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Abstract

The nucleocytoplasmic large DNA viruses (NCLDVs) comprise a monophyletic group of viruses

that infect animals and diverse unicellular eukaryotes. The NCLDV group includes the families

Poxviridae, Asfarviridae, Iridoviridae, Ascoviridae, Phycodnaviridae, Mimiviridae and the

proposed family “Marseilleviridae”. The family Mimiviridae includes the largest known viruses,

with genomes in excess of one megabase, whereas the genome size in the other NCLDV families

varies from 100 to 400 kilobase pairs. Most of the NCLDVs replicate in the cytoplasm of infected

cells, within so-called virus factories. The NCLDVs share a common ancient origin, as

demonstrated by evolutionary reconstructions that trace approximately 50 genes encoding key

proteins involved in viral replication and virion formation to the last common ancestor of all these

viruses. Taken together, these characteristics lead us to propose assigning an official taxonomic

rank to the NCLDVs as the order “Megavirales”, in reference to the large size of the virions and

genomes of these viruses.

Introduction

The nucleocytoplasmic large DNA viruses (NCLDVs) are an apparently monophyletic

group of viruses infecting eukaryotes that was first described in 2001 [1]. The NCLDVs

encompass the families Poxviridae, Asfarviridae, Iridoviridae, Ascoviridae, and

Phycodnaviridae [1–3] and two groups of distinct giant viruses that have been isolated from

Acanthamoeba, giving rise to the now established family Mimiviridae [4–7] and the

proposed family “Marseilleviridae” [8–10] (Table 1).
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The viruses of the family Mimiviridae possess by far the largest virions and genomes among

all currently known viruses. Strikingly, mimivirus genomes are larger than those of many

parasitic and symbiotic bacteria and approach the size and complexity of the smallest known

free-living bacteria and archaea. Moreover, mimiviruses encode many genes that have not

been found in other viruses, in particular multiple components of the translation system such

as aminoacyl-tRNA synthetases [4, 11, 12]. A distant relative of mimiviruses, Cafeteria

roenbergensis virus (CroV), has been isolated from a marine stramenopile [13], and

numerous homologs of mimivirus genes have been detected in metagenomic samples [14–

17], indicating that the actual diversity of the giant viruses remains largely untapped. These

unusual features of the mimiviruses have attracted strong interest of many researchers and

revitalized the study of molecular biology and biochemistry of the NCLDVs.

A reclassification of the members of the NCLDV families into a new virus order

“Megavirales” has been suggested recently [18], based upon several defining features. In the

present proposal, we succinctly summarize these unique traits of the NCLDV and make the

formal case for the distinctness of the NCLDVs from other large DNA viruses.

The defining features of the NCLDVs

The monophyly of the NCLDVs, i.e., the common origin of all these viruses from the same

ancestral virus, was inferred from the results of phylogenetic and phyletic analyses [1–3,

19]. All of the NCLDVs share five core genes, namely those encoding the major capsid

protein (poxvirus D13 gene), helicase-primase (D5), DNA polymerase elongation subunit

family B, DNA-packaging ATPase (A32), and viral late transcription factor 3 (A2L).

Moreover, approximately 50 genes, although missing in some of the NCLDVs, were

assigned, with high confidence, to the common ancestor of the entire group [3]. The

maximum-likelihood evolutionary reconstruction that led to this conclusion relied upon a

phylogenetic tree of the universally conserved NCLDV genes and the patterns of presence-

absence of other genes as derived from the clusters of orthologous genes of the NCLDVs

(NCVOGs). Although a comprehensive phylogenetic analysis of the putative ancestral

NCLDV genes revealed a complex picture of evolution that involved multiple non-

orthologous gene displacements, on the whole, the results of this analysis were compatible

with the descent of (nearly) all of these genes from an ancestral virus [19]. Moreover, the

inferred ancestral NCLDV genes encode proteins that perform key functions in virus

genome replication and expression as well as virion morphogenesis and structure,

suggesting that the putative ancestral virus already possessed the main biological features of

the extant NCLDVs.

