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ABSTRACT

Structural variations in genomes are commonly
studied by (micro)array-based comparative genomic
hybridization. The data analysis methods to infer
copy number variation in model organisms (human,
mouse) are established. In principle, the procedures
are based on signal ratios between test and refer-
ence samples and the order of the probe targets
in the genome. These procedures are less applica-
ble to experiments with non-model organisms, which
frequently comprise non-sequenced genomes with
an unknown order of probe targets. We therefore
present an additional analysis approach, which does
not depend on the structural information of a ref-
erence genome, and quantifies the presence or ab-
sence of a probe target in an unknown genome. The
principle is that intensity values of target probes
are compared with the intensities of negative-control
probes and positive-control probes from a control
hybridization, to determine if a probe target is ab-
sent or present. In a test, analyzing the genome con-
tent of a known bacterial strain: Staphylococcus au-
reus MRSA252, this approach proved to be success-
ful, demonstrated by receiver operating characteris-
tic area under the curve values larger than 0.9995.
We show its usability in various applications, such
as comparing genome content and validating next-
generation sequencing reads from eukaryotic non-
model organisms.

INTRODUCTION

Microarray-based comparative genomic hybridization
(aCGH) is widely used in biomedical applications and
life sciences research to detect and analyze structural
variation in genomes (1–5), and novel applications are
constantly developed (6–8). Genomic structural varia-
tions include aberrations such as insertions and deletions
(indels), duplications and other copy number variants
(2). In conventional aCGH experiments, the probes on
a microarray are designed to recognize specific target
sequences from a reference genome (9). In an aCGH test,
DNA from an unknown test genome and reference genome
are labeled individually with a different fluorescent dye
(i.e. dual channel/color) and hybridized together onto
the microarray. Also single-color approaches are used in
which the DNA from test and reference genome are labeled
with the same fluorescent dye, but hybridized to individual
microarrays. The fluorescence intensity signals from labeled
DNA that hybridized to target probes in a spot on the
microarray are processed and normalized. The difference
between the intensity signals of each probe from the test
and reference genome, expressed as log2 ratios, is analyzed
to detect genomic alterations and aberrations (10). An
increased log2 ratio represents a higher number of target
sequences in the test genome compared to the reference
genome. Conversely, a decrease indicates a lower number
of identical target sequences in the test genome compared
to the reference genome, an equal number of similar but
non-identical target sequences in the test genome or both.
Due to the complexity of eukaryotic genomes, the total
signal of a microarray hybridization get diluted and makes
aCGH data often quite noisy (11). Hence over the past
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years many statistical procedures have been developed to
analyze these data (12).

The simplest procedure is to use a fold change cut-off.
Thomas et al. (13) for instance classified log2 ratios greater
than 1.15 as gain of target sequence and less than 0.85 as
loss. Others assumed that normal log2 ratios are (approxi-
mately) normally distributed, and this distribution is then
used for statistical inference. Hodgson et al. (14), for in-
stance, fitted a mixture of three Gaussian distributions to
a histogram of log2 ratios, representing a ‘normal’ compo-
nent centered at 0, a ‘loss’ component centered at a mean
less than 0 and a ‘gain’ component centered at a mean
greater than 0. These methods infer single probes which has
been shown to be trustworthy under stringent hybridization
conditions (15). Nevertheless, over the years it has been es-
tablished that inferring copy number from single probes is
error prone. Thus, algorithms have been developed that use
information from probes to target sequences that are adja-
cently located in the genome to identify larger structural-
variant regions with more confidence. These algorithms
take the probe-target order (or location) on the genome
as input and are frequently based on smoothing methods
or hidden Markov models (reviewed and compared by Lai
et al. (16) and Dellinger et al. (12)). They are particu-
larly useful for microarrays with probes designed with high
genomic resolution based on well-annotated genomes. As
such, these data analysis procedures are most applicable to
so-called ‘model organisms’, such as mouse and human. On
the other hand, aCGH experiments with ‘non-model organ-
isms’ are less well formalized and the data analysis proce-
dures are less well established. When the genome of the or-
ganism of interest is not (fully) sequenced, probes may be
designed using transcriptome sequences (e.g. expressed se-
quence tags (ESTs) or sequencing reads), or using genome
information from a closely related sequenced species or
strain (17,18). The actual order of the probe targets in the
genome under study may then be uncertain or even un-
known. In such cases, the assumption that the genome of
a non-model organism is similar to a reference genome of a
related species may be wrong.

Hence, we present here an additional approach to copy
number estimation that quantifies the presence or ab-
sence of a probe target in aCGH analysis (quantified
absence/presence calling (QAPC)). The underlying princi-
ple is straightforward: probe intensity values are compared
with the intensities of negative-control probes, which are
known to have no targets in the control sample, to test
the null hypothesis that a target sequence is absent in the
test genome, or inversely with positive controls for present
calling. It has in principle a resolution of a single probe
(in this study ∼60 nucleotides). The aGCH QAPC method
does not depend on the structural information of a refer-
ence genome: the genomic ordering of probe targets is irrel-
evant. The method was tested by analyzing the known ge-
nomic content of prokaryote Staphylococcus aureus (S. au-
reus) strain MRSA252. As for this strain it is known which
probes do match the genome, this allows quantification of
the error rates of the target sequence absence/presence calls.
Together, three examples are presented to illustrate that this
method can be used for various purposes: (i) to define a core
genome without using the structural information of a refer-

ence genome, (ii) to compare the genomic content of mul-
tiple genomes, (iii) to validate next-generation sequencing
(NGS) reads from eukaryotic non-model organisms.

