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ABSTRACT

A common aim in ChiP-seq experiments is to identify
changes in protein binding patterns between condi-
tions, i.e. differential binding. A number of peak- and
window-based strategies have been developed to de-
tect differential binding when the regions of interest
are not known in advance. However, careful consider-
ation of error control is needed when applying these
methods. Peak-based approaches use the same data
set to define peaks and to detect differential binding.
Done improperly, this can result in loss of type | error
control. For window-based methods, controlling the
false discovery rate over all detected windows does
not guarantee control across all detected regions.
Misinterpreting the former as the latter can result
in unexpected liberalness. Here, several solutions
are presented to maintain error control for these de
novo counting strategies. For peak-based methods,
peak calling should be performed on pooled libraries
prior to the statistical analysis. For window-based
methods, a hybrid approach using Simes’ method is
proposed to maintain control of the false discovery
rate across regions. More generally, the relative ad-
vantages of peak- and window-based strategies are
explored using a range of simulated and real data
sets. Implementations of both strategies also com-
pare favourably to existing programs for differential
binding analyses.

INTRODUCTION

Chromatin immunoprecipitation with sequencing (ChIP-
seq) is a widely used technique for the identification of pro-
tein binding sites in the genome. Traditionally, ChIP-seq ex-
periments are analysed by comparing the ChIP library with
a negative control (1) to detect regions of absolute enrich-
ment. However, comparisons between ChIP-seq libraries

can also be performed to identify changes in enrichment
patterns between different biological conditions (2-4). De-
tection of differential binding (DB) between two conditions
does not require a negative control library. This lowers costs
when only relative binding is of interest. A DB analysis is
also easier to interpret as DB regions are more likely to be
relevant to the biological difference under investigation.

The first step in a DB analysis is to identify a set of ge-
nomic intervals over which DB is to be assessed. The num-
ber of sequence reads mapped within each interval is then
counted. Each count serves as a measure of protein bind-
ing within that region. The simplest strategy is to concen-
trate on known genes and their putative promotor regions
(3,5,6). For example, Pal et al. (3) counted the number of
reads mapped to a fixed interval around the transcriptional
start site of each gene. Each region was then tested for sig-
nificant differences in the enrichment of epigenetic marks.

However, restricting the analysis to pre-defined regions
is not always appropriate. Such an approach will obviously
miss DB events at unexpected loci outside the pre-defined
regions. It will also be unable to resolve DB events that
vary within a pre-defined region. Consider a promoter re-
gion containing two transcription factor (TF) binding sites.
Suppose that one site is bound by the target TF in one cell
type, whereas the other site is bound with equal intensity
in another cell type. When the two cell types are compared,
a region-based method that counts reads across the entire
promoter will yield identical counts for both cell types. This
means that differences within the promoter will not be de-
tected.

Hence, there is a need for DB strategies that identify the
genomic regions of interest de novo. Two broad de novo
strategies have been used in the literature. Peak-based meth-
ods count reads over observed peaks in read density (7,8)
that have been identified using a peak-calling program, such
as MACS (9). Window-based methods use a sliding window
approach whereby the number of reads inside each window
is counted (10). Both methods can detect DB events that
might be missed by region-based counting. In the example
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above, a peak-based method will define each TF binding
site as a distinct peak. Differences between cell types can
then be detected for each site as each peak is analysed sep-
arately. A similar argument can be made for window-based
approaches if each site is covered by a different window.

Once counts are obtained, DB loci are identified by test-
ing for significant differences between conditions. The sta-
tistical analysis must be able to deal with low, overdis-
persed counts and a limited number of biological replicates.
The software package edgeR (11) has previously been used
for this purpose (2,3,12,13). After testing, the Benjamini—
Hochberg (BH) method can be applied to control the false
discovery rate (FDR) across detected loci (14). This corrects
for multiple tests across the genome without being overly
conservative. The detected DB features can then be corre-
lated to differential gene expression or used to identify novel
regulatory elements. The use of existing statistical proce-
dures for the DB analysis is relatively straightforward, effec-
tive and (mostly) independent of the chosen read counting
strategy.

A number of subtleties need to be considered to main-
tain statistical validity in a de novo DB analysis pipeline. For
peak-based methods, a DB analysis on called peaks is per-
formed with the same data set used to define said peaks.
This means that peak-based methods use the same data
twice (i.e. data snooping), which can result in loss of type I
error control if not done correctly. For window-based meth-
ods, naive application of the BH method provides control of
the window-level FDR rather than the intended region-level
FDR. Misinterpreting the former as the latter may result in
loss of FDR control. Neither issue seems to have been ap-
preciated in the implementation of existing methods for the
de novo detection of DB regions.

This paper provides some recommendations to maintain
error control for de novo counting strategies. For peak-based
methods, peak calling should be performed on pooled li-
braries to avoid the loss of type I error control from data
snooping. For window-based methods, region-level FDR
control can be maintained by applying Simes’ method on P-
values of clustered windows. Neither method is more pow-
erful than the other for detection of all DB features. Rather,
implementations of both strategies have complementary de-
tection profiles on simulated and real data sets. Both imple-
mentations also outperform several existing programs for
DB analyses.

MATERIALS AND METHODS
Estimation of the average fragment length

For each real ChIP-seq data set, the average fragment length
was estimated using cross-correlation plots (15,16) as shown
in Supplementary Figure S1. In each simulation, the average
fragment length was set to the known true value of 100 bp.

