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High-level visual categories (e.g., faces, bodies, scenes, and objects)
have separable neural representations across the visual cortex.
Here, we show that this division of neural resources affects the
ability to simultaneously process multiple items. In a behavioral
task, we found that performance was superior when items were
drawn from different categories (e.g., two faces/two scenes) com-
pared to when items were drawn from one category (e.g., four
faces). The magnitude of this mixed-category benefit depended on
which stimulus categories were paired together (e.g., faces and
scenes showed a greater behavioral benefit than objects and
scenes). Using functional neuroimaging (i.e., functional MRI), we
showed that the size of the mixed-category benefit was predicted
by the amount of separation between neural response patterns,
particularly within occipitotemporal cortex. These results sug-
gest that the ability to process multiple items at once is limited
by the extent to which those items are represented by separate
neural populations.

working memory | capacity limitations | representational similarity |
competition | visual cognition

An influential idea in neuroscience is that there is an intrinsic
relationship between cognitive capacity and neural organi-

zation. For example, seminal cognitive models claim there are
distinct resources devoted to perceiving and remembering au-
ditory and visual information (1, 2). This cognitive distinction is
reflected in the separate cortical regions devoted to processing
sensory information from each modality (3). Similarly, within the
domain of vision, when items are placed near each other, they
interfere more than when they are spaced farther apart (4, 5).
These behavioral effects have been linked to receptive fields and
the retinotopic organization of early visual areas, in which items
that are farther apart activate more separable neural populations
(6–8). Thus, there are multiple cognitive domains in which it has
been proposed that capacity limitations in behavior are intrin-
sically driven by competition for representation at the neural
level (4, 7–10).
However, in the realm of high-level vision, evidence linking

neural organization to behavioral capacities is sparse, although
neural findings suggest there may be opportunities for such
a link. For example, results from functional MRI (fMRI) and
single-unit recording have found distinct clusters of neurons
that selectively respond to categories such as faces, bodies,
scenes, and objects (11, 12). These categories also elicit dis-
tinctive activation patterns across the ventral stream as measured
with fMRI (13, 14). Together, these results raise the interesting
possibility that there are partially separate cognitive resources
available for processing different object categories.
In contrast, many prominent theories of visual cognition do

not consider the possibility that different categories are pro-
cessed by different representational mechanisms. For example,
most models of attention and working memory assume or imply
that these processes are limited by content-independent mech-
anisms such as the number of items that can be represented
(15–18), the amount of information that can be processed (19–21),
or the degree of spatial interference between items (4, 22–24).
Similarly, classical accounts of object recognition are intended to
apply equally to all object categories (25, 26). These approaches

implicitly assume that visual cognition is limited by mechanisms
that are not dependent on any major distinctions between objects.
Here, we examined (i) how high-level visual categories (faces,

bodies, scenes, and objects) compete for representational re-
sources in a change-detection task, and (ii) whether this com-
petition is related to the separation of neural patterns across the
cortex. To estimate the degree of competition between different
categories, participants performed a task that required encoding
multiple items at once from the same category (e.g., four faces)
or different categories (e.g., two faces and two scenes). Any
benefit in behavioral performance for mixed-category conditions
relative to same-category conditions would suggest that different
object categories draw on partially separable representational
resources. To relate these behavioral measures to neural orga-
nization, we used fMRI to measure the neural responses of these
categories individually and quantified the extent to which these
categories activate different cortical regions.
Overall, we found evidence for separate representational re-

sources for different object categories: performance with mixed-
category displays was systematically better than performance with
same-category displays. Critically, we also observed that the size of
this mixed-category benefit was correlated with the degree to which
items elicited distinct neural patterns, particularly within occipito-
temporal cortex. These results support the view that a key limi-
tation to simultaneously processing multiple high-level items
is the extent to which those items are represented by non-
overlapping neural channels within occipitotemporal cortex.