MATERIALS AND METHODS

Samples and sample processing

The QAPC method was validated with aCGH analy-
ses on bacterium S. aureus, zebrafish Danio rerio (D.
rerio) and midges Chironomus riparius (C. riparius)
and Anopheles gambiae (A. gambiae). Eleven S. au-
reus strains were used: MRSA252 (NCBI Reference
Sequence: NC 002952.2), MSSA476 (NC 002953.3),
Mu50 (NC 002758.2), MW2 (NC 003923.1), N315
(NC 002745.2), NCTC8325 (NC 007795.1), Newman
(NC 009641.1), RF122 (NC 007622.1), S0385, USA300,
WKZ1. The strains were grown overnight in Iscove’s Mod-
ified Dulbecco’s Medium (IMDM) (Invitrogen, Carlsbad,
CA, USA) (19). The overnight cultures were diluted (1:7)
in fresh pre-warmed IMDM and grown twice to mid-log
phase culture (a A660nm of 0.5). The second mid-log phase
culture was diluted to an A660nm of 0.3 with pre-warmed
IMDM and directly transferred to fresh pre-warmed
IMDM to obtain an A660nm of 0.03. Samples for DNA
extraction were taken at 4 h post-inoculation. The zebrafish
adults were kept under standard conditions. Two adults,
one male and one female, were sacrificed for DNA analyses
in six replicates each. The growth conditions of the midges
are described in detail by Marinkovic et al. (20). DNA was
extracted from 30 pooled fertilized C. riparius egg ropes
and 30 pooled unfed A. gambiae adults. The DNA from the
bacteria was purified using the NucleoSpin R©’ Tissue kit
(Macherey-Nagel; 740 952 50) according to manufacturer’s
protocol. The DNA from the zebrafish adults and the
midges was extracted using a CTAB DNA extraction
method (20). DNA yield was measured using a NanoDrop
ND-1000 (Nanodrop Technologies, Wilmington, DE,
USA).

Array design

Three different microarrays were used in this study: (i) a S.
aureus multi-strain tiling microarray, (ii) a D. rerio 3’-biased
expression microarray and (iii) a C. riparius transcriptome
validation microarray. The S. aureus microarray (12 × 135K
NimbleGen) was designed using publicly available genomic
sequences of 18 strains, 19 plasmids and 6 phages associ-
ated with S. aureus. Probes were designed to genome target
sequences each 40 base pairs on alternating strands for the
first sequence. For each next sequence only oligos were de-
signed for regions, which were not probed by previously de-
signed oligos (bit-score > 80). Using these parameters, 121
901 probes were generated. Additionally, the S. aureus mi-
croarray also contains 5000 negative-control probes of ran-
dom sequences that do not target any genome or transcrip-
tome in Entrez (21).

Details for the D. rerio microarray (12 × 135K Nimble-
gen) can be found in Rauwerda et al. (22). It is a 3’ biased
expression microarray with 63 751 target probes and 7.742
probes with random sequences not targeting the D. rerio
genome, which were used as negative-control probes.
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The C. riparius transcriptome validation microarray (1
× 1M Agilent Technologies) was designed against 1 540
849 transcriptome 454 NGS reads (20). The complete de-
sign consisted of two collections of probes. First, 60-mers
probes were designed to target all the C. riparius NGS reads
at least once, but possibly three times or more. This resulted,
after testing for cross-hybridization and validating for ade-
quate GC-content (20–60%), in 843 837 C. riparius NGS-
read probes. Second, probes were designed against publi-
caly available ESTs of C. riparius, the other Chironomus
species and the closely related dipteran species A. gambiae,
Anopheles darlingi, Anopheles funestus, Aedes aegypti and
Culex quinquefasciatus, that were not already targeted by
the C. riparius NGS-read probes from the first step. This
step yielded an additional 75 984 probes. The design was
finalized by including 40 000 negative-control probes that
covered a wide GC-content range. In addition, the total
collection of NGS reads was blasted against the human
genomic and transcript data available at NCBI. As match
score we used (match length * identity)/read length, and a
score higher than 95 ( = bit-score 119) was considered a
perfect match.

Amplification, labeling, hybridization and scanning

Genomic DNA was amplified and labeled by strand dis-
placement amplification. Two hundred nanogram genomic
DNA was combined with 5 �g random octamers (Biolegio).
The DNA was partly fragmented by heat at 99◦C for 10 min
and allowed to cool on an ice/water bath for 5 min. The
DNA/octamer mix was made on ice to 50 mM Tris-Cl (pH
7.5), 5 mM MgCl2, 1 mM DTT, 1 mM dGAC (GE Health-
care), 0.6 mM dTTP (GE Healthcare), 0.4 mM aminoallyl
dUTP (TriLink Biotechnologies) and finally 10U Klenow
exo- (Jena Bioscience) was added. After gentle vortexing,
the samples were place at 37◦C for 8 h and subsequently in-
cubated for 15 min at 75◦C to inactivate the enzyme. Each
reaction was made to 1.5 M sodium acetate (pH 5.2) and
the amplified DNA was purified with the QIAquick PCR
Purification Kit (Qiagen) according to the manufacturer’s
instructions with the exception that seven volumes of bind-
ing buffer were used instead of five to increase the recovery
of smaller fragments. Concentrations of amplified products
were measured on the NanoDrop ND-1000 (Thermo Sci-
entific) and quality assessed on the BioAnalyzer (Agilent
Technologies) with the DNA 1000 Kit (Agilent Technolo-
gies). From each sample 5 �g was taken, dried down and
dissolved in 50 mM carbonate buffer (pH 8.5). Individual
vials of Cy3/Cy5 from the mono-reactive dye packs (GE
Healthcare) were dissolved in 200 �l DMSO. To each sam-
ple, 10 �l of the appropriate CyDye dissolved in DMSO
was added and the mixture was incubated for 1 h. Reactions
were quenched with the addition of 5 �l 4M hydroxylamine
(Sigma-Aldrich). This mixture was made to 0.75M Ammo-
nium acetate and 0.2 �g/�l glycogen (Ambion). After mix-
ing 2.5 vol. of 100% EtOH was added and mixed. All sam-
ples were incubated for at least 60 min at −20◦C to enhance
precipitation and centrifuged for 30 min at 13.000xg. The
supernatants were carefully removed by pipetting and 1 vol.
of 80% EtOH was added to the pellets. After brief vortexing,
the labeled DNA was pelleted once more by centrifugation

