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ABSTRACT

Nuclear lamins contact the genome at the nuclear
periphery through large domains and are involved
in chromatin organization. Among broad peak call-
ing algorithms available to date, none are suited for
mapping lamin—genome interactions genome wide.
We disclose a novel algorithm, enriched domain de-
tector (EDD), for analysis of broad enrichment do-
mains from chromatin immunoprecipitation (ChiP)-
seq data. EDD enables discovery of genomic do-
mains interacting with broadly distributed proteins,
such as A- and B-type lamins affinity isolated by
ChIP. The advantages of EDD over existing broad
peak callers are sensitivity to domain width rather
than enrichment strength at a particular site, and ro-
bustness against local variations.

INTRODUCTION

The eukaryotic nucleus is bounded by the nuclear en-
velope. The nuclear envelope consists of double mem-
brane and, interfacing the inner membrane and chromatin,
a meshwork of filamentous proteins called lamins (1).
Lamins are involved in the regulation of many nuclear func-
tions including chromatin organization (1,2). Mutations in
lamin A (LMNA) cause diseases commonly referred to as
laminopathies, which include partial lipodystrophies, myo-
dystrophies or premature aging (3,4). Moreover, variations
in B-type lamin level and distribution (in particular lamin
B1l; LMNBI) have been associated with aging and senes-
cence (5-8). A- and B-type lamins interact with chromatin
through lamina-associated domains or LADs, of typically
0.1 to 10 megabases (Mb) (9-13). LADs have initially been
identified using DamlID, an assay relying on the tagging of
DNA sequences in proximity to nuclear lamins, and iden-
tification of these sequences (2,9). Important features of
LADs are their gene-poor content, the repressed state of

genes within them, and their enrichment in heterochromatin
(2,12,14).

LADs have also been evidenced by chromatin immuno-
precipitation (ChIP) of LMNA followed by array hybridiza-
tion (15-17) and by ChIP of LMNBI followed by high-
throughput sequencing (ChIP-seq) (6,7). Lamins tend to be
widely distributed on chromosomes, with regions of low oc-
cupancy (6,7,9,11,12,16). Therefore, lamin ChIP-seq data
differ in distribution and signal-to-noise ratio from more
‘conventional’ ChIP-seq data for, for instance, focused hi-
stone post-translational modifications (hPTMs) or tran-
scription factors (TFs), which show narrow and strong en-
richment (18,19). Broad and low-level enrichment cannot
be detected by ChIP-seq peak callers, such as MACS which
are designed to detect hPTMs or TFs in narrow windows
(20).

Several algorithms have been designed to detect broader
peaks of enrichment. These include SICER, a clustering
approach for domain identification (21); HPeak (22) and
RSEG (23), two hidden Markov Model-based programs;
PeakRanger (in particular the CCAT algorithm), detect-
ing broad regions and summits within (24,25); and Broad-
Peak which identifies wide peaks over a low-level profile
(26). These programs are designed to discover regions of
hPTM enrichment wider than peaks of TF binding; how-
ever these regions are narrower than the megabase-size do-
mains interacting with lamins (2), questioning the appli-
cability of these algorithms to the detection of LADs. In
addition, BroadPeak lacks support for ‘input’ chromatin
sequences (26), i.e. sequences from fragmented chromatin
not enriched in any specific protein by immunoprecipita-
tion (unlike the ChIP sample) and commonly used as ref-
erence against ChIP samples in the analysis. This makes
BroadPeak unsuitable for analysis of ChIP-seq data that do
not display a prominent difference between actual enrich-
ment and background. SICER and PeakRanger detect pu-
tative peaks based on the ChIP data alone, and only later in
the analysis do they incorporate input data to evaluate the
significance of the putative peaks (21,24). RSEG segments

*To whom correspondence should be addressed. Tel: +4722851066; Fax: +4722851058; Email: e.g.lund@medisin.uio.no
Correspondence may also be addressed to Philippe Collas. Tel: +47 22851066; Fax: + 47 22851058; Email: philippe.collas@medisin.uio.no

© The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/3.0/), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com



92 Nucleic Acids Research, 2014, Vol. 42, No. 11

the genome into foreground and background domains by
identifying boundaries with significant transition probabil-
ities, without taking the actual enrichment level in fore-
ground domains into account (23). As lamin domains iden-
tified by RSEG have very large genome coverage, with many
domains displaying very low enrichment levels, we found
that RSEG is too lenient in a lamin context (see below).
These limitations may in practice be irrelevant when analyz-
ing hTPM domains or similar ChIP-seq data; however they
constitute a major hindrance in the analysis of ChIP-seq
data for lamins and other broadly distributed chromatin-
bound proteins.