Implementation of the sliding window method

The sliding window method considers equispaced genomic
windows and counts the number of bound DNA fragments
overlapping each window. For TF data, each window was
1 bp in size to represent the narrowest possible feature. For
histone mark data, a window width of 150 bp was used. This

PAGE 2 OF 11

represents the length of DNA in a nucleosome and is the
smallest relevant interval for histone mark enrichment (17).
The spacing between successive window midpoints ranged
from 25 to 100 bp. Larger spacings reduce computational
work while smaller spacings provide greater resolution.

To represent the complete post-sonication DNA frag-
ment from which the read was sequenced (18), each read
was directionally extended to a length equal to the aver-
age fragment length. The number of fragments overlapping
each window was then counted. This means that the count
for each window will not only include reads within the win-
dow itself, but also any read lying immediately upstream of
the window on the strand to which that read was mapped.

Finally, DB windows were identified by analysing the col-
lected counts with edgeR. The BH method was applied to
control the FDR across all detected windows.

Implementation of the peak-based method

Reads from all libraries in a data set were pooled into a sin-
gle library. MACS (v1.4.2) was then used in single-sample
mode to call peaks from the pooled library (9). Model build-
ing was disabled and the shift size was manually set to half
the average fragment length instead. Duplicate removal was
also turned off. The genome size was set as the sum of the
lengths of all chromosomes in the genome. Default values
were used for all other MACS parameters. After peak call-
ing, the number of 5’ read ends lying in the genomic interval
corresponding to each peak was counted. This was repeated
such that a count was obtained for each peak in each library.
DB peaks were identified using edgeR and the BH method
was applied to control the FDR across all detected peaks.

Implementation of the hybrid approach

Reads were counted across windows as previously de-
scribed. Peaks were also called using MACS as previously
described. All windows overlapping at least one peak were
identified and tested for DB with edgeR. Windows were
then aggregated into peak clusters where each peak cluster
contains all windows overlapping a corresponding peak. A
combined P-value was computed for each peak cluster us-
ing Simes’ method (19). For a cluster containing n windows,
the combined P-value is defined as

ps =min{np, /r; r =1,2...,n}

where the p, are the individual window P-values sorted in
increasing order. This provides weak control of the family-
wise error rate across the set of null hypotheses for all win-
dows in the cluster. In other words, py represents evidence
against the global null hypothesis, i.e. that no windows in
the cluster are DB. The BH method was then applied to the
combined P-values to control the FDR across peak clus-
ters. This is equivalent to region-level FDR control as each
cluster represents a distinct genomic region.

DB analysis with edgeR

Windows or peaks with low counts across all libraries were
filtered out prior to the DB analysis. Low-abundance fea-
tures are interpreted as ‘background’ regions of non-specific
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enrichment in which DB is not expected. Removal of these
uninteresting features improves power by reducing multiple
testing without compromising type I error control (20). For
real data sets, windows or peaks were filtered out if the total
count across all libraries was below 20 or if the average log,
count-per-million (as computed by the aveLogCPM func-
tion in the edgeR package) was less than —1. For simplicity,
the aveLogCPM filter was omitted from analyses of simu-
lated data for which library sizes are equal and non-specific
enrichment is low or absent.

Scaling normalization is necessary to remove composi-
tion biases in sequencing data prior to comparisons be-
tween libraries (21). Here, a modified version of the trimmed
mean of M-values (TMM) method (21) was used. Instead
of applying the TMM method directly to the same read
counts used for the DB analysis, a new table of read counts
was generated for normalization purposes. For each library,
reads were counted into contiguous 10 kbp bins across the
genome based on the 5 end location of each read. Nor-
malization factors were estimated from these binned counts
using the TMM method without any precision weighting.
Large bins were used instead of windows to provide greater
read counts for optimal normalizaton. The use of equisized
bins also ensures that genomic regions are equally repre-
sented, e.g. regions with more called peaks do not con-
tribute more M-values. Similarly, precision weights were not
used to ensure that equal weight was assigned to all M-
values. Further justification is given in the second section
of Supplementary Materials and Supplementary Figure S2.
This procedure assumes that most of the genome is not dif-
ferentially bound by the protein of interest. Of those regions
which are DB, no assumption is made regarding the direc-
tion of change. As implemented, the TMM method will tol-
erate up to 30% of bins that are DB in either direction, i.e.
up to a maximum of 60% if the number of DB bins is equal
in both directions. Also note that normalization was only
performed for analyses of real data. All normalization fac-
tors were set to unity in the simulations as no composition
biases were present.

Finally, counts for each window or peak were tested for
DB using edgeR (v3.4.2). The edgeR package models the
counts using negative binomial (NB) distributions. The es-
timateDisp function was used to estimate an abundance-
dependent trend for the NB dispersions (22). To normalize
for compositional biases, the effective library size for each
sample was set as the product of the raw library size and the
normalization factor described above. A quasi-likelihood
(QL) F-test was then conducted for each peak or window
using the glmQLFTest function (23), with robust estimation
of the prior degrees of freedom (24).

Outline of the simulation design

Data were simulated for a ChIP-seq experiment consisting
of two biological replicates in each of two groups. Exactly N
peaks separated by at least 10 kbp were added to an artificial
genome containing a single chromosome. For each library
in group j, the number of reads in peak i was sampled from a
NB distribution with mean w; and dispersion ¢;. The latter
was sampled from an inverse chi-squared distribution with
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20 degrees of freedom. For each non-DB peak i, p;; was set
to a constant x, for all ;.