for 10 min at 13.000xg. The supernatants were removed by
pipetting and the pellets were dried by vacuum concentrat-
ing. Final labeled pellets were dissolved in 30 �l H2O and
the yield and CyDye incorporation were measured with the
NanoDrop ND-1000.

Each hybridization mixture was made up from 1 �g test
material (Cy3) and 1 �g reference material (Cy5). The S.
aureus experiments were performed according a common
reference design, with all 11 strains as test samples in trip-
licates, and MRSA252 as common reference. The D. rerio
experiments also with 12 individuals as test samples and a
pool as common reference. C. riparius (Cy3) was directly
hybridized against A. gambiae (Cy5). The combined sam-
ples were dried and 1.98 �l of water was added. The hy-
bridization cocktail was made according to the manufac-
turer’s instructions (NimbleGen microarrays User’s Guide–
–Gene Expression microarrays Version 5.0, Roche Nim-
bleGen). 5.22 �l from this mix was added to each sam-
ple. The samples were incubated for 5 min at 95◦C and 5
min at 42◦C prior to loading. Hybridization samples were
loaded onto the microarray and hybridized for 20 h at 42◦C
with the NimbleGen Hybridization System 4 (Roche Nim-
bleGen). Afterwards, the slides were washed according to
the NimbleGen microarrays User’s Guide––Gene Expres-
sion microarrays Version 5.0 and scanned in an ozone-free
room with an Agilent DNA microarray scanner G2565CA
(Agilent Technologies). Feature extraction was performed
with NimbleScan v2.6 (Roche NimbleGen). All microarray
probe designs and data have been submitted to the Gene Ex-
pression Omnibus, and have accession numbers GSE53449
and GSE52122.

Data analysis

All slides were subjected to a set of quality control checks,
i.e. visual inspection of the scans and pseudo-color plots,
consistence of performance across replicate samples and vi-
sual inspection of pre- and post-normalized data with box-
and-whisker, ratio-intensity and principal component plots.
Only samples that met the quality criteria were subjected to
data analysis using the R environment (23).

Before applying a formal procedure for absence calls,
the raw data were examined to determine whether a proce-
dure based on negative-control probes had any potential to
yield reliable results. Using thousands of probes designed
to be negative controls, and probes designed to perfectly
match target sequences in the genome, we investigated if
probe intensity could be used to determine whether target
sequences were present in genomic samples from S. aureus
strain MRSA252 and D. rerio. This was analyzed as a stan-
dard binary classification problem based on receiver oper-
ating characteristic (ROC) curves (ROCR; (24)).

The QAPC method proceeds by comparing the microar-
ray hybridization signals of the test genome, with the sig-
nals of the positive controls, which can be performed us-
ing a known genome. Basically, intensities of probes that
are known to match the control genome and probes that
are known not to match this genome are used to infer the
probe intensities of the unknown test sample. To make the
hybridization intensities of the control and the test genomes
equivalent, an adjusted quantile normalization procedure
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was applied (25). It performs quantile normalization across
a set of invariant features and then for each sample fills in
the remaining features by linear interpolation. In short, the
expression matrix (X) is reduced to the invariant set:

X = [xn1, ..., xn|N|, xm1, ..., xm|M||ni ∈ N, m j ∈ M]

which is subjected to quantile normalization. Let j’ and j’ be
two features in N∪M, that are the nearest invariant features
to xij, such that xij’ < xij < xij’. Let y1 and y2 be the quantile
normalized values. Let there be a values between xij’ and xij,
and b values between xij’ and xij’ on microarray i. Then

xnorm
i j = y1 + a + 1

a + b + 1
(y2 − y1)

is the normalized value of features j on microarray i. The
invariant set was defined as the set containing those features
with a less than or equal to one log2-fold change between
the test and the known genome.

When the intensity data from the control and the test
genomes are made equivalent, they can be compared. The
data from the control genome is used to calculate a P-value
for absence, given intensity x, based on the perfect-match
probes (as positive controls: present) and the predefined set
of negative controls (absent), using standard Bayes rule:

P (absent|x) =
P (x|absent) P (absent)

P (x|absent) P (absent) + P (x|present) P (present)

The value for P(absent|x) is directly applied to the
data from the test genome. Obviously, P(present|x) =
1−P(absent|x), and the researcher should decide on a P-
value cut-off based the certainty with which conclusions
need to be drawn. For instance, a high certainty that a
probe target is present is achieved when the cut-off is set
to P(present|x) > 0.99. The equation above can be mod-
eled in many ways, depending on the assumptions concern-
ing the intensity distributions of the positive- and negative-
control probes. We used empirical distributions to represent
P(x|absent) and P(x|present), and we used two parametric
approaches and a non-parametric approach. The paramet-
ric approaches are (i) fitting a shifted log-normal distribu-
tion to model P(x|absent) and a left-truncated Gaussian
distribution to model P(x|present) or (ii) fitting Gaussian
distributions to model both P(x|absent) and P(x|present).
A third method without distributional assumptions, use-
ful in case of a lack of fit, is to quantify P(x|absent) and
P(x|present) using density estimation whilst optimizing the
bandwidth for conditional density estimates (26). This pro-
cedure was found to be too computationally expensive to
be practical for large data sets, so we applied it after using
a data reduction scheme (Supplementary Methods), yield-
ing approximate significance values. q–q plots were used to
decide which approach to use. A good choice of the empir-
ical distributions is crucial, and a decision protocol is sup-
plied in the Supplementary information. The QAPC mea-
sure can also be calculated without a control genome. With
strong distributional assumptions the mixture of signals
from probes without and with target can be de-convoluted
using an expectation maximization algorithm (Supplemen-
tary Methods).