Results
Behavioral Paradigm and Results. To measure how items from
different categories compete for representation, participants per-
formed a task that required encoding multiple items at once. The
stimulus set included images of faces, bodies, scenes, and objects
matched for luminance and contrast (Fig. S1 shows the full
stimulus set). On each trial, four different items were presented
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for 800 ms with one item in each visual quadrant. Following
a blank display (1,000 ms), the items reappeared with one item
cued by a red frame, and participants reported if that item had
changed (Fig. 1A). Changes occurred on half the trials and could
occur only at the cued location.
The critical manipulation was that half the trials were same-

category displays (e.g., four faces or four scenes), whereas the
other half of trials were mixed-category displays (e.g., two faces
and two scenes). Whenever an item changed, it changed to another
item from the same category (e.g., a face could change into another
face, but not a scene). Each participant was assigned two catego-
ries, such as faces and scenes, or bodies and objects, to obtain
within-subject measures for the same-category and mixed-category
conditions. Across six groups of participants, all six pairwise
combinations of category pairings were tested (SI Materials
and Methods).
If items from one category are easier to process, participants

might pay more attention to the easier category in mixed-cate-
gory displays. To address this concern, we averaged performance
across the tested categories (e.g., for the face–scene pair, we
averaged over whether a face or scene was tested). Thus, any
differences in overall performance for the mixed-category and
same-category conditions cannot be explained by attentional bias
toward one particular category. We also took several steps to
ensure that performance was approximately matched on the
same-category conditions for all categories. First, we carefully
selected our stimulus set based on a series of pilot studies (SI
Materials and Methods). Second, before testing each participant,
we used an adaptive calibration procedure to match performance
on the same-category conditions, by adjusting the transparen-
cy of the items (Materials and Methods). Finally, we adopted
a conservative exclusion criterion: any participants whose per-
formance on the same-category displays (e.g., four faces com-
pared with four scenes) differed by more than 10% were not
included in the main analysis (SI Materials and Methods). This
exclusion procedure ensured that there were no differences in
difficulty between the same-category conditions for any pair of
categories (P > 0.16 for all pairings; Fig. S2). Although these
exclusion criteria were chosen to isolate competition between
items, our overall behavioral pattern and its relationship to
neural activation is similar with and without behavioral subjects
excluded (Fig. S3).
Overall, we observed a mixed-category benefit: performance

on mixed-category displays was superior to performance on
same-category displays (F1,9 = 19.85; P < 0.01; Fig. 1B). This
suggests that different categories draw on separate resources,
improving processing of mixed-category displays. Moreover,

although there was a general benefit for mixing any two cate-
gories, a closer examination suggested that the effect size de-
pended on which categories were paired together (regression
model comparison, F5,54 = 2.29; P = 0.059; SI Materials and
Methods). The mixed-category benefit for each pairing, in order
from largest to smallest, was: bodies–scenes, 5.6%, SEM = 1.5%;
faces–scenes, 5.2%, SEM = 1.3%; bodies–faces, 3.3%, SEM =
1.1%; bodies–objects, 3.3%, SEM = 1.2%; faces–objects, 2.4%,
SEM = 1.9%; scenes–objects, −0.8%, SEM = 1.9% (Fig. 1B).
The variation in the size of the mixed-category benefit suggests
that categories do not compete equally for representation
and that there are graded benefits depending on the particular
combination of categories.
What is the source of the variability in the size of the mixed-

category benefit? We hypothesize that visual object information
is represented by a set of broadly tuned neural channels in the
visual system, and that each stimulus category activates a subset
of those channels (7–10, 27, 28). Under this view, items compete
for representation to the extent that they activate overlapping
channels. The differences in the size of the mixed-category benefit
may thus result from the extent to which the channels representing
different categories are separated.
Importantly, although this representational-competition frame-

work explains why varying degrees of mixed-category benefits
occur, it cannot make a priori predictions about why particular
categories (e.g., faces and scenes) interfere with one another less
than other categories (e.g., objects and scenes). Thus, we sought
to (i) directly measure the neural responses to each stimulus
category and (ii) use these neural responses to predict the size of
the mixed-category benefit between categories. Furthermore, by
assuming a model of representational competition in the brain,
we can leverage the graded pattern of behavioral mixed-category
benefits to gain insight into the plausible sites of competition at
the neural level.