DB was incorporated by picking N peaks and setting ;|
= x; and p;» = x; for each chosen peak i, where x| and x;
are non-equal constants. This was repeated with N’ differ-
ent peaks after swapping x; and x;. This means that each
group is enriched for the same number of DB peaks. Thus,
TMM normalization is not required as the balanced addi-
tion of DB peaks between groups avoids the introduction
of any composition bias. All mean values were chosen such
that x; + x, = 2x to ensure that no correlation was present
between average abundance and DB.

Finally, the position and strand of each read were sim-
ulated. Reads were evenly distributed between strands. For
TF simulations, the position of each forward- and reverse-
mapping read was sampled from ¢; — fX and ¢; + fX, re-
spectively, given the peak centre ¢;, the fragment length =
100 and X = Beta(2, 2). This models the strand bimodality
observed in real TF ChIP-seq data. For histone mark simu-
lations, the position of each read was sampled from a scaled
Beta(2, 2) distribution centred at ¢;. The scaling factor was
set at 1000 bp to represent the diffuse nature of histone mark
enrichment. Sampling is also strand-independent to reflect
reduced strand bimodality for histone data.

The region defined by each peak is defined as the inter-
val containing all reads associated with that peak. For TF
simulations, this corresponds to [¢; — f, ¢; + f] for each DB
peak i. For histone simulations, the peak region is defined
as [¢; — w/2, ¢; + w/2] given the scaling factor w = 1000.

Simulations to measure type I error control

A TF ChIP-seq data set was simulated with xy = 20, N =
50 000 and no DB (i.e. N' = 0). A number of peak-calling
methods using MACS were applied to call peaks from the
simulated data. Parameter settings for MACS were defined
as previously described. The threshold on the consolidated
P-value for each method was set such that 10 000 peaks were
called. All called peaks were used if fewer than 10 000 were
called. To avoid confusion, the known peaks in the simula-
tion will be referred to as ‘true’ peaks, whereas those called
from the simulated data will be referred to as ‘empirical’
peaks. For each method, all true peaks overlapping an em-
pirical peak were identified. For each of these true peaks, the
number of 5’ read ends lying in the corresponding genomic
interval was counted in each library. Counts were then used
in edgeR to compute a P-value for DB in that peak. The
observed type I error rate was defined as the proportion
of P-values below a specified threshold. As a reference, the
counting and DB analysis were also repeated with 10 000
randomly sampled true peaks.

Simulations to measure FDR control

Both TF and histone mark data sets were simulated with x;
=50, x; =90, x, = 10, N =20 000 and N' = 1500. The
sliding window method was then used to analyse the simu-
lated data. Windows were detected as differentially bound
by controlling the FDR at 0.05. The observed window-level
FDR was defined as the proportion of detected windows
lying outside the regions corresponding to DB true peaks.
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The observed region-level FDR was defined as the propor-
tion of detected true peaks (i.e. overlapped by at least one
detected window) that were not DB true peaks. The hybrid
approach was also applied to detect putative DB peak clus-
ters at an FDR threshold of 0.05. In this case, the observed
region-level FDR was defined as the proportion of detected
true peaks (i.e. overlapping with a detected peak cluster)
that were not DB true peaks.

Simulations to measure relative performance

A simulated data set was generated as previously described
with N =20 000, NV = 500 and xo = 15, x; = 25, x, = 5 (for
TF simulations) or xy = 30, x; = 50, x, = 10 (for histone
mark simulations). Non-specific enrichment was added by
partitioning the genome into contiguous 2 kbp blocks. The
number of reads in each block k was sampled from a NB(jy,
o) distribution. The mean p; was sampled from a U(10,
50) distribution to mimic uneven sequencing coverage in
real data. The dispersion ¢; was sampled as previously de-
scribed. Reads were evenly distributed between strands and
uniformly distributed within each block. Note that ., and
¢ are constant between libraries. This ensures that regions
of non-specific enrichment are not DB.

Several methods were then used to detect de novo DB
regions from the simulated data using an FDR threshold
of 0.05. The observed (region-level) FDR was defined as
the proportion of regions detected by each method with
no overlaps with the regions corresponding to DB true
peaks. The detection power of each method was measured
by counting the number of detected DB true peaks, i.e. DB
true peaks that overlapped at least one detected region from
that method.

Processing of real data sets

Four ChIP-seq data series containing biological replicates
in multiple groups were downloaded from the Gene Expres-
sion Omnibus (GEO) (25). Accession numbers are given
in Table 3. Reads were aligned to the mm10 build of the
mouse genome using Rsubread v1.10.5 (26) with a consen-
sus threshold of 2. Alignments with mapping qualities be-
low 100 were discarded. SAM files were compressed, sorted
and indexed using SAMtools (27). Read processing statis-
tics are described for each library in the first section of Sup-
plementary Materials and Supplementary Table S1. Dur-
ing DB analyses, regions lying outside of autosomes (for
STATS) or nuclear chromosomes (others) were removed
from the results before application of the BH method. This
avoids detection of spurious differences due to copy number
changes for loci on the sex chromosomes or the mitochon-
drial genome.

Alternative software packages for DB analyses

Programs from the USeq suite (v8.6.8) were used to iden-
tify DB regions (28). Libraries were converted using the
Tag2Point program and processed using the MultipleRepli-
caScanSeqs program with a peak shift of 50 bp and a win-
dow size of 100 or 250 bp for TF and histone mark data,
respectively. Larger window sizes are necessary for a valid
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comparison to the settings used in the sliding window im-
plementation. This is because reads are shifted by half the
fragment length to account for bimodality, rather than be-
ing extended by the full fragment length. The EnrichedRe-
gionMaker program was then used to identify DB regions at
a specified FDR threshold. No filtering was performed on
the log-fold change. Default values were used for all other
parameters.