Prior to data analysis, microarray data are usually pre-
processed and subjected to within and between microarray
normalization to correct for sources of systematic varia-
tion. We investigated whether within and between microar-
ray normalization improves the QAPC method. Values
for P(absent|x) were calculated from raw data, within mi-
croarray sequence-normalized data, and between microar-
ray LOESS-normalized data. Sequence-based normaliza-
tion is generally recommended for high density aCGH anal-
ysis and was performed according to Naef and Magnasco
(27), using the model:

Êi =
m∑

k=1

Ēi,k + Ē

where Êi indicates predicted log2 intensity due to ubiqui-
tous hybridization for feature i, Ēi,k indicates the mean log2
intensity of probes having the same nucleotide at position
k and Ē is the overall average log2 intensity. This model
has been suggested and investigated for tiling microarrays
by Munch et al. (28) and Royce et al. (29). Local polyno-
mial regression (LOESS) normalization was applied to sig-
nals of each individual microarray against the signals of a
reference median microarray. As genomes can substantially
differ, we implemented a robustified LOESS normalization
procedure that used a bandwidth abs(M) = 1, which means
that the LOESS line was based on the probes with inten-
sity differences less than one log2-fold change between the
sample and the reference median microarray. We first per-
formed an initial fit using probes abs(M) < 1 between the
sample and the reference median array. The residuals (εi)
were computed and used to calculate probe-specific weights:
wi = 1, for |εi| < 1, and wi = 0, for |εi| > 1. These steps were
iterated which was stopped after four iterations or if

∑ (
M̂iter

i − M̂iter−1
i

)2

n
< 10−4

The performance of the absence calls was tested by ana-
lyzing the genomic content of a sequenced S. aureus strain
MRSA252. For this strain it is known for which probes a
target sequence is present in the genome, enabling quantifi-
cation of the error rates. Analyses on different strains of S.
aureus and the midges C. riparius and A. gambiae were per-
formed to demonstrate applications.

RESULTS

Using probe intensity for absence/presence calling of a target

To determine to what extent probe intensity indicates the
presence of a probe target, we first investigated raw aCGH
data from prokaryote S. aureus and eukaryote D. rerio. The
S. aureus multi-strain tiling microarray was designed with
5000 negative-control probes and 46,588 perfect-match
probes to S. aureus strain MRSA252. This microarray was
used in an aCGH experiment using three replicate DNA
samples of the S. aureus strain MRSA252 (Figure 1). As
expected, the negative-control probes showed substantial
lower signal intensities than the perfect-match probes (Fig-
ure 1A), although there is some overlap between the two
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Figure 1. Evaluating S. aureus negative and positive controls. (A) box-
and-whisker plots showing the signal intensity distributions of negative-
control (white) and perfect-match probes (red) of three replicate S. aureus
MRSA252 samples and based on their averaged signal intensity. (B) box-
and-whisker plots showing the intensity distributions of negative-control
probes (white) and perfect-match probes (red) of the averaged intensity in
GC bins. (C) Density plot indicating the signal intensity distribution of the
negative control (black) and the perfect-match probes (red). The numbers
indicate the minimum number of false positives (FP) and false negatives
(FN) absence calls, obtained at a log2 intensity of 11.3. (D) As C, but after
selecting the probes with GC content between 10% and 65%. The numbers
are obtained at a log2 intensity of 10.8.

distributions (Figure 1C). We determined a minimum error
of 463: with 223 perfect-match probes called absent and 240
negative controls were called present at a log2 intensity of
11.3, equivalent to an accuracy of 0.9910 and an area under
the curve (AUC) of 0.9978.

However, it turned out that there was a strong correlation
between the GC content of the probes and their signal in-
tensity (Figure 1B). In contrast to the perfect-match probes
with a maximal GC content of 65%, the negative-control
probes have GC content up to 100% and the signal inten-
sities of the negative-control probes are increasing from a
GC content ≥ 55%. At the same time, perfect-match probes
with a GC content < 10% showed a quite low signal. So, the
overlap between the negative controls and the perfect-match
probes can largely be explained by the high GC content of
many negative-control probes and the low GC content of
a few perfect-match probes (Figure 1A). Based on these re-
sults, we decided to only use probes with GC content higher
than 10% and lower than 65%; 2811 negative-control and 46
582 perfect-match probes remained. This resulted in a lower
overlap between the intensity distributions of the negative-
control and perfect-match probes show. The minimum error
drops to 83 (39 false positive and 44 false negative absence
calls) at a log2 intensity of 10.8, which is equivalent to an
accuracy of 0.9983 and an AUC of 0.9994. The classifica-
tion performance of the three individual replicate measure-
ments and the average measurement shows that, when the
probe intensity is used as a proxy for the presence of a probe
target, the error rates are low and the precision and the ac-
curacy are high (Table 1). The AUC is higher than 0.999 in
all replicates, indicating that a large separation between the
negative-control and perfect-match probes can be achieved
with a high consistency. nullnull

Figure 2. Present/absence calling in S. aureus by means of probe-signal
intensities of negative and positive controls. (A) Histogram showing the
intensity distribution of negative-control probes (top panel, blue), perfect-
match probes (top panel, red) and remaining probes on the microarray
(bottom panel, grey) with the average bit-scores of each bin (dotted black
line, bottom panel) for S. aureus strain MRSA252. (B) A ratio-intensity
plot showing the log2 ratio against the log2 sum of the MRSA252 and
MSSA476 probe intensity signals. The four groups, indicated in the graph,
are discussed in the main text.