Measuring Neural Separation Among Category Responses. Six new
participants who did not participate in the behavioral experiment
were recruited for the fMRI experiment. Participants viewed
stimuli presented in a blocked design, with each block composed
of images from a single category presented in a single quadrant
(Materials and Methods). The same image set was used in the
behavioral and fMRI experiments. Neural response patterns
were measured separately for each category in each quadrant of
the visual field. There are two key properties of this fMRI de-
sign. First, any successful brain/behavior relationship requires
that behavioral interference between two categories can be
predicted from the neural responses to those categories mea-
sured in isolation and across separate locations. Second, by using
two groups of participants, one for behavioral measurements and
another for neural measurements, any brain/behavior relation-
ship cannot rely on individual idiosyncrasies in object processing
and instead reflects a more general property of object repre-
sentation in behavior and neural coding.
To probe how different neural regions predict behavioral in-

terference, we divided the set of visually active voxels into four
sectors in each participant: occipitotemporal, occipitoparietal,
early visual (V1–V3), and prefrontal cortex (PFC). These sectors
were defined from independent functional localizers (SI Mate-
rials and Methods and Fig. S4). Performing the analysis in these
sectors allowed us to examine the neural response patterns
across the major divisions of the visual system: early retinotopic
cortex, the what pathway, the where/how pathway (29, 30), as well
as in a frontal lobe region associated with working memory (31).
We defined the neural separation between any two categories

as the extent to which the stimuli activate different voxels. To
quantify this, we first identified the most active voxels in each
sector for each of the categories, at a particular threshold [e.g.,
the 10% most active voxels for objects (objects > rest) and the
top 10% most active voxels for scenes (scenes > rest); Fig. 2].
Next, we calculated the percentage of those voxels that were
shared by each category pairing (i.e., percent overlap). This

A B

Fig. 1. (A) Behavioral paradigm. Participants were shown two successively
presented displays with four items in each display (Materials and Methods).
On the second display, one item was cued (red frame) and participants
reported if that item had changed. In the same-category condition, items
came from the same stimulus category (e.g., four faces or four scenes). In the
mixed-category conditions, items came from two different categories (e.g.,
two faces and two scenes). (B) Behavioral experiment results. Same-category
(light gray) and mixed-category (dark gray) performance is plotted in terms
of percent correct for all possible category pairings. Error bars reflect within-
subject SEM (48) (*P < 0.05).
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percent overlap measure was then converted to a neural sepa-
ration measure as 1 minus percent overlap. The amount of
neural separation for every category pairing was then calculated
at every activation threshold (from 1% to 99%; Materials and
Methods). Varying the percent of active voxels under consider-
ation allows us to probe whether a sparse or more distributed
pool of representational channels best predicts the behavioral
effect. This was done in every sector of each fMRI participant. In
addition, we also used an area under the curve (AUC) analysis,
which integrates over all possible activation thresholds, to compute
an aggregate neural separation measure for each category pairing.
Finally, we performed a standard representational similarity
analysis in which the neural patterns of each category pairing
were compared by using a pattern dissimilarity measure [1 minus
the Pearson correlation between two response patterns across
the entire sector (14); SI Materials and Methods].

Neural Separation Predicts the Mixed-Category Benefit. To assess
the degree to which neural separation predicted the mixed-category
benefit, we correlated the amount of neural separation for every
category pairing in each individual fMRI participant with the
size of the mixed-category benefits from the behavioral experi-
ments (i.e., a random effects analysis of the distribution of brain/
behavior correlations; SI Materials and Methods). An illustration
of this analysis procedure using data obtained from occipito-
temporal cortex is shown in Fig. 3. We chose this analysis be-
cause it allows for a stronger inference about the generality of
our results relative to a fixed effects analysis on the neural and
behavioral data (14). In addition, we were confident in our ability
to analyze each fMRI participant individually given the highly
reliable nature of our neural data (average within-subject split-
half reliability in occipitotemporal, r = 0.82; occipitoparietal,
r = 0.79; early visual, r = 0.86; and prefrontal, r = 0.65; SI Materials
and Methods and Figs. S5 and S6).
To determine whether the most active voxels alone could