The diffReps pipeline (v1.55.4) was also used to perform
a DB analysis (10). The fragment length was set to 100 bp
and the window size was set at 100 or 250 bp for TF and his-
tone mark data, respectively. Overlapping windows contain-
ing significant differential enrichment were selected and as-
sembled into differential sites. DB regions were then defined
as differential sites with adjusted P-values below a speci-
fied FDR threshold. Hotspot detection and genomic anno-
tation were disabled. Otherwise, default parameter settings
were used.

RESULTS
Outline of the DB problem

Consider a ChIP-seq experiment containing multiple repli-
cate libraries for each of two biological conditions. The
aim is to identify genomic regions with significant dif-
ferences in protein binding between conditions. However,
reads first need to be summarized into counts represent-
ing the strength of binding in each region. This is not triv-
ial when the regions of interest are not known in advance.
In such cases, peak- or window-based approaches must be
used.

Description of the peak-based strategy

Observed peaks in read density are identified from the
data using programs like MACS. The number of reads ly-
ing within each identified peak is counted for each library.
Counts can then be used to test for DB between condi-
tions at the genomic position corresponding to the identi-
fied peak. However, some caution is required to avoid loss
of type I error control when detecting DB peaks from the
same data set used to define the peaks, i.e. data snooping.

Many peak-based implementations are possible

A variety of approaches can be used to define peaks for a
data set with multiple libraries and groups (Table 1). Peaks
can be identified using MACS in single-sample mode for
each individual library, or for each group after pooling all
libraries in the group. Multiple peak sets across all libraries
or groups can then be consolidated into a single list by in-
tersection or union operations or some compromise thereof,
e.g. requiring the peak to be present in at least two libraries.
For example, Bardet e al. recommend taking the union of
stringently called peaks from each condition (4). Peaks can
be also identified by applying MACS in two-sample mode to
the pooled libraries for each group, i.e. the pooled library for
one group is treated as a control and used to detect relative
differences in the pooled library for the other group. Alter-
natively, peaks can be called with MACS in single-sample
mode after pooling reads across all libraries in the data set.
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Table 1. Description of peak calling strategies. Each strategy is given an
identifier and is described by the mode in which MACS is run, the libraries
on which it is run and the consolidation operation (if any) performed to
combine peaks between libraries or groups. For method 6, the union of the
peaks in each direction of enrichment is taken.
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Table 2. The observed type I error rate when testing for differential enrich-
ment using counts from each peak calling strategy. Error rates for a range
of specified error thresholds are shown. All values represent the mean of
10 simulation iterations with the standard error shown in brackets. RA:
reference analysis using 10 000 randomly chosen true peaks.

1D Mode Library Operation

1 Single-sample  Individual Union

2 Single-sample  Individual Intersection
3 Single-sample  Individual At least 2

4 Single-sample ~ Pooled over group Union

5 Single-sample  Pooled over group Intersection
6 Two-sample Pooled over group Union

7 Single-sample ~ Pooled over all -

The differences between these methods can be interpreted
in terms of the peak-calling P-values produced by MACS.
Let m;, be the peak-calling P-value for peak /in an individ-
ual library m. The set of P-values across v libraries for this
peak can then be denoted as

P ={mn,mpn, ...t}

where 7, = 1 if no peak corresponding to / was called in li-
brary m. A consolidation operation will summarize P;into a
single statistic, named here as the consolidated peak-calling
P-value. A peak will only be retained after consolidation if
its consolidated P-value is below some threshold value 7.
For methods 1, 2 and 3, the consolidated P-value is defined
as the minimum, maximum and second-smallest 1, € P,
respectively. For groups, 1, can be redefined as the peak-
calling P-value from the pooled library for each group m.
This means that the consolidated P-value for methods 4 and
S is the smallest and largest value in P;, respectively, where
P;is also redefined across groups. For methods 6 and 7, only
one P-value is reported by MACS for each peak. This can
then be directly used as the consolidated P-value.

Some care is required in choosing the value of T for
each method. The consolidated P-values from intersection-
based methods will always be larger than those from union-
based methods. Lower consolidated P-values will also be
observed with pooled libraries where the read counts are
higher. Thus, the use of a constant t will result in differing
total numbers of peaks from each method. This can con-
found a comparison between methods when DB is of in-
terest. For example, a method that detects more DB peaks
may only do so because the total number of called peaks is
greater. One could overcome this by scaling the results such
that the total number of peaks is the same for all methods.
However, this will be misleading if the relationship between
the total number of peaks and the number of DB peaks is
non-linear. The safer approach is to set t separately for each
method such that the same number of peaks C is called by
each method. This ensures that the results are directly com-
parable between methods. Note that Cshould be set low (i.e.
stringent) enough so that most putative peaks are not called.
Otherwise, the peak sets and DB results for each method
will be identical.

The parametrization described above assumes that a one-
to-zero-or-one relationship exists between the same peak
in different libraries. The reality is more complicated due
to slight differences in peak coordinates between libraries.