To check this approach with an eukaryotic genome, a sim-
ilar aCGH analysis was performed on the genome of D. re-
rio using a microarray with 7742 negative-control and 56
009 perfect-match probes. The perfect-match probes were
designed with a GC content ranging from 33% until 57%.
To align the negative-control probes, 6771 negative-control
probes within the same CG range were selected for the sub-
sequent analyses. An experiment using 2 × 6 replicate D. re-
rio samples showed that the negative-control probes have a
consistently lower intensity than the perfect-match probes,
but again there is overlap between the two intensity distribu-
tions (Supplementary Figure S1). The overlap is larger than
observed for S. aureus (Table 1), but the AUC of ∼0.98 in-
dicates a good separation between the signal intensities of
the negative-control and perfect-match probes, a steady ob-
servation among the replicate measurements (Table 1, Sup-
plementary Table S1).

To see if this approach could be helpful in determining
the absence or presence of target sequences in test genomes,
we analyzed all the remaining probes on the S. aureus multi-
strain microarray that were designed for other strains than
strain MRSA252. For this, we applied the minimal cut-
off observed with the strain MRSA252, log2 intensity of
10.8 to all non-MRSA252 designed probes (Figure 2A).
Many probes showed signal intensities equivalent to the
negative controls, whereas other probes have higher sig-
nal intensities (Figure 2A, lower panel). Thus, there are
probes without and with target sequence, respectively. As
such, there should be a relation between the probe bit-score
for the best match with the strain MRSA252 genome and
the probe-signal intensity. Indeed, probes with a log2 sig-
nal intensity above 10.8 have an average bit-score of over
70 (Figure 2A, lower panel). This implies that the target
sequences from the probes with a signal intensity below
the cut-off are generally absent from the strain MRSA252
genome. To test this approach with another MRSA strain,
we compared the MRSA252 probe intensities with the in-
tensities of the probes resulting from a hybridization with
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Table 1. Confusion table values showing classification performance

S. aureus D.rerio

repl. 1 repl. 2 repl. 3 Mean signals Sample 1 Sample 2 Mean signalsa

True positives 2734 2649 2773 2766 5408 5807 5784
False positives 41 87 22 39 1503 1241 1293
True negatives 46 542 46 496 46 561 46 544 54 506 54 768 54 716
False negatives 76 161 37 44 1,363 964 987
True positive
rate

0.9730 0.9427 0.9868 0.9843 0.7987 0.8576 0.8542

False positive
rate

0.0009 0.0019 0.0005 0.0008 0.0268 0.0222 0.0231

True negative
rate

0.9991 0.9981 0.9995 0.9992 0.9732 0.9778 0.9769

False negative
rate

0.0270 0.0573 0.0132 0.0157 0.2013 0.1424 0.1458

Precision 0.9852 0.9682 0.9921 0.9861 0.7825 0.8239 0.8173
Accuracy 0.9976 0.9950 0.9988 0.9983 0.9543 0.9649 0.9637
Area under the
curve

0.9992 0.9978 0.9997 0.9994 0.9760 0.9829 0.9823

aMean of 2 biological x 6 technical replicates (Supplementary information).

the MSSA476 genome and identified four probe groups
(Figure 2B): Group 1, probes which targets are absent in
both the MRSA252 and MSSA476 genomes, as their inten-
sities are low in both hybridizations; Group 2, probes which
targets are present in both the MRSA252 and MSSA476
genomes, as their intensities are high in both hybridizations;
Group 3, probes which targets are present in MRSA252,
but absent in MSSA476, as their intensities are high after
hybridizing the MRSA252 genome but low in MSSA476
and reversely Group 4, probes which targets are absent in
MRSA252 but present in MSSA476. In the next section,
we will show how these observations can be used to analyze
unknown genomes.

Statistical procedure for QAPC

The results from the raw data indicate that probe intensi-
ties can in principle be used to make present/absent calls,
but a formal data analysis procedure is required to enable a
genuine quantitative analysis. The QAPC procedure we pro-
pose here requires that microarrays are fitted with probes
designed against a certain control genome and probes that
can serve as negative controls. The data analysis procedure
is based on comparing the data from the control genome
with the data from the unknown test sample. The intensities
of probes that are known to match the control genome and
probes that are known not to match the control genome, i.e.
negative controls, are used to infer the target status of the
test sample. Absence/presence calls can then be quantified
as described in Materials and Methods (plus Supplemen-
tary Methods). We propose the following procedure, which
we call the QAPC method:

1) Normalize the data within and/or between microarrays,
if removal of technical variability is required.

2) Select probes with a proper GC content (typically higher
than 10% and lower than 65%).

3) Average the log2 probe intensities among the replicate
microarrays.

4) Before comparing the control and the test genome, en-
sure that the intensities are equivalent, for instance by
performing a robustified quantile normalization.

5) Use the control genome to calculate a P-value for
absence/presence of a probe target sequence given a cer-
tain probe-signal intensity.