predict the mixed-category benefit, we correlated the amount of
neural separation in the 10% most active voxels with the size of
the mixed-category benefit. In this case, we found a significant
correlation in occipitotemporal cortex of each participant (av-
erage r = 0.59, P < 0.01) with a smaller, but still significant,
correlation in occipitoparietal cortex (average r = 0.30, P < 0.01)
and no correlation in early visual (average r = −0.03, P = 0.82) or
prefrontal cortex (average r = −0.06, P = 0.63; Fig. 4B). A leave-
one-category-out analysis confirmed that the correlations in each
of these sectors were not driven by any particular category
(SI Materials and Methods). It should be noted that, given the fine-
grained retinotopy in early visual cortex, objects presented across

visual quadrants activate nearly completely separate regions, and
this is reflected in the neural separation measure (ranging from
93% to 96% separation). Thus, by design, we anticipated that the
neural separation of these patterns in the early visual cortex
would not correlate with the behavioral results.
To compare correlations between any two sectors, a paired

t test was performed on the Fisher z-transformed correlations. In
this case, the correlation in occipitotemporal cortex was signifi-
cantly greater than the correlations in all other sectors (occipi-
toparietal, t5 = 5.14, P < 0.01; early visual, t5 = 4.68, P < 0.01;
PFC, t5 = 4.67, P < 0.01). Together, these results show that the
degree of neural overlap between stimulus categories, particu-
larly within occipitotemporal cortex, strongly predicts the varia-
tion in the size of the behavioral mixed-category benefit for
different categories. Moreover, because this analysis considers
only 10% of voxels in a given sector, these results indicate that
a relatively sparse set of representational channels predicts the
behavioral effect.
Next, we varied the activation threshold to test whether a more

restricted or expansive pool of neural channels could best predict
the graded patterns of the behavioral mix effect. The percentage
of most-active voxels used for the separation analysis was sys-
tematically increased from 1% to 99% (at 100%, there is com-
plete overlap between all pairs of categories because every voxel
is included for every category). The brain/behavior correlation of
every subject as a function of percentile for each sector is shown
in Fig. 5. This analysis revealed that the behavioral effect is well-
predicted by the amount of neural separation across a broad
range of occipitotemporal cortex, regardless of the percentile
chosen for the neural separation analysis. Put another way, for
any two categories, the degree of overlap among the most active
voxels is similarly reflected across the majority of the entire
activation profile.
To assess the statistical reliability of this result in a way that

does not depend on a particular activation threshold, we used an
AUC analysis to compute the aggregate neural separation be-
tween categories for all subjects in all sectors. These values were
then correlated with the behavioral results, and the results were
similar to those observed when considering only the top 10%
most active voxels (Fig. 4C). There was a significant correlation

Fig. 2. Visualization of the neural separation procedure. Activation and
overlap among the 10% most active voxels for objects and scenes in the
occipitotemporal sector is shown in a representative subject. The 10% most
active voxels for each category are colored as follows: objects purple, scenes
blue. The overlap among these active voxels are shown in yellow. For visu-
alization purposes, this figure shows the most active voxels and overlapping
voxels combined across all locations; for the main analysis, overlap was
computed separately for each pair of locations.
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Fig. 3. Visualization of our analysis procedure. The center matrix represents
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in occipitotemporal cortex (average r = 0.62, t5 = 6.28, P < 0.01),
whereas little to no correlation was observed in the remaining
sectors (occipitoparietal, r = 0.20; early visual, r = 0.06; pre-
frontal, r = 0.11; P > 0.21 in all cases; Fig. 4C). In addition, the
correlation in occipitotemporal cortex was significantly greater
than the correlations in all other sectors (occipitoparietal, t5 =
8.36, P < 0.001; early visual, t5 = 6.86, P < 0.01), except PFC, in
which the effect was marginal (t5 = 2.30, P = 0.07), likely because
the brain/behavior correlation measures in PFC were highly
inconsistent across participants. It is worth noting that, in the
dorsal stream sector of occipitoparietal cortex, although there
was a significant correlation at the 10% cutoff, the AUC analysis
did not show a significant correlation (t5 = 1.45, P > 0.21),
suggesting that only the most active voxels in occipitoparietal
cortex predict the behavioral data.
A convergent pattern of results was found by using a repre-

