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Abstract

Our understanding of the pervasive involvement of small RNAs in regulating diverse biological

processes has been greatly augmented by recent application of deep-sequencing technologies to

small RNA across diverse eukaryotes. We review the currently-known small RNA classes and

place them in context of the reconstructed evolutionary history of the RNAi protein machinery.

This synthesis indicates the earliest versions of eukaryotic RNAi systems likely utilized small

RNA processed from three types of precursors: 1) sense-antisense transcriptional products, 2)

genome-encoded, imperfectly-complementary hairpin sequences, and 3) larger non-coding RNA

precursor sequences. Structural dissection of PIWI proteins along with recent discovery of novel

families (including Med13 of the Mediator complex) suggest that emergence of a distinct

architecture with the N-terminal domains (also occurring separately fused to endoDNases in

prokaryotes) formed via duplication of an ancestral unit was key to their recruitment as primary

RNAi effectors and use of small RNAs of certain preferred lengths. Prokaryotic PIWI proteins are

typically components of several RNA-directed DNA restriction or CRISPR/Cas systems.

However, eukaryotic versions appear to have emerged from a subset that evolved RNA-directed

RNA interference. They were recruited alongside RNaseIII domains and RdRP domains, also

from prokaryotic systems, to form the core eukaryotic RNAi system. Like certain regulatory

systems, RNAi diversified into two distinct but linked arms concomitant with eukaryotic nucleo-

cytoplasmic compartmentalization. Subsequent elaboration of RNAi proceeded via diversification

of the core protein machinery through lineage-specific expansions and recruitment of new

components from prokaryotes (nucleases and small RNA-modifying enzymes), allowing for

diversification of associating small RNAs.
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As the reality of pervasive transcription of the genome across the three superkingdoms of

life becomes more and more widely-accepted [1–6], efforts to characterize the non-protein

coding component of the transcriptome have intensified. Among non-coding transcripts,

distinct classes of small RNAs have been among the first to be characterized, a process

accelerated by the development of second-generation deep sequencers well-suited to the task

of sequencing cellular small RNA fractions [7]. In the wake of this veritable avalanche of

discoveries, attempts to classify small RNAs at times can seem as varying as the number of

researchers investigating them. These classifications have mainly relied on some

combination of length, genome context, shared functional traits, phylogenetic patterns, and

structural features of the small RNAs [8–14]. This somewhat ad hoc approach to

classification largely reflects the inherent difficulties in formulating a natural evolutionary

classification due to the lower constraints on sequences and structures of these RNAs and

the possibility of convergent evolution of functionally similar RNAs. This starkly contrasts

the situation in the protein universe or even other more structurally constrained small/mid-

sized RNA molecules such as riboswitches and tRNAs [15–17].

While the relationships between different small RNAs can be murky, particularly across

large phylogenetic distances, these molecules have emerged as key players in a large range

of core biological processes across the tree of life. A few notable, experimentally-tested

roles for various classes of small RNA include: 1) translational repression in bacteria [18];

2) guidance of pseudouridylation and methylation during ribosomal RNA maturation in

eukaryotes and archaea [19]; and 3) immunity against viruses and other invasive nucleic

acid elements in all the three superkingdoms of life [20, 21]. The roles of small RNAs are

particularly well-studied in eukaryotes, currently implicated in interacting and overlapping

processes such as: 1)post-transcriptional gene silencing [22]; 2) histone modification, DNA

modification and chromatin dynamics [23, 24]; 3) germline maintenance [25]; and 4) pre-

mRNA splicing [24].

One large group of eukaryotic small RNA classes can be unified on the basis of their role in

pathways that might be generally termed RNA interference (RNAi). These RNAi systems

rely on a conserved set of proteins, with the central player being a member of the PIWI/

Argonaute superfamily (hereinafter PIWI superfamily), which contains a conserved domain

of the RNase H fold. The PIWI protein acts as the basic platform for RNAi systems [26] by

providing the scaffold for the interaction between a substrate small RNA strand, often

termed the “guide strand”, and a complementary polynucleotide target strand (this pairing of

protein and RNA components is referred to as the RNA-induced silencing complex, or

RISC). Additional core components of the RNAi systems are those involved in generation of

the mature small RNAs that are utilized by the PIWI superfamily proteins. Other than the

PIWI proteins, these include an endoribonuclease domain of the RNaseIII superfamily

proteins (e.g. Dicer) and in several cases an RNA-dependent RNA polymerase (RdRp) that

acts as an amplificatory component by synthesizing more small RNAs.