6) Use these P-values for a statistical inference of target se-
quences in the unknown genome.

To determine the performance of the above described
procedure, we analyzed strain MRSA252 using the genome
of sequenced S. aureus strain MSSA476 as control. To ex-
amine the robustness of the approach, we initially omitted
step 1. The filtering for the probes with the appropriate GC
content yielded 2811 negative controls and 41 119 positive
controls (step 2). The genomes of MRSA252 and MSSA476
were analyzed in triplicates that were averaged (step 3). Af-
ter the quantile normalization (step 4), the P-values were
calculated by empirically fitting the shifted log-normal dis-
tribution onto the negative-control probes and the left-
truncated normal distribution onto the perfect-match, pos-
itive control, probes (step 5, Figure 3A–D). Estimation of
absence P-values at certain fluorescence intensity revealed
that the probability of absence of a target is low when the
probes have log2 signal intensities higher than 12 (Figure
3E). The distribution of P-values showed that probes either
have a very high or a very low P-value (Figure 3F). When
the P-value cut-off is set to P ≤ 0.01, we found that 73 501
probes have a target, given their intensity, and 48 176 targets
are called absent. It is noteworthy that the quantile–quantile
plots indicate that the probability density functions, though
based on empirical considerations, fit the data (Figure 3B
and D). To determine the actual performance of the sta-
tistical analysis, we turned to the strain MRSA252, as for
this strain the probes that match the genome are known.
For this analysis, we presumed that the 30 351 probes with
bit-scores ≤ 40 should give absence calls and that the 46
582 perfect-match probes with bit-scores 119 should give
no absence calls. Using raw data, low numbers of false posi-
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Figure 3. Goodness of fit and outcome of the empirical statistical model-
ing procedure. (A) Histogram and density plot showing the fit of the shifted
log-normal distribution to the intensities of the negative-control probes.
(B) Quantile–quantile plot showing the fit of the shifted log-normal dis-
tribution to the intensities of the negative-control probes. (C) Histogram
and density plot showing the fit of the normal distribution to the inten-
sities of the perfect-match probes. (D) Quantile-quantile plot showing the
fit of the normal distribution to the intensities of the perfect-match probes.
(E) Bayesian P-values plotted against probe-signal intensity. (F) Histogram
showing the distribution of the P(absent|intensity) values.

tive (601) and false negative (69) calls were made, hence true
positives and true negatives show low error rates (∼1%) and
an encouraging AUC value of 0.9997 (Table 2).

To investigate whether the QAPC method could be im-
proved with normalization, we applied either LOESS nor-
malization or sequence normalization in step 1 and com-
pared the results with the results obtained from the raw data
(Table 2). Data after (between microarray) LOESS normal-
ization yielded similar results, but data after sequence nor-
malization even better results (82 false positive, 67 false neg-
ative calls and error rate ∼0.22%). Quite similar high AUC
values were obtained for all analyses. Hence, the normal-
ization procedure does not seem to considerably affect the
performance of the procedure. To further compare the nor-
malization procedures, the absence-called probe sets were
combined in a Venn diagram (Figure 4A). As expected,
this resulted in a large intersection of 48 878 absence-called
probes, and 1, 142 and 302 unique absence-called probes for
the raw data, LOESS-normalized and sequence-normalized
data respectively, as well as a relatively large overlap of 2099
between the raw data and LOESS normalized data. When

Figure 4. Comparing normalization approaches in QAPC. (A) Venn dia-
gram of the absence-called probe sets, based on raw, sequence-normalized
and LOESS-normalized data. (B) Density plot showing the distributions
of bit-scores of three overlaps from the Venn diagram. As compared to
the strain MRSA252 genome: the probes called absent after analyzing the
sequence-normalized data (302, blue), the LOESS-normalized data (142,
green) and raw and LOESS data (2099, red).

analyzing the associated bit-scores of these probe sets, it
became clear that the probe set with absence-called probes
uniquely determined using sequence normalization had rel-
atively low bit-scores compared to the other two probe
sets (Figure 4B). This indicates that sequence normalization
does improve the analysis. Altogether, these results indicate
that using this method one can reliably make quantitative
absence/presence calls in aCGH.

Comparing genomes

Our QAPC method can be useful for application in com-
parative genomic analysis, such as to define core- and
pan-genomes. As example, we compared 10 S. aureus
strains: MRSA252, WKZ1, RF122, N315, Mu50, New-
man, NCTC8325, USA300, MW2 and S0385. In this ex-
ample, the genomic fragments of MSSA467 were used as
positive-control target sequences. When the P-value cut-off
is set to P(absent|intensity) ≤ 0.01, it was found that 16
457 probes do not have any target in any genome (Figure
5A). The overlap between all strains, the ‘core genome’, con-
tained 58 381 target sequences. This example illustrates that
the QAPC method enables the definition of a core genome
without assigning a reference genome, to which all other
strains are to be compared. The clustering clustered simi-
larity matrix of the unique probe-target sequences (Figure
5B) very much resembles the phylogenetic results presented
by (30). Our analysis confirmed that WKZ1–MRSA252,
USA300–MW2, Newman–NCTC8325, Mu50–N315 are
closely related pairs and strains RF122 and S0385 are rela-
tively divergent.