sentational similarity analysis (14). That is, in occipitotemporal
cortex, pattern dissimilarity (i.e., 1 − r) across all pairs of cate-
gories strongly predicted the magnitude of the mixed-category
benefit (average r = 0.60, t5 = 6.77, P < 0.01; Fig. 4D). None of
the other sectors showed a significant brain/behavior correlation
using this neural measure (P > 0.37 in all cases), and direct
comparisons between sectors show that the brain/behavior cor-
relation in occipitotemporal cortex was significantly greater than

those in the other sectors [P < 0.05 in all cases except in PFC, in
which the difference was not significant (t5 = 1.87, P = 0.12),
again likely because of the brain/behavior correlations being
highly variable in PFC].
To what extent do the category-selective regions for faces,

bodies, scenes, and objects found in the occipitotemporal sector
(11) drive these results? To address this question, we calculated
the brain/behavior correlation in occipitotemporal cortex when
considering only category selective regions (e.g., fusiform face
area (FFA)/occipital face area (OFA) and parahippocampal
place area (PPA)/retrosplenial cortex (RSC) when comparing
faces and scenes) or only the cortex outside the category selec-
tive regions by using pattern dissimilarity as our measure of
representational similarity (SI Materials and Methods). This
analysis revealed a strong brain/behavior correlation within the
category-selective regions (average r = 0.62, P < 0.01) and out-
side the category selective regions (r = 0.60, P < 0.01; Fig. S7),
with no difference between these two correlations (t5 = 0.10,
P = 0.92).
Different assumptions about neural coding are tested by our

two analyses: neural separation tests the idea that information is
conveyed by maximal neural responses; neural similarity assumes
that information is conveyed over the full distribution of res-
ponses within some circumscribed cortical territory. These
measures dissociate in the occipitoparietal sector. The neural
overlap analysis revealed that only the most active voxels have
systematic differences among categories, suggesting that there is
reliable object category information along portions of this sector
(32). This observation was missed by the representational simi-
larity analysis, presumably because many of the dorsal stream
voxels are not as informative, making the full neural patterns
subject to more noise. This result also highlights that the selec-
tion of voxels over which pattern analysis is performed can be
critical to the outcomes. In contrast, in the occipitotemporal
cortex, the separation and similarity metrics strongly correlated
with behavior, and thus cannot distinguish between the func-
tional roles of strong overall responses and distributed patterns.
Nevertheless, this convergence strongly demonstrates that neural
responses across the entire occipitotemporal cortex have the
requisite representational structure to predict object-processing
capacity in behavior.

Discussion
Here we characterized participants’ ability to simultaneously pro-
cess multiple high-level items and linked this behavioral capacity
to the underlying neural representations of these items. Partic-
ipants performed better in a change-detection task when items
were from different categories than when items were from the

A B

C D
Fig. 4. (A) Visualization of the four sectors from
a representative subject. (B) Brain/behavior corre-
lations in every sector for each fMRI participant at
the 10% activation threshold, with r values plot-
ted on the y axis. Each bar corresponds to an indi-
vidual participant. (C) Brain/behavior correlations in
every sector for each participant when using
the AUC analysis and (D) representational dissim-
ilarity (1 − r).
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same category. This suggests that, within the domain of high-level
vision, items do not compete equally for representation. By using
fMRI to independently measure the pattern of activity evoked by
each category, we found that the magnitude of the mixed-category
benefit for any category pairing was strongly predicted by the
amount of neural separation between those categories in occipi-
totemporal cortex. These data suggest that processing multiple
items at once is limited by the extent to which those items draw on
the same underlying representational resources.
The present behavioral results challenge many influential

models of attention and working memory. These models are
typically derived from studies that use simple stimuli (e.g.,
colorful dots or geometric shapes), and tend to posit general
limits that are assumed to apply to all items equally. For exam-
ple, some models propose that processing capacity is set by
a fixed number of pointers (15–18) or fixed resource limits (19–21),
or from spatial interference between items (4, 22–24), none of
which are assumed to depend on the particular items being
processed. However, the present results demonstrate that the
ability to process multiple items at once is greater when the items
are from different categories. We interpret this finding in terms
of partially separate representational resources available for
processing different types of high-level stimuli. However, an al-
ternative possibility is that these effects depend on processing
overlap instead of representational overlap. For example, it has
been argued that car experts show greater interference between
cars and faces in a perceptual task than nonexperts because only
experts use holistic processing to recognize both cars and faces
(33, 34). The present behavioral data cannot distinguish between
these possibilities. Future work will be required to determine
which stages of perceptual processing show interference and
whether this interference is best characterized in terms of rep-
resentational or processing overlap.
Given that the size of the behavioral mixed-category benefit

