bars: 30 μm (a-o).
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Figure 2.
Over-expression of mutant TDP-43 in astrocytes altered gene expression profile. (a-e)

Immunostaining revealed that the TDP43M337V transgene (hTDP43) was rapidly induced in

astrocytes purified from GFAP-tTA#2/TRE-TDP43M337V double-transgenic rats (M337V:

b-e) but not in control cells purified from GFAP-tTA#2 single-transgenic rats (a). (f)
Hierarchical cluster analysis revealed differential gene expression between tTA and M337V

transgenic astrocytes at varying times after induction (Dox withdrawal: Dox-). Columns on

the heat map correspond to individual probe sets, with red indicating higher expression,

yellow indicating intermediate expression, and blue indicating lower expression. Heat map

shows selected 449 genes with an absolute value of fold change > 2 at any of the three

induction times (3, 4, or 6 days after Dox withdrawal). (g) Biological pathway analysis

revealed many enriched pathways altered by TDP43M337V expression. Higher enrichment

score indicates greater enrichment. (h) Further analysis revealed that most genes involved in

the most highly enriched pathway (extracellular region of panel g) encode secretory

proteins. Scale bars: 30 μm (a-e).
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Figure 3.
Over-expression of TDP43M337V in rats induced expression of the neurotoxic factor Chi3L1

in astrocytes. (a-f) Double-labeling fluorescent staining revealed that Chi3L1 was induced in

astrocytes in GFAP-tTA#2/TRE-TDP43M337V double-transgenic rats (M337V: d-f) but not

in GFAP-tTA#2 single-transgenic rats (a-c). (Slifer et al.) Fluorescent staining revealed that

Chi3L1 precisely co-localized with S100B but with human TDP-43 (hTDP43). Arrowhead

points to an astrocyte immunostained for Chi3L1 but not hTDP43. Arrow points to an

astrocyte immunostained for hTDP43 but not Chi3L1. Images show immunostaining of

lumbar cords taken from M337V rats at paralysis stages or GFAP-tTA rats at matched ages

(a-l).
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Figure 4.
The astrocyte factor Chi3L1 was neurotoxic. (a-c) Micrographs show a dose-dependent

response of cortical neurons to Chi3L1 toxicity. Cortical neurons isolated from wild-type SD

rats were treated with varying doses of Chi3L1 for 4 days. Cell viability was examined using

a cell Live/Dead assay which stained live cells in green and dead cells in red. Scale bars: 40

μm. (d) Cell counts show cortical neuron viability after Chi3L1 treatment. Data are shown

as mean ± SEM (n = 7), *p < 0.05.
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