This QAPC method generates absence/presence calls for
individual probes rather than genomic regions. To show
that this QAPC method can therefore be used for high-
resolution aCGH analysis, we focused on the results for one
gene: fibronectin binding protein B (fnbB). This gene is be-
lieved to be involved in pathogenesis. The fnbB gene is strik-
ingly different in the different strains, only 11 probe targets
are detected in all genomes (Figure 5C).
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Table 2. Confusion table values to show the classification performance of probes with bit-scores ≤ 40 and probes with bit-score 111 when compared to the
genome of S. aureus strain MRSA252 after applying the statistical procedure (P(absent|intensity) < 0.01) to raw data, data after sequence normalization
and data after LOESS normalization

Raw data Seq. norm LOESS norm

True positives 30 282 30 284 30 284
False positives 601 82 629
True negatives 45 981 46 500 45 953
False negatives 69 67 67
True positive rate 0.9977 0.9978 0.9978
False positive rate 0.0129 0.0018 0.0135
True negative rate 0.9871 0.9982 0.9865
False negative rate 0.0023 0.0022 0.0022
Precision 0.9805 0.9973 0.9797
Accuracy 0.9913 0.9981 0.9910
Area under the curve 0.9997 0.9998 0.9997

Figure 5. Comparing 10 S. aureus strains by QAPC. (A) Histogram of the
number of probe targets per number of strains in which a probe target was
called present. (B) Binary similarity matrix, based on the probes that were
called present in of one these 10 strains. Yellow indicates a high similarity of
1 and blue a low similarity. (C) Plot indicating whether probe targets were
called present (white) or absent (black) in the gene encoding fibronectin
binding protein B (fnbB) based on the annotation of MSSA476.

Assessing NGS reads for de-novo assembly

Another application is the possibility to validate NGS reads
in de-novo sequencing experiments of non-model organisms.
As well documented, NGS genome sequencing suffers of-
ten from the presence of reads that do not belong to the
sequenced sample. These cuckoo reads, which originate ei-
ther from technical errors or sample contamination (31–33),
hamper de-novo genome or transcriptome assembly. One so-
lution is to validate the NGS sequence reads by aCGH us-
ing DNA of the concerned organism. As example, we vali-
dated the results of a C. riparius de-novo transcriptome se-
quencing experiment. For this, we designed a microarray
for aCGH analysis with target probes for: the NGS read
sequences (843 837), related species genbank sequences (75
984), as well as many negative controls (40 000). For this
study, we included a positive-control genome in the experi-
mental design; A. gambiae to determine the cut-off for the
absence/presence calling. The results are shown in Supple-
mentary Figure S2. It can be seen that many probes de-

Figure 6. Evaluating NGS reads with the QAPC method. (A) Density plots
showing the log2 signal intensities of the probes designed for the A. gam-
biae reference genome (red) and negative-control probes (black). (B) Den-
sity plots showing the log2 signal intensities of the negative-control probes
(black) and the probes designed for the C. riparius NGS reads (grey).

signed against C. riparius transcriptome reads indeed have
generally a higher intensity in the C. riparius genome than
in the A. gambiae genome. However, there are also many
probes for which this is not the case. Prior to the data anal-
ysis we selected probes with a GC content below 60%. In
total, 929 808 probes were included in the analysis, 23 036
of which were random negative controls and 9038 positive
controls, as they matched the A. gambiae genome with a bit-
score > 100. As the goodness of fit of the parametric dis-
tributions was poor, the analysis was based on density es-
timation with bandwidth optimization (cf. Supplementary
Information). Again, the A. gambiae aCGH showed that
the negative-control probes have a consistently lower inten-
sity than the perfect-match probes, but with overlap (Fig-
ure 6A). Nevertheless, the AUC is 0.9081 which indicates
that the intensity distributions are separated. We decided to
discard probe targets only if they were called absent with a
high certainty, thus we applied a (P(absent|intensity) > 0.9
cut-off to the C. riparius aCGH data, resulted in 169 273
(18.7%) absence-called probes that target NGS reads (Fig-
ure 6B). To explore NGS sample contamination as one ex-
planation for the many absent reads, all NGS reads (1 458
164) from the C. riparius experiment were blasted against
the human genome and transcriptome and 54 430 reads
(3.7%) were found matching (bit-score > 95). In total, 102
121 (7.0%) probes were associated with these reads and
could therefore be associated with human sample contam-
ination. In total, 44 502 (44%) of these human-associated
reads were called absent by our QAPC method and they
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constituted 26% of all absence-called probes. On the other
hand, 55 619 of the 737 499 present probes were from
reads matching human sequences. In other words, 26% of
the absence-called probes were associated with human se-
quences, whereas this was only the case 7.8% of the remain-
ing probes. The significant overrepresentation (Chi square
test: X-squared = 49 204, P-value < 2.2e-16) of probes asso-
ciated with human reads among the absence-called probes
indicates that the QAPC method can be helpful in removing
contaminating reads from NGS data.

DISCUSSION

In this study, we propose a novel approach: the QAPC
method for aCGH analysis that explicitly indicates the ab-
sence or presence of genomic sequences. The analysis pro-
cedure does not require any structural information of a ref-
erence genome, i.e. it does not require the physical order
of the probe targets. This approach is therefore specifically
useful for aCGH analyses on non-model organisms with
poorly assembled genomes and/or limited genomic anno-
tation. It should be noted that the order of the probe tar-
gets is conventionally included in the analysis to deal with
error rates in copy number estimation. However, the QAPC
method does not infer copy number, but specifically indi-
cates whether probe targets are present or absent in the
genome. Our raw results (Table 1) indicate that for such
signals, which are relatively extreme, single probes can be
informative. Encouraged by these results, we subsequently
proposed a formal data analysis procedure that enabled a
quantitative analysis for present or absent calling (Table 2).