To alleviate these limitations, we developed an algorithm
called enriched domain detector (EDD). We benchmark
EDD against other broad peak callers using published
lamin ChIP-seq data. We show that EDD enables quan-
titative analysis of ChIP-seq data for proteins widely dis-
tributed and with low-level enrichment on chromatin. We
also demonstrate that EDD can discover genomic domains
enriched in LMNA using new ChIP-seq data for LMNA.
The main advantage of EDD over other peak callers is sen-
sitivity to the width of enriched domains rather than enrich-
ment strength at a particular site, and robustness against lo-
cal variations.

MATERIALS AND METHODS
Cells

Human normal dermal fibroblasts (Lonza CC-2511; LDFs)
and human normal primary dermal fibroblasts (Norwegian
Stem Cell Center AD04DFs) were cultured in DMEM/F12
with 13% FCS, 2 ng/ml basic fibroblast growth factor and
antibiotics. Cells were exponentially growing and harvested
at confluency, at passage 5-7. AD04DFs were obtained with
Norwegian Ethics Committee Approval REK2617A.

Lamin A ChIP-seq

Cells (107 per ChIP) were cross-linked in suspension for 10
min in PBS containing 1% formaldehyde before quenching
with 1.25 mM glycine. Cells were lysed for 30 min at 4°C on
a rotator in RIPA buffer (140 mM NaCl, 10 mM Tris-HCI,
pH 8.0, ] mM EDTA, 0.5 mM EGTA, 1% Triton X-100,
0.1% SDS, 0.1% Na-deoxycholate, 1 mM PMSF, 1x pro-
tease inhibitor cocktail) adjusted to 1% SDS, and sonicated
for 3x 15 min in a Bioruptor (Diagenode; 30 s on/off at
high power) to generate chromatin fragments of ~200-400
base pairs (bp). After sedimentation, chromatin was diluted
10-fold in RIPA without SDS, and incubated on a rotator
overnight at 4°C with 50 pwg lamin A/C antibody (Santa
Cruz sc-7292) pre-coupled to magnetic Dynabeads Protein
G (16) (Invitrogen). Irrelevant mouse IgGs were used as
control. ChIP material was collected and washed 3x in 1
ml ice-cold RIPA buffer. Crosslink was reversed and DNA
eluted for 6 h on a shaker at 37°C in elution buffer (50 mM
NaCl, 20 mM Tris-HCI, pH 7.5, 5 mM EDTA, 1% SDS)
containing 0.5 pg/ml RNase A and 2 wg/ml Proteinase K.
DNA was purified (16), the library was prepared (Illumina)
and sequenced on an Illumina HiSeq2500.
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ChIP-seq data processing

The following pipeline was used for analysis of all
LMNA and LMNBI data sets. Reads were aligned to
the HG19 reference genome using Bowtie2 v2.1.0 with
default parameters (27). Duplicate reads were removed
using Picard’s MarkDuplicates program with parameter
REMOVE_DUPLICATES set to true (keeping duplicate
reads does not significantly affect LAD detection be-
cause of the large size of LADs; Supplementary Ta-
ble S1). To avoid any normalization bias, we ensured
that each pair of aligned input and ChIP read files had
the same read depth, by using Picard’s DownsampleSam
program v1.86 (www.broadinstitute.org/gatk//events/2038/
GATKwhO-BP-1-Map_and_Dedup.pdf) on the larger of
the two files.

Peak calling

We used auto-estimated parameters, when possible, for all
the peak callers considered. For parameters that had to be
set manually, we scripted the peak calling process for each
individual peak caller; this allowed testing a range of possi-
ble values for the analysis. We then inspected the results in
a genome browser after an initial screening process where
we removed clearly suboptimal results (e.g. no coverage de-
tected, or peak coverage close whole genome coverage).

PeakRanger v1.17. We used the CCAT algorithm, de-
signed for detection of broad peaks with a window size of
500 bp and a step size of 50 bp.

SICERvI.1. Weusedawindow size of 200 bp and allowed
gaps up to 600 bp. The LMNA reads are 51 bp and effective
genome size was computed to 0.77; LMNBI reads are 36 bp
and effective genome size was computed to 0.72. Genome
sizes were in both cases computed according to SICER’s
instructions. Fragment size was set to 300 bp and false dis-
covery rate (FDR) cutoff to 0.1.