The broad contours of the evolution of the protein components of RNAi, along with reviews

of specific classes of small RNAs, have been previously discussed on several occasions [27–

29]. However, a flurry of recent investigations is beginning to clarify and vastly expand the
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scope of PIWI-bound small RNA cargo across eukaryotes. These findings enable a more

complete assessment of the natural history of the RNAi system in terms of both RNA and

protein components. To this end, we present an overview of classes of small RNA

associated with RNAi. We then synthesize these observations with a comprehensive

reconstruction of both the core and ancillary components of the RNAi protein machinery in

light of new genomic data while attempting to highlight currently underappreciated avenues

of research relating to small RNA and RNAi systems.

CLASSES OF SMALL RNA ASSOCIATING WITH PIWI

RNAi-related literature is rife with reports identifying distinct classes of small RNA.

Caution must be applied when interpreting these findings; reports relying exclusively on

computational methods exploring kinship with known classes of PIWI domain-associating

small RNAs can reach poorly-supported conclusions (example: [30]). On the other hand,

certain reports exclude the presence of particular small RNA classes based on sequencing

with limited depth/coverage [31]. Likewise, the presence of a class of small RNAs in a

dataset does not necessarily imply physical association with a PIWI/AGO member and

active participation in an RNAi-like pathway. To address this issue, recent reports have

focused on identifying PIWI-bound small RNA through direct PIWI immunoprecipitation –

sequencing (IP-seq) and/or confirming association with experiments targeting specific

members of a small RNA class. While deep IP-seq datasets are also limited by potential

detection of spurious associations (particularly in the absence of a negative-control IP-seq

dataset), they tend to offer the most accurate picture of the RNAi-functional small RNA

classes to date. Table 1 provides an overview of key deep-sequencing datasets (both IP-seq

and whole cell fractionation small RNA-seq) while Table 2 provides a summary of known

PIWI-associating small RNA classes across diverse eukaryotic lineages. Figure 1 provides

an overlay of the information from Table 2 onto the evolutionary history of the components

of the RNAi system, while Figure 2 provides a generalized overview of pathways which

generate the classes of small RNAs outlined in Table 2. The following subsections briefly

summarize individual classes of small RNA currently known to associate with PIWI

proteins.

miRNAs and other small RNA derived from imperfectly complementary hairpins

Perhaps the most studied classes of small RNA are plant and animal microRNAs (miRNAs).

miRNAs are generated via the successive action of RNaseIII domain-containing enzymes on

double-stranded, imperfectly complementary hairpins directly transcribed from the genome

by RNA polII or contained in spliceosomal introns of other genes (miRNA variants known

as mirtrons observed thus far both in animals and plants [32, 33]) (Figs. 1,2). miRNAs are

typically involved in post-transcriptional gene silencing through binding of the PIWI-

miRNA complex to complementary stretches of nucleotides in the 3′ UTR of mRNA

transcripts. miRNAs have been the subject of extensive and exhaustive reviews (see [22, 34,

35]), including discussions on the divergent vs. convergent origin divide for plant and

animal miRNAs [27, 36].