Given that microarrays have been around for over 15
years now (34), we are not the first to present a method
for absence/presence calling for probe targets. Traditionally,
the majority of probe targets has been inferred by very pre-
cise probe (or feature) level modeling (e.g. (35)). The basis of
these modeling approaches is that a certain signal-intensity
level is estimated that should represent background noise
and non-specific binding, and this value is subtracted from
the total signal-intensity level of the feature. This subtrac-
tion approach has resulted in detection call algorithms in
detail discussed by Schuster (36). The most well known
is probably the MAS5 algorithm , based on a pairing of
mismatch and perfect-match probes. Interestingly, most of
the background noise and non-specific binding modeling
efforts were made in the field of gene-expression analysis,
rather than genomic (aCGH) analysis. It has proven to be
hard to exactly quantify signal-intensity levels for probe-
specific background noise and non-specific binding. Yet, the
essence of the problem is that in gene-expression analysis it
is difficult to claim that a gene is not expressed, if it cannot
be measured. However, in aCGH analysis the relationship
between signal intensity and genome content is less com-
plex (2) and we have shown here that probes without ge-
nomic target, i.e. negative-control probes, in general have a
consistently lower signal intensity than probes with target
sequences (Table 1 and Figure 1). It is this consistent rela-
tionship that we use in our approach.

Given the above-mentioned difficulties, we decided stay
clear from a signal-intensity subtraction method at the fea-
ture level. The basis of the QAPC method presented here

is that total probe signal intensity is used as a proxy for
the absence/presence of a probe target. We design a pop-
ulation of probes without and with target sequences in the
biological sample, with various characteristics in terms of
GC content, sequence, melting temperature and Gibbs free
energy, all in a similar range as the target probes that are
used for measuring the genomic content. We assume that
the intensity of this set of negative-control and positive-
control probes is a representative sample for the total signal-
intensity range that probes without target can have in an
experiment. In fact, this way of reasoning is not completely
new. Zhang et al. (37) were interested in tissue-specific gene
expression and called genes expressed if the probe inten-
sity exceeded the 99th percentile of the intensities from 66
negative controls. In addition, the Illumina gene-expression
platform contains negative controls to calculate a detec-
tion P-value for each gene. The number of negative-control
probes ranges from 750 to 1600 for different types of Bead-
Chips (different species and different versions). Shi et al.
(38) proposed to use these probes to estimate the propor-
tion of probe targets present in a sample, which is sug-
gested as quality criterion for gene-expression analysis. We
propose to use negative-control and positive-control probes
in genomic (aCGH) analysis (instead of gene expression
analysis) for probe target-specific absence/presence calling,
taking into account the notion that probes with target se-
quences can have a low signal intensity (Table 1; Figure 1).

A novel feature of the QAPC method is the inclusion of
positive-control probes. In principle, the method can be exe-
cuted without explicitly testing positive controls, as could be
dictated by specific experimental settings. This can be done
by deconvolving a mixture of signals from probes without
and with target sequences using an expectation maximiza-
tion algorithm (albeit with strong distributional assump-
tions, see Supplementary Methods). However, it is advised
to include a positive-control hybridization in the experimen-
tal design whenever possible. Not so much as reference for
the genomic structure, which is usually the case in aCGH
experiments, but rather for determining the signal intensity
distribution of the positive-control probes. The positive-
control hybridization can in principle be done with any
genome for which sufficient sequence information is avail-
able. The analysis could benefit from choosing a positive-
control genome that is to some extent biologically similar
to the test genome, as this could make the hybridizations
comparable.

Our QAPC method entails a direct comparison of the in-
tensity values from the control hybridizations with the in-
tensity values from the test genome. Thus, one assumption
in the analysis is that the intensity values in both hybridiza-
tions are equivalent. This should be checked, for instance by
comparing the intensities of the negative-control probes, or
by including and comparing hybridization control spike-ins
in both the test and the control sample. Another important
assumption is that the distributions P(intensity|absent) and
P(intensity|present) are well described. This can be checked
with standard q–q plots. We supply a data analysis proto-
col that includes a decision scheme for normalization and
model fitting (Supplementary Methods).

In de-novo non-model NGS experiments that by defini-
tion lack a reference genome, our method can be help-
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ful to determine NGS-contaminating sequencing reads that
do not belong to the genome of the sequenced organism.
If probes generate a low QAPC call, this indicates that
the probe is likely targeting a read, which is erroneous or
present due to contamination of the DNA or RNA sam-
ple. Especially in RNA, probes can generate absence calls
because they target a splice site or an RNA editing site. If
necessary, additional bioinformatics analyses should be per-
formed to analyze the probes with absent calls. For instance,
a splice site in a read may be identified by a single absent
called probe, contrasting the other probes associated with
the read.

Apart from analyzing NGS reads, we have also shown
that our QAPC method can be used to analyze regular
aCGH experiments for instance to identify pan and core
genomes (39). Structural information of a genome, i.e. the
physical order of the probe targets, is not required for the
data analysis, but it facilitates data plotting and interpre-
tation, as was clear from our results for the fnbB gene of
all S. aureus strains. It shows that the results give infor-
mation about the absence/presence of single probe targets
and therefore works at a resolution of a single probe. This
can be useful for new aCGH experiments, but also for a
reanalysis and reinterpretation of old experiments. Since
aCGH experiments are performed with reference genomes,
the QAPC method can in principle be used for re-analysis
and re-interpretation of any previous experiment, if the ar-
rays are fitted with negative-control probes. The data ana-
lyst only needs to ignore the genomic location of the probe
targets and use the reference genome as positive control.
In conclusion, given the presented applications and perfor-
mance, like typical ROC AUC values larger than 0.9995,
we advocate that the QAPC method can complement tra-
ditional aCGH analysis methods to enhance data interpre-
tation.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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