ID Error rate
0.01 0.05 0.1

RA 0.010 (0.000) 0.051 (0.001) 0.100 (0.002)
1 0.002 (0.000) 0.019 (0.001) 0.053 (0.001)
2 0.003 (0.000) 0.030 (0.000) 0.073 (0.001)
3 0.006 (0.000) 0.042 (0.001) 0.092 (0.001)
4 0.033 (0.001) 0.145(0.001) 0.261 (0.002)
5 0.000 (0.000) 0.001 (0.000) 0.005 (0.000)
6 0.088 (0.006) 0.528 (0.013) 0.893 (0.006)
7 0.010 (0.000) 0.049 (0.001) 0.098 (0.001)

In particular, the consolidation operations will have differ-
ent effects on the final coordinates. Intersection operations
will yield smaller peaks whereas union operations will yield
larger peaks. This results in smaller and larger read counts,
respectively, compounding the differences between meth-
ods. To simplify any comparison, the same peak intervals
are used for read counting in each method. For example,
the known genomic coordinates for each true peak in simu-
lated data would be used instead of the empirically defined
interval. This means that any differences between methods
are not simply due to differences in peak widths after con-
solidation.

Peaks should be called from pooled libraries

Each strategy in Table 1 was applied to simulated TF data to
assess type I error control. For each simulated peak, the null
hypothesis is true and the counts are exactly NB-distributed
(as no additional reads were simulated to represent non-
specific enrichment). This means that the P-values com-
puted by edgeR should closely follow a uniform distribu-
tion. However, this is not observed for all methods (Table
2). The most dramatic loss of type I error control occurs
in method 6. Here, all peaks have low P-values as they are
defined by DB between groups. This results in an observed
error rate well above the specified threshold. Loss of control
is more subtle for method 4 where peaks with low average
counts for each group are filtered out. Such peaks generally
have larger P-values as the average count for each group
is constrained to low values and, therefore, more likely to
be similar between groups. Removal of these peaks results
in the depletion of large P-values, a relative enrichment of
small P-values and an increase in the proportional error.
On the other hand, several methods are too conservative.
For methods 1 and 3, peaks with consistently low counts
across all individual libraries will not be called. These peaks
generally have low variances as the counts are more likely to
be similar between replicates. Their removal inflates the av-
erage variance which results in larger P-values upon appli-
cation of empirical Bayes methods. In particular, the con-
servativeness of method 3 is understated here and should
not be ignored (see third section of Supplementary Materi-
als and Supplementary Figure S3). Intersection operations
in methods 2 and 5 mean that the counts for all libraries or
groups must be large for a successful peak call. This results
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in the depletion of small P-values as peaks with substantial
differences between groups are ignored.

Loss of type I error control is obviously undesirable. Con-
servativeness is preferable but still problematic as it implies
a concomitant drop in power. Indeed, the reference analysis
in Table 2 suggests that it is possible to provide near-exact
control in this simulation. The peak calling strategy that is
closest to doing so is that using MACS on pooled libraries
across the entire data set, i.e. method 7. For libraries of sim-
ilar size, peak calling on pooled data effectively operates on
the average abundance of each peak across all libraries. This
is analogous to filtering on the overall mean in microarray
data (20) and is approximately independent of the P-value
from the DB analysis. That said, error control will not be
maintained when pooling libraries with extreme size differ-
ences (see fourth section of Supplementary Materials and
Supplementary Figure 4).

Description of the window-based strategy

Window-based methods involve sliding a fixed-width win-
dow across the genome and counting the number of reads
overlapping the window at each position. Each count serves
as a measure of ChIP enrichment at the genomic interval
corresponding to that window. For single-end data sets in-
volving sharp regions of enrichment, reads can be direction-
ally extended by the average fragment length (18). Each ex-
tended read represents the post-sonication fragment from
which the read was sequenced. Counting can then be per-
formed with the extended reads, rather than the original
reads. This provides more accurate counts by accounting
for strand bimodality. A similar approach involves shifting
reads by half the average fragment length in the direction
of the read to represent the midpoint of the putative frag-
ment. The number of midpoints lying within each window
can then be counted. Of course, read extension is not neces-
sary for paired-end data as the boundaries of each fragment
can be computed exactly, or for studying diffuse enrichment
where the extension length is typically negligible relative to
the size of the window.

Window- and region-level FDRs are not equivalent

The output from peak- or region-based methods has an in-
tuitive interpretation. The BH method can be applied to
the P-values from each peak or pre-defined region to con-
trol the FDR, i.e. the proportion of detected peaks or re-
gions that are false positives. Window-based approaches
are more complicated as they generate results for overlap-
ping windows. A naive approach might be to apply the BH
method to the P-values from all windows, in order to iden-
tify those containing significant differences. Overlapping
DB windows can then be clustered into a single DB region
to avoid redundancy in the results. However, the FDR being
controlled here refers to the proportion of windows that are
false positives, not the proportion of genomic regions rep-
resented by those windows. The latter is often more relevant
as follow-up work is done on each region rather than each
window position.

This difference in interpretation has practical conse-
quences for the economy of validation. Consider an analy-
sis where the FDR across all windows is controlled at 10%.
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Figure 1. The observed region- and window-level FDR after applying the
sliding window method to simulated TF and histone mark data. Spacing
intervals ranging from 25 to 100 bp were tested. The FDR was nominally
controlled at 0.05 (dotted line). Mean values are plotted along with the
standard error across 10 simulation iterations.