BroadPeak. BroadPeak expects a source file with ChIP
read counts per bin and does not directly support input read
counts. A workaround has however been proposed (26);
it consists in subtracting the number of input reads from
the number of ChIP reads in bins with more ChIP reads
than input reads, and setting the read count to 0 in the
other bins. We tested both approaches (i.e. considering only
ChIP reads, or ChIP reads with input read subtraction), and
found that subtracting input reads gave the most convinc-
ing results with our data. We were unable to run Broadpeak
with other window sizes than the default 200 bp.

RSEG v0.4.8. We used RSEG’s deadzones program to
find non-alignable regions in HG19 for both 36 bp (LMNB1
ChIP) and 51 bp (LMNA ChIP) read lengths. We then used
the rseg-diff program in mode 2 (for ChIP versus input) to
analyze each pair of ChIP and input files with the appropri-
ate deadzones file.

EDD vl.0. LMNBI data were analyzed using a 3 Kb bin
size and a gap penalty of 12. LMNA data were analyzed
using an 11 Kb bin size and a gap penalty of 5 for LDF
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and ADO4DF _repl and 4 for ADO4DF _rep2. Confidence
intervals for p (see the Results section) were determined us-
ing the normal approximation method for binomial propor-
tions.

Lamin A ChIP-qPCR

Purified LMNA ChIP DNA was eluted in 30 pnl H,O and
2.5 wl used as template for quantitative polymerase chain
reaction (QPCR) with primers listed in Supplementary Ta-
ble S2. PCRs were run on a MyiQ Real-time machine with
SYBR® Green (BioRad) in duplicates, with 95°C for 3 min
and 40 cycles of 95°C for 30 s, 60°C for 30 s and 72°C for
30s.

RNA-seq

Total RNA was isolated using the Ambion TRIzol®
Reagent RNA extraction kit (Life Technologies). A library
was prepared (Illumina) and sequenced on an Illumina
HiSeq2500. Reads (29.3 x 10°) were aligned using Cufflinks
and TopHat (28) with default parameters.

Data viewing

Browser views of gene tracks, ChIP-seq data and peaks
are shown using Integrated Genomics Viewer (IGV;
broadinstitute.org/igv) (29). Unless otherwise indicated,
genes considered in the analyses are from the Illumina
iGenomes gene annotation with UCSC data source
for HGI19  (https://support.illumina.com/sequencing/
sequencing_software/igenome.ilmn).

Published data sets analyzed

LMNBI1 ChIP-seq and corresponding input sequence data
(6) were downloaded from NCBI GEO accession number
GSE49341.

Data access

Our LMNA ChIP-seq data are available under GEO acces-
sion number GSE54334.

RESULTS

Seeking to identify megabase-size chromatin domains: devel-
opment of EDD

To palliate the current aforementioned limitations, we de-
veloped EDD, an algorithm aimed to discover, from ChIP-
seq data, megabase-size domains in a putatively ‘noisy’ en-
vironment (Figure 1). EDD has been released as a Python
package and is installable from Python Package Index
(https://pypi.python.org). EDD source code and manual
are freely available at http://github.com/CollasLab/edd.
EDD aims to identify slight but significant enrichment
over broad genomic regions. EDD is optimized for ChIP-
seq analysis of proteins localized at the nuclear periphery,
such as lamins. These proteins are known to be associ-
ated with heterochromatin (30). Thus, EDD is distinct from
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Figure 1. Work-flow diagram of EDD.

any other broad peak callers in that it is designed for dis-
covery of enriched domains in mainly, but not exclusively,
heterochromatin regions. This is important to consider be-
cause input chromatin samples display a non-uniform dis-
tribution of reads across the genome (31,32), depending on
the extent of chromatin compaction (compact chromatin is
more difficult to reverse-crosslink and results in fewer se-
quence reads). Therefore, a high number of ChIP reads does
not per se provide an indication of enrichment; rather, the
relationship between ChIP and input read counts is criti-
cal. Moreover, sequenced reads provide only a sample of
the whole information in the cell population. Thus, reads
need to be aggregated into bins to provide sufficient approx-
imation of the ChIP-to-input relationship. Accuracy of this
relationship will increase with increasing numbers of reads,
and thus with increasing bin size. EDD ensures that these
properties are met, also in a heterochromatin context. An
additional critical step in EDD is the identification of clus-
ters of enriched bins: this is because EDD aims to identify
large genomic compartments predicted from current knowl-
edge of interactions of nuclear envelope proteins with the
genome (2,12,14).