varied as a function of which categories were being processed,
what is the source of this variability? We found that neural re-
sponses patterns, particularly in occipitotemporal cortex, strongly
predicted the pattern of behavioral interference. This relationship
between object processing and the structure of occipitotemporal
cortex is intuitive because occipitotemporal cortex is known to
respond to high-level object and shape information (11–14) and
has receptive fields large enough to encompass multiple items
in our experimental design (35). However, some aspects of the
correlation between behavior and occipitotemporal cortex were
somewhat surprising. In particular, we found that the relative
separation between stimulus categories was consistent across the
entire response profile along occipitotemporal cortex. That is,
the brain/behavioral relationship held when considering the most
active voxels, the most selective voxels (e.g., FFA/PPA), or those
voxels outside of classical category selective regions.
The fact that the brain/behavior correlation can be seen

across a large majority of occipitotemporal cortex is not
predicted by expertise-based (36) or modular (11) models of
object representation. If this correlation was caused by dif-
ferences in expertise between the categories, one might ex-
pect to see a significant correlation only in FFA (37). Similarly, if
competition within the most category-selective voxels drove the
behavioral result, we would expect to only find a significant brain/
behavior correlation within these regions. Of course, it is impor-
tant to emphasize that the present approach is correlational, so we
do not know whether all or some subset of occipitotemporal
cortex is the underlying site of interference. Future work with the
use of causal methods (38), or that explores individual differences
in capacity and neural organization (39), will be important to ex-
plore these hypotheses.
In light of the relationship between behavioral performance

and neural separation, it is important to consider the level of
representation at which the competition occurs. For example,
items might interfere with each other within a semantic (40),
categorical (11), or perceptual (41, 42) space. Variants of the
current task could be used to isolate the levels of representation

involved in the mixed-category benefit and its relationship to neural
responses. For example, the use of exemplars with significant per-
ceptual variation (e.g., caricatures, Mooney faces, and photographs)
would better isolate a category level of representation. Conversely,
examining the same type of brain/behavioral relationship within
a single category would minimize the variation in semantic space
and would target a more perceptual space. Although the present
data cannot isolate the level of representation at which compe-
tition occurs, it is possible that neural competition could occur at
all levels of representation, and that behavioral performance will
ultimately be limited by competition at the level of representa-
tion that is most relevant for the current task.
The idea of competition for representation is a prominent

component of the biased competition model of visual attention,
which was originally developed based on neurophysiological studies
in monkeys (7), and has been expanded to explain certain human
neuroimaging and behavioral results (43). These previous studies
have shown that, if two items are presented close enough to land
within a single receptive field, they compete for neural represen-
tation, such that the neural response to both items matches
a weighted average of the response to each individual item alone
(44). When attention is directed to one of the items, neural re-
sponses are biased toward the attended item, causing the neuron to
fire as if only the attended item were present (7–10, 44). In the
present study, we did not measure neural competition directly. In-
stead, we measured neural responses to items presented in isolation
and used similarity in those responses to predict performance
in a behavioral task. We suggest that the cost for neural simi-
larity reflects a form of competition, but we cannot say how that
competition manifests itself (e.g., as suppression of overall
responses or a disruption in the pattern of responses across the
population) or if these mechanisms are the same from early to
high-level visual cortex (45–47). Thus, parameterizing neural
similarity and measuring neural responses to items presented
simultaneously will be essential for addressing the relationship
between neural similarity and neural competition.
Overall, the present findings support a framework in which

visual processing relies on a large set of broadly tuned coding
channels, and perceptual interference between items depends on
the degree to which they activate overlapping channels. This
proposal predicts that a behavioral mixed-category benefit will
be obtained for tasks that require processing multiple items at
once, to the extent that the items rely on separate channels. It is
widely known that there are severe high-level constraints on our
ability to attend to, keep track of, and remember information.
The present work adds a structural constraint on information
processing and perceptual representation, based on how high-
level object information is represented within the visual system.