In the DB results, there are 18 adjacent windows forming
one cluster and 2 windows forming a separate cluster. Now,
assume that the first cluster represents a true DB region
whereas the second cluster is a false positive. A window-
based interpretation of the FDR is correct as only 2 of the
20 window positions are false positives. However, validation
will only be performed once on each region. This region-
based interpretation results in an actual FDR of 50%, re-
ducing validation efficiency and distorting the significance
of putative DB events. Similar concerns have been raised
in analyses of other types of spatial signals, such as neural
imaging data (29,30).

The differences between the window- and region-level
FDRs can be demonstrated by applying the sliding window
approach to simulated TF and histone mark data. The slid-
ing window method is able to control the window FDR be-
low the specified threshold in both simulations (Figure 1).
This is expected given that the BH method was applied to
the set of window P-values. Note that P-values from ad-
jacent or overlapping windows are highly correlated. The
BH method is not guaranteed to maintain control in these
conditions. However, it is known to be robust to correla-
tions (31,32) which is consistent with the conservativeness
in these results.

In contrast, control of the region-level FDR is lost at
all spacing intervals. This is because all windows overlap-
ping a strongly DB region will be detected (true positives),
whereas only a few windows overlapping a non-DB region
will be detected (false positives). When the results are in-
terpreted in terms of regions, the total number of detected
events will decrease as windows will not be counted sepa-
rately. The imbalance in the distribution of detected win-
dows between DB/non-DB regions means that the decrease
in true positives will outweigh the decrease in false positives.
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Figure 2. The observed region-level FDR at each spacing interval after ap-
plying the hybrid approach to simulated TF and histone mark data. The
FDR was nominally controlled at 0.05 (dotted line). Mean values are plot-
ted along with the standard error across 10 simulation iterations.

This means that the observed FDR across regions will be
greater than that across windows. Thus, control of the lat-
ter is insufficient to guarantee control of the former. Greater
loss of control is also observed with lower spacings or his-
tone marks. This is because the increase in the number of
detected windows associated with each DB region inflates
the difference between the window- and region-level FDRs.

Region-level FDR can be controlled using Simes’ method

To avoid misinterpretation of the FDR, a hybrid approach
is proposed whereby adjacent windows are clustered into
‘enriched regions’. The P-values for all windows in each re-
gion can then be combined using Simes’ method (19). The
combined P-value represents the evidence against the global
null hypothesis of each region, i.e. no window in the region
is differentially bound by the protein of interest. Rejection
of the global null indicates that the region is worth further
examination as it contains one or more DB events. Appli-
cation of the BH method to the set of combined P-values
then controls the FDR across all detected regions.

Any clustering procedure can be used so long as it is blind
to the DB status of the windows. Here, clusters are defined
using the peaks called by MACS on pooled libraries, i.e. the
set of all windows overlapping a peak is defined as a single
enriched region. As previously shown, pooling ensures that
the peak calls are independent of DB. Note that this hybrid
approach is distinct from a peak-based method as the orig-
inal P-values are still computed for each window. For small
window sizes, this is equivalent to analysing read counts col-
lected from each subsection of the peak. In comparison, a
pure peak-based approach would compute P-values using
counts collected across the entire peak.

For testing, the hybrid approach was applied to simulated
TF and histone mark data. At all examined spacing inter-
vals, the hybrid approach controlled the region-level FDR
below the specified threshold in both simulations (Figure
2). This corresponds to the appropriate rejection of the
global null using the combined P-value for each enriched
region. In addition, control is maintained despite the pres-
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ence of strong correlations between overlapping windows.
This is due to the robustness of Simes’ method to correla-
tions (33,34). Indeed, Simes’ method is closely related to the
BH method (14) which suggests that this robustness is com-
mon to both methods.

Differences in FDRs are present in real data

The relevance of the simulation results was tested on sev-
eral real data sets in Table 3. Both the hybrid approach and
the sliding window method were used with a spacing of 50
bp to detect DB regions. For the latter, results were summa-
rized by clustering DB windows less than 100 bp apart and
with the same direction of fold change. Each cluster of win-
dows represents a putative DB region. A non-negligible pro-
portion of these clusters consist of more than one window
(Supplementary Figure S6) which indicates that control of
the window- and region-level FDRs will not be equivalent.
Indeed, the set of DB regions detected with the sliding win-
dow method is almost a superset of that detected with the
hybrid approach (Table 4). This is consistent with the lib-
eralness of the former and represents the different conse-
quences of controlling the region- and window-level FDRs
in real data. nullnull

Overview of existing software

A few existing programs are available for DB analyses of
ChIP-seq data. diffReps is a sliding window method that
performs read shifting to account for strand bimodality
(10). After counting, DB windows are detected using an ex-
act NB test. Differential sites are identified by aggregating
DB windows and recomputing a P-value for each site. The
BH method is then applied to control the FDR across all
sites. While this controls the relevant FDR, a degree of data
snooping is involved in the recomputation of the P-value
for each site. USeq is another program that uses sliding win-
dows with read shifting for count summarization (28). DB
windows are detected using the DESeq package (39) with
application of the BH method to control the FDR. Detected
windows are then summarized into enriched regions. No
consideration is given to the differences between the FDR
across windows and that across enriched regions.

A near-infinite number of peak-based methods can be
constructed by combining different peak calling programs
with available statistical methods. In particular, several soft-
ware packages can be used to facilitate the statistical anal-
ysis once peaks are obtained. The diffBind package merges
a number of peak sets for a data set into a single consen-
sus set (7). It then counts reads across the consensus peaks
and performs a DB analysis using either edgeR or DESeq.
Similarly, the DBChIP package consolidates multiple peak
lists into a single set using hierarchical clustering (8). DB
peaks are then identified by testing each consensus peak
with edgeR or DESeq. Both packages provide a number of
options for peak set consolidation. However, results from
the earlier simulations suggest that only a few of these op-
tions will maintain type I error control during the DB anal-
ysis.