Aggregating reads in genomic bins. The initialization step
of the EDD algorithm is to bin the genome and count the
actual number of ChIP and corresponding input sequence
reads in each bin. EDD then calculates for each bin the sam-
ple ratio p:

p = Number of ChIP reads/
(Number of ChIP reads + Number of input reads).

As described however, the ChIP and input-sequenced
reads provide only a sample of the total information in the
chromatin fraction of the cell population examined. Thus,
the true ChIP/input signal in a bin, p, is unknown. We aim


https://support.illumina.com/sequencing/sequencing_software/igenome.ilmn
https://pypi.python.org
http://github.com/CollasLab/edd

92 Nucleic Acids Research, 2014, Vol. 42, No. 11

to use p as an estimate of p, but only when p is deemed
to be a reasonable estimate. To determine this, we compute
the 95% confidence interval for p using the Agresti—-Coull
method (33). We observed that extreme values of p (i.e. p
very close to 0 or 1) are almost exclusive to bins with few
reads and a large confidence interval. We found downstream
analysis to be more robust against noise if we ensured, by in-
creasing bin size, that p was a good estimate for p in most
bins: we only use p as an estimate of p in bins where the
confidence interval is below a threshold, by default 0.25; we
refer to this subset of bins as ‘informative bins’. EDD se-
lects the smallest bin size that generates at least 99% infor-
mative bins, excluding bins without reads. As a result, three
bin classes are generated: non-informative bins (NIBs), en-
riched informative bins with p > 0.5 (EIBs; i.e. bins en-
riched in lamin) and depleted informative bins with p < 0.5
(DIBs; i.e. bins depleted of lamin).

Bin scoring. Bins must be scored prior to searching for
putative peaks. We seek to assign EIBs a positive score
weighted on p, assign DIBs a negative score weighted on
P, and assign NIBs a weak negative score. Further, we seek
to give a strong deterrent to prevent DIBs with p close to 0
to be included in a peak, and similarly give EIBs with a p
close to 1 a strong encouragement. The logit function:

logit(p) = log(p) — log(1 — p)

meets these properties.

We must additionally select a gap penalty that influ-
ences the cost of peaks spanning DIBs and NIBs. A relative
weak gap penalty will often result in the detection of very
large domains, missing potentially interesting fluctuations
within domains. Conversely, a disproportionally strong gap
penalty will miss many domains with a slight heterogeneity.
The choice of gap penalty depends on both the data ana-
lyzed and the interests of the researcher. The bin scoring
function is thus defined as:

bin score(p) = logit(p), if p > 0.5
bin score(p) = logit(p) * G, otherwise’

where G is the gap penalty.
If the gap penalty is not specified, then EDD will choose
the gap penalty that optimizes the function:

EPR’ x ECR,

where EPR (enriched peak ratio) is the ratio of EIBs in
peaks and ECR (enriched coverage ratio) is the ratio of EIBs
in the whole genome that are covered by peaks. This is the
function that best predicts the manually selected gap penal-
ties for the data sets we have analyzed while developing and
testing EDD. It is therefore important to inspect the results
and potentially manually modify the gap penalty parame-
ter for optimal results (we refer to the EDD manual online
for additional information). Lastly, one must decide how to
score the NIB bins, that is, the bins with too few reads to
score based on p. As we have poor knowledge of their ac-
tual enrichment level, we conservatively set their score to
the median DIB score.

Detection of clusters. EDD aims to detect significant clus-
ters of EIBs to identify peaks. However as bin classification
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is imperfect, merely searching for contiguous EIB regions
is too restrictive. We use a linear time algorithm for find-
ing all maximal scoring subsequences (MSSs) (34); this al-
gorithm is also used by BroadPeak. Given a sequence of
real numbers (bin scores), the MSS algorithm finds the non-
overlapping contiguous subsequences with the greatest to-
tal scores. The emitted subsequences are potential peaks
with a ‘peak score’ equal to the sum of bin scores within
the subsequence.

Significance testing. EDD seeks to identify EIB clusters
that are highly unlikely to occur by chance; it relies on a
Monte Carlo simulation where, for each trial, the order of
the bins is shuffled throughout the genome, bin scores are
kept constant and the score of the highest scoring maxi-
mal subsequence is recorded (Figure 1). Note that EDD
requires a list of unalignable regions for the organism an-
alyzed, such as centromeres and telomeres, that should not
be shuffled. These regions are all NIBs and would, if shuf-
fled as any other bin, incorrectly decrease the score of the
MSS per trial. Additional information on unalignable re-
gions is provided in the EDD manual online.