Materials and Methods
Behavioral Task. Participants (N = 55) viewed four items for 800 ms, followed
by a fixation screen for 1,000 ms, followed by a probe display of four items,
one of which was cued with a red frame. For any display, images were ran-
domly chosen from the stimulus set with the constraint that all images on
a given display were unique. There were no changes on half the trials. On the
other trials, the cued item changed to a different item from the same cate-
gory (e.g., from one face to another). Participants reported if the cued item
had changed. The probe display remained on screen until participants gave
a response by using the keyboard.

On same-category trials, all four items came from the same category (e.g.,
four faces or four scenes), with each category appearing equally often across
trials. On mixed-category trials, there were two items from each category
(e.g., two faces and two scenes). Itemswere arranged such that one item from
each category appeared in each visual hemifield. Across the mixed-category
trials, both categories were tested equally often. The location of the cued
item was chosen in a pseudorandom fashion.

fMRI Task. Six participants (none of whom performed the behavioral task)
completed the fMRI experiment. There were eight runs of the main experi-
ment, one run of meridian mapping to localize early visual areas (V1–V3), one
run of a working memory task used to localize PFC, and two localizer runs
used to define the occipitotemporal and occipitoparietal sectors as well as
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category-selective regions (FFA/OFA, PPA/RSC, extrastriate body area/fusiform
body area, and lateral occipital). Participants were shown the same faces,
bodies, scenes, and objects that were used in the behavioral experiments (Fig.
S1), presented one at a time in each of the four quadrants [top left (TL), top
right (TR), bottom left (BL), bottom right (BR)], following a standard blocked
design. In each 16-s stimulus block, images from one category were presented
in isolation (one at a time) at one of the four locations; 10-s fixation blocks
intervened between each stimulus block. A total of 11 items were presented
per block for 1 s with a 0.45-s intervening blank. Participants were instructed to
maintain fixation on a central cross and to press a button indicating when the
same item appeared twice in a row, which happened once per block. For any
given run, all four stimulus categories were presented in two of the four pos-
sible locations, for two separate blocks per category × location pair, yielding 16
blocks per run. Across eight runs, the categories were presented at each pair of
locations (TL–TR; TL–BR; BL–BR; BL–TR), yielding eight blocks for each of the 16
category × location conditions (SI Materials and Methods provides information
on localizer runs).

Neural Separation Analysis. The logic of this analysis is to compute the pro-
portionof voxels that are activatedby any two categories (e.g., facesand scenes):
if no voxels are coactivated, there is 100% neural separation, whereas, if all
voxels are coactivated, there is 0% separation. This analysis relies on one free
parameter, which sets the percent of the most active voxels to consider as the
available representational resources of each object category. In addition, we
take into account location by considering the overlap between the two cate-
gories at all pairs of locations, and then averaging across location pairs.

To compute the neural separation between two categories within a sector
(e.g., faces and scenes in occipitotemporal cortex), we used the following

procedure. (i) The responses (β) for each category–location pair were sorted
and the top n (as a percentage) was selected for analysis, where nwas varied
from 1% to 99%. (ii) Percent overlap at a particular threshold was computed
as the number of voxels that were shared between any two conditions at
that threshold, divided by the number of selected voxels for each condition
(e.g., if 10 voxels overlap among the top 100 face voxels and the top 100
scene voxels, the face–scene overlap would be 10/100 = 10%). To take into
account location, percent overlap was calculated separately for all 12 pos-
sible location pairs, e.g., faces-TL–scenes-TR, faces-TL–scenes-BL, faces-TL–
scenes-BR. Fig. 2 shows an example whereby n = 10% for the activation
patterns of objects (purple) scenes(blue) and shared (yellow); and (iii) Finally,
we averaged across these 12 overlap estimates to compute the final overall
estimate of overlap between a pair of categories. This measure can be
interpreted as the degree to which two different categories in two different
locations will recruit similar cortical territory. We computed percent overlap
at each percentile (i.e., 1%–99% of the most active voxels), generating a
neural overlap curve, and converted this to a percentage separation mea-
sure by taking 1 minus the percent overlap. This procedure was conducted
for all pairs of categories, for all sectors, for all subjects.
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