Importantly, the set of the approximately 50 ancestral genes sharply partitions the NCLDVs

from all other groups of viruses, including large DNA viruses infecting eukaryotes, such as

nudiviruses, herpesviruses and baculoviruses, as well as large DNA viruses of bacteria and

archaea. Although some of these viruses share with the NCLDVs one or more of the “virus

hallmark genes”, such as the DNA polymerase, the helicase-primase or the packaging

ATPase, none come close to possessing the entire set of the ancestral NCLDV genes [20].

The apparent origin of the NCLDVs from a common ancestral virus is buttressed by shared

genomic, structural and biological features. With the exception of the members of the virus
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families Poxviridae and Ascoviridae, all the NCLDVs form large, icosahedral capsids (more

than 100 nm in diameter) that are comprised of a single, homologous double β barrel jelly

roll protein [21] and encapsidate a single double-stranded DNA molecule ranging in size

from 100 kilobase pairs to over one meg-abase pairs (Table 1). The exceptions to this

conserved virion architecture are the poxviruses and the ascoviruses, with their unique brick-

shaped virions and allantoid capsids, respectively [22, 23]. However, at least in poxviruses,

this appears to be a derived trait, because an intermediate icosahedral structure in poxvirus

virion morphogenesis [24] contains the D13 protein that is the poxvirus homolog of the

major capsid protein of the rest of the NCLDVs [1] and adopts a similar jelly roll fold [22].

A notable feature of the gene repertoires of many NCLDVs is the presence of genes that

appear to have been derived from the host and encode proteins involved in virus-host

interactions. The specific compositions of these variable portions of the NCLDV genomes

strongly depend on the host. Thus, poxviruses and asfarviruses that infect vertebrates

possess multiple genes that interfere with host immunity and programmed cell death [25–

27]. In contrast, mimiviruses, phycodnaviruses and marseilleviruses that infect unicellular

eukaryotes encompass numerous genes encoding proteins that can be predicted to modulate

core cellular functions and intracellular signaling [4, 8].

The NCLDVs either replicate entirely within the cytoplasm of the infected cells or at least

undergo essential parts of their reproduction cycles in the cytoplasm. The cytoplasm of cells

infected with viruses from each of the NCLDV families (with the possible exception of

some phycodnaviruses) contains distinct compartments known as virus factories, which are

the sites of viral genome replication and expression as well as virion morphogenesis [28–

30]. Generally similar virus factories have been described in cells infected with RNA viruses

that replicate in the cytoplasm, e.g., picornaviruses [31, 32]. However, among viruses with

DNA genomes, this feature is unique to the NCLDVs and sharply differentiates the

NCLDVs from other large DNA viruses of eukaryotes, such as herpesviruses and

baculoviruses, that replicate in the cell nucleus.

Diversity, host range and evolution of the NCLDVs

The complexities of the evolutionary histories of the core NCLDV genes [19]

notwithstanding, the phylogenetic signals are coherent enough to obtain a consensus

phylogeny (Figure 1) [19]. Each of the NCLDV families comes across as a clade, with the

clades assembled into two major branches, one of which encompasses poxviruses and

asfarviruses, and the second one consists of the remaining five NCLDV families (Figure 1).

Of the five currently recognized supergroups of eukaryotes [33–35], known NCLDV hosts

belong to three, namely unikonts (Metazoa and Amoebozoa), Plantae (green algae but not

vascular plants) and Chromalveolata (Haptophyta, Stramenopiles); the remaining two

supergroups, Rhizaria and Excavata, have not been studied biologically in sufficient detail

to rule out the possibility that these organisms harbor NCLDVs as well.

Superposition of the host ranges of the NCLDVs over the consensus phylogenetic tree of the

conserved genes of these viruses reveals a maze of virus-host relationships in which

representatives of the same supergroup of eukaryotes are infected by members of multiple
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NCLDV families, whereas viruses of the same family infect hosts of multiple eukaryotic

supergroups (Figure 1). Conceivably, this complex picture results from the ancient origin of

the NCLDVs, which might have been concomitant with eukaryogenesis [20], and transfer of

viruses between taxonomically distant hosts.