We observe that the theoretically lowest possible result of
a Monte Carlo trial is equal to the highest scoring bin. Thus,
we discard all observed putative peaks with a value equal
to or less than the highest scoring bin prior to significance
testing. For the remaining putative peaks, we compute P-
values as:

SV (T =s5+1
N+1

where s is the score of a potential peak, 7; is the result of
Monte Carlo trial i and N is the total number of trials per-
formed. Lastly, we use an FDR procedure [35] to adjust the
P-values for multiple testing and report peaks with an FDR
value below a user-set threshold.

P — value(s) =

)

Configuring EDD. EDD has both required (e.g. input
files) and optional (e.g. gap penalty) run-time arguments. In
addition, EDD reads other parameters from a user config-
urable file. The default values for these parameters should
be sensible for most uses, but there might be situations
where additional fine-tuning is required. Parameters such as
the required percentage of informative bins, the confidence
interval limit and the method (35) used to compute the con-
fidence interval can be adjusted here (see the EDD manual
online for additional information).

Benchmarking EDD against published LMNB1 ChIP-seq
data in relation to other broad peak callers

We benchmarked EDD against existing broad peak callers
including BroadPeak (26), PeakRanger (24,25), SICER (21)
and RSEG (23) on published triplicate LMNB1 ChIP-seq
and matched input sequence data accessed from NCBI
GEO GSE49341 (6). For simplicity in the description of our
analysis, we refer to genomic regions discovered by EDD or
other algorithms as ‘peaks’ even though they are large do-
mains rather than narrow and sharp peaks. Total genome
coverage under peaks detected by these algorithms varies,
from ~1050-1500 Mb (EDD and RSEG, respectively) to
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Figure 2. Benchmarking of EDD and other broad peak callers on LMNBI1
ChIP-seq data. (a) IGV browser views of LMNBI occupancy and LADs
on chromosome 10, detected by EDD, RSEG, BroadPeak, SICER and
PeakRanger from LMNBI1 ChIP-seq data from human fibroblasts (6), and
by DamlID in human fibroblasts (Guelen LADs) (9) and HT1080 human
fibrosarcoma cells (Meuleman LADs) (11) (DamID LADs). Tracks also
show genes and LMNBI log ChIP/Input ratios. (b) Median LMNBI1 peak
length detected by indicated peak callers (P = 0.000...; Wilcoxon rank-
sum tests; see Supplementary Table S3 for W- and P-values). (¢) Median
LMNBI enrichment within peaks detected by indicated peak callers. (d)
Median LMNBI enrichment within peaks uniquely detected by EDD ver-
sus BroadPeak, RSEG, or SICER. (e) Venn diagram analysis of genome
coverage under EDD, RSEG and SICER peaks. ChIP-seq data shown are
all from replicate 3 of the Sadaie LMNBI data set (6); similar results were
obtained for replicates 1 and 2 in this data set (not shown).

~720 Mb (BroadPeak), ~260 Mb (SICER) and 9-25 Mb
(PeakRanger) (Table 1). Numbers of peaks detected also
vary, with SICER, BroadPeak and PeakRanger detecting
large and variable numbers of peaks between replicates (Ta-
ble 2). EDD detects 1803-1890 peaks in the three repli-
cates, making it the most consistent of the algorithms tested
(Table 2). Variations between algorithms can be explained
by their design to detect peaks narrower than LADs: in-
deed, PeakRanger, BroadPeak, SICER and RSEG detect
peaks significantly narrower than EDD peaks (P = 0.0000;
Wilcoxon rank-sum test; Figure 2a and b). The low coverage
and peak length detected by PeakRanger (Table 2; Figure
2a and b) reveal its unsuitability for LAD discovery; thus it
was not further tested in our study.