The performances of these existing methods were com-
pared to that of the hybrid approach using simulated data.
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Table 3. Publicly available data sets used to compare DB detection power between methods. The GEO accession number, protein target and biological
groups are shown for each data set. The number of biological replicates is also shown for each condition in brackets. All experiments were performed in
mice. For GSE31578, one replicate was removed (*; see last section of Supplementary Materials and Supplementary Figure S5). FL, fetal liver-derived;

DN, double negative cells.

Accession Target Groups Ref.
GSE25533 NF-YA Embryonic stem cells (2) and terminal neurons (2) (35)
GSE31578 STATS Male liver (3) and female liver (2%) (36)
GSE38046 H3K4me3 Pro-B cells (2) and mature B cells (2) (37)
GSE31235 H3Ac FLDN CD25" cells (2) and thymus DN cells (2) (38)

Table 4. Number of DB regions detected in each data set by the sliding
window method or the hybrid approach at an FDR threshold of 0.05. The
number of unique regions for each method is also shown. Regions were
considered unique if there were no overlaps with detected regions from
the other method. Note that counts may not be additive as regions shared
between methods may not have a one-to-one correspondence.

NF-YA STATS H3K4me3 H3ac
Total sliding 2050 4261 33335 19099
Total hybrid 1366 1810 17961 4461
Sliding only 587 2240 7239 11762
Hybrid only 1 1 2 0

The aim is to determine which program provides the great-
est detection power while maintaining FDR control. To
increase the difficulty of DB detection, the intensities of
all peaks in the simulation were reduced. Reads were also
added in and around peaks to simulate non-specific enrich-
ment. Increased difficulty ensures that the performances of
different methods can be distinguished. To maintain type
I error control (and for convenience), testing of the family
of peak-based approaches was limited to a single method.
Specifically, peaks were called by MACS on pooled libraries
and tested for DB with edgeR. This is equivalent to method
7 in Table 1.

Peak- and window-based methods favour detection of differ-
ent features

Both the peak-based method and the hybrid approach
maintain the observed FDR below the specified threshold
(Figure 3). This is consistent with the behaviour of the BH
method when applied to P-values for peaks or regions. Of
the other two programs, USeq is very conservative whereas
diffReps is liberal. The performance of USeq is attributable
to the conservativeness of DESeq compared to edgeR (40).
For diffReps, loss of FDR control may be due to data
snooping when DB windows are consolidated into ‘differ-
ential sites’. Recomputing a P-value for each site will have
little meaning as the corresponding null hypothesis is false
by definition.

For the TF simulations, the hybrid approach is more pow-
erful than the peak-based approach (Figure 4a). This is
because MACS cannot precisely estimate the boundaries
of each peak. The median reported peak width is 494 bp
whereas the true width is only 200 bp. This means that the
count for each empirical peak in the peak-based method
will include reads from non-DB background regions. Such
‘contamination’ weakens any DB fold change and reduces
power. This is less of a concern for the hybrid approach as

e}
2 o TF
B Histone
<
pa
o
o o |
L o
o
o
2
[0}
[%]
-QN
o -
ga
o
[S)

diffReps hybrid peak USeq

Figure 3. Estimates for the observed FDR after running each program on
simulated TF and histone mark data with an FDR threshold of 0.05 (dot-
ted). Values represent the mean of 10 simulations. Bars represent the stan-
dard error.
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Figure 4. The number of detected peaks for each program in the simulated
(a) TF and (b) histone mark data. All values represent the mean of 10 sim-
ulations. Bars represent the standard error.

there is likely to be a window which overlaps the underly-
ing true peak but not the surrounding background regions.
The counts for this window will be (mostly) free of any con-
tamination from background reads. This results in greater
detection power for the underlying DB peak.
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The situation is reversed for the histone mark simulation
where the peak-based method is more powerful than the hy-
brid approach (Figure 4b). Here, the median reported width
from MACS is 915 bp while the true width of each peak is
1000 bp. Counts can thus be obtained for the peak-based
method without contamination from background regions.
In comparison, each window in the hybrid approach is ef-
fectively 350 bp in width (150 bp with 100 bp directional
extension). This means that the collected count for each em-
pirical peak will larger than that for each window. As back-
ground contamination is not an issue, the difference in the
size of the counts directly results in increased power for the
peak-based method compared to the hybrid approach.

Of the other methods, diffReps detects the most peaks in
the TF simulations and the second-most peaks in the hi-
stone mark simulations. This does not represent superior
detection power as FDR control is not maintained. At the
other extreme, USeq detects almost no peaks due to its
conservativeness. This suggests that the peak-based method
and the hybrid approach are valid alternatives to existing
pipelines as both provide substantial detection power while
maintaining FDR control.