The proposed order “Megavirales'”

In summary, the NCLDVs encompass an extremely broad range of viruses with large DNA

genomes that infect hosts across (almost) the entire range of eukaryotic diversity.

All these viruses are united by:

– common origin that is manifest in the existence of a large set of ancestral genes

that are responsible for key viral functions;

– common virion architecture;

– common major biological features, in particular virus reproduction within

cytoplasmic factories.

Taken together, these shared features strongly support the classification of the seven families

of the NCLDV into a new viral order (http://talk.ictvonline.org/files/proposals/

taxonomy_proposals_fungal1/m/fung01/4261.aspx). We propose to name this order

“Megavirales” in reference to the characteristic large or giant size of the virions and

genomes of these viruses.
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Fig. 1.
Coevolution of the viruses in the proposed order “Megavirales” and their hosts. The

schematic family-level evolutionary tree of the NCLDVs represents the consensus of the

phylogenies of the core NCLDV genes (superfamily II helicase (NCVOG0076), A2L-like

transcription factor (NCVOG0262), RNA polymerase a subunit (NCVOG0274), RNA

polymerase β subunit (NCVOG0271), mRNA capping enzyme, A32-like packaging ATPase

(NCVOG0249), small subunit of ribonucleotide reductase (NCVOG0276), myristoylated

envelope protein (NCVOG0211), primase-helicase (NCVOG0023), and DNA polymerase

(NCVOG0038)). For the highly diverse family Phycodnaviridae, a more detailed, genus-

level phylogeny is shown. The schematic supergroup-level evolutionary tree of the

eukaryotes shows a multifurcation, given the lack of resolution at the deepest level. Lines

connect virus families (and genera of the family Phycodnaviridae) and their known hosts
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Table 1

Viral families and genera in the proposed order `Megavirales'

Family Subfamily Genus Genome size (bp) Host range

Min Max

Ascoviridae Ascovirus 119,343 186,262 Insects

Asfarviridae Asfivirus 170,101 182,284 Mammals, dinoflagellates

Iridoviridae Chloriridovirus 191,100 191,100 Insects

Iridovirus 205,791 212,482 Insects

Lymphocystivirus 102,653 186,250 Fishes

Megalocytivirus 111,362 111,362 Fishes

Ranavirus 105,890 140,131 Amphibia

Mimiviridae - 617,453 1,259,197 Amoeba, green algae, heterokonts, haptophyta

Mimivirus 1,021,348 1,259,197 Amoeba

“Marseilleviridae” “Marseillevirus” 346,754 368,454 Amoeba

Phycodnaviridae Chlorovirus 288,047 368,683 Green algae

Coccolithovirus 407,339 407,339 Haptophyta

Phaeovirus 154,641 335,593 Heterokonts

Prasinovirus 184,095 198,519 Green algae

Raphidovirus - - Heterokonts

Poxviridae Chordopoxvirinae Avipoxvirus 288,539 359,853 Birds

Capripoxvirus 149,599 150,773 Mammals

Cervidpoxvirus 166,259 170,560 Mammals

Crocodylidpoxvirus 190,054 190,054 Reptiles

Leporipoxvirus 159,857 161,773 Mammals

Molluscipoxvirus 190,289 190,289 Human

Orthopoxvirus 175,699 224,499 Mammals

Parapoxvirus 134,431 145,289 Mammals

Suipoxvirus 146,454 146,454 Mammals

Yatapoxvirus 134,721 144,575 Primates

Unassigned 190,054 190,054 Animals

Entomopoxvirinae Alphaentomopoxvirus n.a. n.a. Insects

Betaentomopoxvirus 232,392 232,392 Insects

Gammaentomopoxvirus n.a. n.a. Insects

Unassigned 236,120 236,120 Insects

n.a., not available

Arch Virol. Author manuscript; available in PMC 2014 June 23.