‘We next characterized LMNBI enrichment within peaks
detected by BroadPeak, SICER and RSEG in compari-
son to EDD. BroadPeak: Peaks reported by BroadPeak dis-
play a wide range of enrichment levels (Figure 2c); however
peaks unique to BroadPeak relative to EDD strikingly in-
clude regions of ‘negative’ enrichment (log ChIP/Input <
0; Figure 2d, left). This is in sharp contrast to EDD-specific
peaks which all show positive enrichment (Figure 2d, left).
Thus, EDD prevails over BroadPeak for the detection of
LADs. SICER: SICER is aimed to detect hPTMs (21)
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and again SICER peaks are narrower than typical LADs.
Genome coverage of SICER peaks is also very low (Ta-
ble 1) and SICER detects very few unique peaks relative to
EDD (Figure 2¢). Thus, SICER is not suitable for LAD dis-
covery. RSEG: RSEG is also designed to detect hPTM do-
mains (23) and was used to detect LMNB1 LADs by Sadaie
et al. (6). Most domains detected by EDD are also discov-
ered by RSEG. RSEG also detects many unique domains
(Figure 2e), but these show low enrichment compared to
all domains detected by EDD (Figure 2¢) and to EDD-
only domains (Figure 2d, middle). Some of the RSEG do-
mains also show ‘negative’ enrichment (Figure 2b and d),
so with this data set RSEG is unable to exclusively discern
enriched domains. We conclude that EDD is able to consis-
tently discover large genomic domains enriched in LMNBI1
and therefore fulfills its purpose for the detection of LADs.
This conclusion is further supported by the consistency be-
tween LADs discovered by EDD from the LMNBI ChIP-
seq data, and lamin B LADs identified by DamID in human
fibroblasts (9) and in the human HT1080 fibrosarcoma cell
line (11) (Figure 2a).

EDD identifies, from ChIP-seq data, megabase domains as-
sociated with LMINA

We applied EDD to ChIP-seq data we generated for A-type
lamins (LMNA) in two human normal primary dermal fi-
broblast cultures (LDFs and AD04DFs). LMNA and as-
sociated DNA was immunoprecipitated using antibodies to
LMNA, which we have recently validated for ChIP (16). To
evaluate the performance of EDD on LMNA peak discov-
ery from these data sets, we also benchmarked EDD against
BroadPeak, RSEG and SICER.

We slightly modified our original LMNA ChIP proto-
col (16) by substituting cell lysis and ChIP buffers with a
more stringent RIPA buffer to improve lamin solubiliza-
tion and consistency of chromatin fragmentation. We ob-
tained 25 to > 40 million reads for each LMNA ChIP and
input samples. To visualize LMNA profiles, we calculated
ratios of ChIP/input reads in 10 Kb bins throughout the
genome. In the IGV browser, LMNA ChIP/input log ra-
tios reveal large domains of LMNA enrichment in mainly
gene-poor regions, and areas depleted of LMNA (Figure
3a). Our LMNA ChIP-seq data were validated by ChIP-
gPCR experiments for several promoter and intergenic re-
gions (Figure 3b). The results show sites of high and low
LMNA occupancy, in line with their localization within or
outside LADs identified later using EDD.

We next applied EDD to identify LMNA enriched do-
mains and again benchmarked it against BroadPeak, RSEG
and SICER (Figure 4a and b). (i) We find that EDD dis-
covers ~360-540 peaks, or LMNA LADs (Figure 4a, EDD
peaks; Table 2), which altogether cover ~700 Mb (23%) of
the genome (Table 1). A browser view shows that LADs
detected by EDD are included within the LMNA LADs
mapped by DamID in HT1080 cells (11) (Figure 4b). The
DamID LADs also appear to cover a wider fraction of
the genome than the ChIP-seq LADs (Figure 4b), consis-
tent with earlier observations that DamID-derived LMNA
LADs represent ~50% of the genome (11) (versus 23%
with our ChIP-seq LADs). LADs discovered by EDD range
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Table 1. Genome coverage (in Mb) by EDD and current broad peak callers
Data set Cell type EDD BroadPeak PeakRanger RSEG Sicer
Lamin B1# IMR90 1,041.675 721914 9.511 1,462.367 248.291
fibroblast_repl
Lamin B1# IMR90 1,078.179 717.013 25.318 1,502.753 285.394
fibroblast_rep2
Lamin B1# IMR90 1,047.753 721914 9.511 1,462.367 248.291
fibroblast_rep3
Lamin A AD04DF 728.178 183.268 4.123 1,797.390 10.846
fibroblast_repl
Lamin A AD04DF 721.501 185.392 4.048 1,854.759 10.106
fibroblast_rep2
Lamin A LDF fibroblast 694.661 63.357 6.473 1,495.391 14.183
4Raw data from ref. (6).
Table 2. Number of peaks detected by EDD and current broad peak callers
Data set Cell type EDD BroadPeak PeakRanger RSEG Sicer
Lamin B1# IMR90 1803 16557 11827 6413 35321
fibroblast_repl
Lamin B1# IMR90 1890 22797 23422 6533 43798
fibroblast_rep2
Lamin B1# IMR90 1815 30017 6285 7116 46492
fibroblast_rep3
Lamin A ADO4DF 372 12639 1924 2697 937
fibroblast_repl
Lamin A AD04DF 357 12639 1884 2151 849
fibroblast_rep2
Lamin A LDF fibroblast 539 793 2540 2450 1546
4Raw data from ref. (6).
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LAD information (+, within LAD; -, outside LAD) is from our subse-
quent LAD discovery using EDD. ChIP-qPCR data are consistent with
LAD identification by ChIP-seq.