Different detection preferences are preserved in real data

The simulations indicate that the hybrid approach and the
peak-based method favour detection of different ChIP tar-
gets. This was tested by applying each method to real data.
Both methods detected a comparable number of regions
across all data sets (Table 5) with no consistent difference
between the TF and histone mark experiments. However,
closer examination revealed that each method detected a
substantial number of unique regions in each data set. This
suggests that different types of DB features were identified
by each method, consistent with the simulation results.
These detection preferences can be illustrated by exam-
ining the DB regions unique to each method. Peak-based
methods favour detection of diffuse DB regions where
greater counts can be collected over a larger region (Supple-
mentary Figure S7a). In contrast, window-based methods
can distinguish between a DB region and the neighbour-
ing non-DB background with greater ease than peak-based
methods. Specifically, at least one window can overlap and
represent the underlying true peak without being contam-
inated by reads from the surrounding background regions.
This allows the detection of DB events which would oth-
erwise be missed when peak calling is not precise (Supple-
mentary Figure S7b). Both of these examples are consistent
with the behaviour observed in the simulated data.
Complex scenarios can also be considered where a peak
shifts (e.g. nucleosome sliding) or shrinks (e.g. chromatin
spreading) between conditions. Both events will manifest
as DB within a larger enriched region (Supplementary Fig-
ure S8). For window-based strategies, each subinterval of
the enriched region corresponds to a separate window. This
means that DB subintervals in shifted or shrunken peaks
can be easily identified (Supplementary Figure S7c). In con-
trast, the peak-based method will define the entire enriched
region as a single empirical peak. This is because no dis-
tinction can be made between shrunken/shifted peaks after
pooling. Thus, detection of DB subintervals is likely to be
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suboptimal as the counts for each empirical peak are col-
lected across the entire region.

The conclusions presented here can also be generally ap-
plied to diffReps and USeq. Both are window-based meth-
ods which should provide some robustness when analysing
complex DB events. Neither method is directly tested as
the use of a different statistical framework has a substan-
tial impact on the total number of detected features. This
confounds the comparison between methods by masking
the contribution of different read counting strategies. More
generally, caution is required when interpreting results for
real data where the true/false positives among the puta-
tive DB regions are unknown. This precludes any conclu-
sions with respect to the relative power or specificity of each
method.

DISCUSSION

Some consideration of error rates is necessary when peak-
or window-based read counting is performed for a DB
analysis. For peak-based methods, reads should be pooled
across the data set prior to peak calling. This avoids the loss
of type I error control typically associated with data snoop-
ing. For window-based methods, control of the FDR across
windows does not guarantee control of the FDR across ge-
nomic regions. This has practical consequences as regions
are more relevant than individual windows. Loss of con-
trol of the region-level FDR distorts the significance of DB
events which may lead to incorrect biological conclusions.
It also reduces the efficiency of follow-up work as the pro-
portion of false positives can be substantially higher than
the specified value.

Here, a hybrid approach is presented which uses Simes’
method to combine P-values across all windows in a peak.
This restores control of the region-level FDR while retain-
ing the robustness of window-based methods. The hybrid
approach is more reliable than a peak-based method for
complex DB events involving peak shifting, shrinkage or
non-negligible background enrichment. On the other hand,
peak-based methods are more powerful for detecting dif-
fuse DB regions. This complementarity is observed in both
real and simulated data for TF and histone mark ChIP-seq
experiments. Both of the implementations tested here also
compare favourably to existing pipelines for window-based
DB analyses when tested on simulated data.

Of course, only a small number of possible implementa-
tions have been tested in this paper. Different peak calling
programs or parameters can be used to obtain smaller inter-
vals for the peak-based methods (41) to improve resolution
of sharp features. Conversely, the use of larger window sizes
in the hybrid approach can favour detection of diffuse DB
regions. The behaviour of these alternative implementations
can generally be predicted from the size of the intervals used
for read counting. All methods assume that DB occurs in
the same direction throughout the interval, i.e. the DB sta-
tus is constant. Increasing the interval size will strengthen
this assumption and increase counts at the cost of spatial
resolution. At the other extreme, care may be required to
avoid misinterpretation of the FDR if multiple small peaks
are called for each DB event.
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Table 5. Number of DB regions detected in each data set by the hybrid approach and the peak-based method. The number of regions unique to each

method is also shown.

NF-YA STATS H3K4me3 H3ac
Total peak 875 1949 21365 2238
Total hybrid 1366 1810 17961 4461
Peak only 286 844 4000 615
Hybrid only 777 705 596 2838

So, which approach should be used for routine analyses
of ChIP-seq data? Neither class of methods is consistently
more powerful than the other. The family of window-based
methods has a more conservative philosophy as fewer as-
sumptions are made on the nature of DB features. In par-
ticular, the assumption of a constant DB status throughout
each window is weakened by the use of small windows. This
suggests that window-based methods are safer to use as any
strongly DB region will be detected, regardless of the cir-
cumstances. Windows can also be tiled across promoters or
genes to improve spatial resolution in analyses using pre-
defined regions. In contrast, peak-based methods use more
aggressive assumptions when defining peaks and counting
reads. This may be useful in squeezing more information
from data sets with low counts or subtle changes.

This paper focuses on how genomic intervals are cho-
sen for a DB analysis, and how these choices contribute to
error rate control. In principle, the conclusions presented
here should be independent of the choice of alignment al-
gorithm, statistical test or normalization method. In the real
data analyses, we mapped reads using subread, normalized
using the TMM method with equispaced windows and con-
ducted statistical tests using QL F-tests. These methods give
good results in our hands, but the qualitative conclusions
presented above should remain if other appropriate meth-
ods were substituted. The simulation comparisons on the
paper were conducted in such a way that neither alignment
or normalization was required.

All methods presented in this paper were written in the
R or C/C++ programming languages, with extensive use of
code from the Bioconductor project (42). Simulation scripts
were also implemented in R and are available on request.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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