from 0.2 to > 10 Mb, with a median size of ~1 Mb, which
is significantly larger than the median size of peaks iden-
tified by the other algorithms (median range of < 10 Kb
to 100 Kb; P < 107°, Wilcoxon rank-sum test; Figure 4c).
EDD peaks are all enriched in LMNA (Figure 4a; Sup-
plementary Figure Sla), as expected from EDD’s purpose.

Figure 4. Quantitative analysis of LMNA ChIP-seq data using EDD. (a)
IGV browser views of domains enriched in LMNA discovered by EDD
(EDD peaks) on chromosome 8 in ADO4DF (2 replicates) and LDF.
LMNA profiles are shown as log ChIP/Input ratios. Genes and FPKM
values (ADO4DF) are also shown. (b) LMNA peaks (LADs) identified by
RSEG, BroadPeak, SICER and PeakRanger in AD04DF (both ChIP-seq
replicates). DamID-derived LMNA LADs in HT1080 cells (11) are also
shown (bottom track). (¢) Median peak length detected by EDD, Broad-
Peak, SICER and RSEG in AD04DF _repl and rep2, and in LDF (*P <
107 relative to BroadPeak, SICER and RSEG; Wilcoxon rank-sum test;
see Supplementary Table S3 for W- and P-values).
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(i) BroadPeak discovers a high number of peaks (Figure
4b; Table 2), some strikingly covering regions of ‘negative’
enrichment (Figure 4b; Supplementary Figure Sla). Thus,
BroadPeak does not appear to be suited for the discovery
of LADs. (iii) RSEG identifies eight times more peaks than
EDD (Table 2); however as for LMNBI, RSEG also delin-
eates ‘negatively enriched’ regions (Figure 4b; Supplemen-
tary Figure S1a). Thus, RSEG appears to be too lenient for
the detection of LMNA LAD:s. (iv) Lastly, genome cover-
age by SICER peaks is extremely low (Table 1), and SICER
identifies narrow (and very few) peaks rather than actual
domains (Figure 4b and c). This shows, as with the LMNBI1
data set, its unsuitability to accurately identify LADs.

We demonstrate therefore that, in contrast to the avail-
able broad peak callers tested, EDD is able to discover do-
mains enriched in LMNA from ChIP-seq data sets. Our
data are also notably the first, to our knowledge, to iden-
tify of LMINA LADs from ChIP-seq data.

LMNA LADs discovered by EDD are gene-poor and overall
transcriptionally inactive

Considering the overall gene-poor and lowly expressed state
of LADs identified by DamlID in earlier studies (2), we ex-
amined the gene density and expression level of genes within
peaks discovered by the different algorithms. From browser
views, we note that EDD detects LMNA peaks mainly in
gene-poor regions, identified by the absence of RNA-seq
reads (no FPKM counts, Figure 4a). In fact, we calculated
only 1.6 genes per Mb of EDD peak, while BroadPeak,
RSEG and SICER peaks show higher gene density (P <
1073; Wilcoxon rank-sum test; Figure 5a; Supplementary
Figure S1b). Thus, we conclude that LADs discovered by
EDD are gene-poor.

To qualify the relationship between LMNA detection
and gene expression, we generated heat maps of LMNA
level as a function of gene expression level, independently of
LAD identification. The data show that LMNA level nega-
tively correlates with gene expression (LDF, r> = 0.42, Fig-
ure 5b; AD04DF, 12 = 0.22; Supplementary Figure S2a).
Further, repressed genes (FPKM = 0) show the highest level
of LMNA (P < 107°°; Wilcoxon rank-sum test) compared
to weakly expressed (FPKM = 0-1) or highly expressed
(FPKM > 1) genes (Figure 5c; Supplementary Figure S2b).
Thus, LADs detected by EDD are associated with no or low
gene expression, in agreement with the concept of LADs
previously established by DamID (9).

To specifically assess how EDD LADs relate to gene ex-
pression, we determined the proportion of genes that are ex-
pressed among all genes found within EDD, RSEG, SICER
and BroadPeak peaks. We show from our RNA-seq data
that the proportion of expressed genes (FPKM > 0) within
EDD LADs (~15%, from a mean of 1.6 genes per Mb) is
lower than that within RSEG, SICER or BroadPeak peaks
(Figure 5d). The latter encompass 45% to 63% of expressed
genes, which is similar to the proportion of all expressed
genes in the genome (Figure 5d). These results indicate that
LADs discovered by EDD are entirely consistent with the
properties of LADs previously identified by a different assay
(DamlD), using different analysis methods and in different
cell types (9-12).
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Figure 5. LMNA LADs identified by EDD are gene-poor and overall tran-
scriptionally inactive. (a) Number of protein-coding genes per megabase
covered by indicated peak callers in ADO4DF (*P < 0.001, Wilcoxon rank-
sum test; W = 0 for each comparison). Results for the other data sets are
shown in Supplementary Figure S1b. (b) Heat map of LMNA enrichment
on protein-coding genes of > 1 Kb as a function of gene expression level
(LDF). (¢) Median LMNA enrichment on protein-coding genes of > 1
Kb that are repressed (FPKM = 0; 4789 genes), weakly expressed (FPKM
= 0-1; 2179 genes) and highly expressed (FPKM > 1; 2097 genes). *P <
10~ relative to FPKM = 0-1 or FPKM > 1; Wilcoxon rank-sum test:
see Supplementary Table S3 for W- and P-values. Data for ADO4DF are
shown in Supplementary Figure S2a and b and Table S3. (d) Percentage
of expressed protein-coding genes (FPKM > 0) in peaks discovered by
indicated peak callers and among all protein-coding genes; *P = 10732
Fisher’s exact test relative to all genes.

We conclude that EDD’s conception fulfills its require-
ment of reproducible discovery of broad LADs from ChIP-
seq data. EDD is globally more robust than the other peak
callers tested against spatially restricted variations in en-
richment level. Our data are also the first to report the
discovery of LMNA LADs by ChIP-seq. Discovery and
analysis of genomic domains interacting with lamins using
ChIP and EDD will not only expand our understanding
of nuclear envelope-genome interactions, but also enable
high-resolution mapping of putative variations in lamin—
genome interactions during development and in the context
of lamin-linked diseases (3.4).

DISCUSSION

We present a new genomic domain caller, EDD, for the dis-
covery of broad genomic enrichment areas from ChIP-seq
data, against reference input sequence data. The main ad-
vantages of EDD over other broad peak callers are its sen-
sitivity to the size of domains rather than the strength of
enrichment at a particular site, and its robustness against
local variations. Thus, EDD caters a niche that enables
quantitative analysis of ChIP-seq data, for example nu-
clear envelope- and chromatin-associated proteins such as
lamins, and other widely distributed chromatin-bound pro-
teins. In addition, EDD is uniquely performant with data
showing low-level enrichment over wide genomic regions.
Beside LA Ds, recent work has identified other large chro-
matin domains potentially amenable to mapping with EDD
(36). For instance, the nuclear envelope protein LAP2aq,
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a lamin- and chromatin-associated protein, displays wide
nuclear distribution (37). HMGNS, a histone-like protein,
also shows wide genomic distribution and a preference
for heterochromatin (38). Regions enriched in the methyl-
CpG-binding protein MeCP2, which is spread over methy-
lated DNA but shows enriched regions (39), are also good
candidates for mapping using EDD. Additional large ge-
nomic domains include (i) domains of hPTMs such as
H3R2mel, H3K9mel, H3K9me3, H3K79mel, H3K79me3
or H2BKSmel (18,40); (ii)) wide H3K4me3 or H3K27me3
domains emerging during senescence in culture (6,7,41); (iii)
domains occupied by histone variants (42,43); (iv) large
organized chromatin lysine modifications or LOCKs (44)
shown to overlap with (v) DNA hypomethylated blocks in
cancer cells (45). EDD enables the identification of chro-
matin domains with robustness against local variations, and
may prove valuable to detect large-scale epigenetic changes,
some of which are predictive of cancer (46).

Elements still remain under consideration for improve-
ment in EDD’s performance. EDD is designed to detect
megabase-size domains; therefore EDD will miss narrow
(1-10 Kb) regions of enrichment if the adjacent regions
are not enriched. Similarly, narrow depleted regions within
highly enriched megabase domains might be included in a
‘peak’ (domain) in cases where it would be preferable to sub-
divide the domain. Deeper sequencing and stronger signal-
to-noise ratios are two possible ways to improve EDD’s sen-
sitivity, as this allows for a smaller bin size.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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