Perhaps more so than other small RNA classes, the potential presence of “miRNA-like”

small RNAs in other branches of the eukaryotic tree of life has been the subject of debate

Burroughs et al. Page 3

Wiley Interdiscip Rev RNA. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



since the first reports of the miRNA system in plants and animals (Table 2). Small RNA

sequencing complemented in some instances by single-gene studies have uncovered support

for possible “miRNA-like” hairpin precursors in the diplomonad Giardia lamblia [37, 38],

the parabasalid Trichomonas vaginalis [37], the apicomplexan Toxoplasma gondii [39], and

the slime mold Dictyostelium discoideum [40]. The hairpins observed in T. gondii are of

particular interest due to their observed affinity in terms of structural and thermodynamic

properties with mammalian miRNA [39]. It is crucial to point out that while most current

literature often describes imperfectly complementary hairpin sequences in basal eukaryotes

as “miRNA-like”, this does not necessarily imply a common origin for all such “miRNA-

like” sequences; these could be products of the lineage-specific, convergent emergence of

hairpin precursors. Indeed, several features of the currently known “miRNA-like” hairpins

in diverse eukaryotes, particularly in Giardia and Trichomonas, such as length, relative

location of the derived transcript on the hairpin, potential 3′ and 5′ modifications, and

possible underlying steps in biogenesis pathways show differences with canonical plant and

animal miRNAs. Nevertheless, all examples of such systems across eukaryotes (Table 2)

might be viewed as variations on a generalized theme of processing of imperfect RNA

hairpin precursors.

The core RNAi protein apparatus used in processing these imperfect hairpins therefore can

be seen as a preadaptation allowing fixation of independent precursor RNAs in conjunction

with other selective pressures on multiple occasions in eukaryotic evolution. Of particular

importance were the selective advantages accrued from the deployment of these miRNA-

like regulators as an additional level of control, over and beyond the conserved

transcriptional and chromatin-based regulatory systems [41]. As gene product control

mechanisms come under strong selection due to lineage-specific adaptations [42] [43], it is

likely that the corresponding miRNA-like repertoire was constantly subject to turnover with

new precursor hairpins being selected and old ones being partially or entirely lost. A similar

phenomenon has been reported in the case of the evolution of another major class of

regulatory molecules in eukaryotes, transcription factors [44]. Under this scenario the

conserved animal and plant miRNAs likely represent versions that were “institutionalized”

as crucial gene regulators owing to the unique adaptations in their respective lineages.

siRNAs from diverse sources

Short interfering RNA (siRNA) is a collective label affixed to a class of small RNAs

typically processed from multiple distinct sources but sharing a common feature, i.e.,

processing from perfect or nearly-perfect complementary sequences (Table 2, Fig. 2).

Sources of endogenous siRNAs (endo-siRNAs) (distinct from exogenous siRNAs referring

to synthetically designed siRNAs for laboratory and therapeutic use) can be grouped into

three categories: 1) genome-encoded complementary double-stranded sequences including

long non-coding RNA (ncRNA) loci (for example, the esiRNAs in Drosophila[45] and

potentially the so-called “social RNA” in C. elegans[311]), independently-folding units in

some RNA transcripts like mRNA [46], inverted repeat sequences [47], and double-stranded

RNA (dsRNA) viral genomes [48, 49]. 2) Double-stranded sequences forming in the wake

of sense-antisense (s-as) transcription at convergent protein-coding loci [47, 50, 51] and
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retrotransposed elements [45, 52, 314]. 3) Amplification of single-stranded RNA (ssRNA)

substrates via the action of RdRP producing suitable dsRNA substrates.

Of these the first category is found across the so-called crown group eukaryotes including

plants, fungi/yeast, animals, including recent discoveries of such in vertebrates [47, 53–55].

Such siRNAs are possibly present in the kinetoplastid Trypanosoma brucei [52]. The second

category has been observed widely in eukaryotes. In addition to a well-characterized

presence in animals, plants, fungi, and amoebozoans, the basal eukaryotic diplomonad

Giardia lamblia processes double-stranded substrates derived from sense-antisense (s-as)

transcription at variant-specific surface protein (VSP) family gene loci. Association of the

resulting small RNAs with Giardia PIWI results in silencing of expression at all but one

VSP locus which is selected as the surface-presented antigen [56]. PIWI IP-seq also

revealed s-as transcription giving rise to a highly-expressed class of endo-siRNAs in the

ciliate Tetrahymena thermophila [57–59]. Remarkably, these small RNA are similarly found

antisense to lineage-specific, uncharacterized protein-coding gene families, a scenario

paralleling s-as transcription at VSP family genes in Giardia. Smaller-scale PIWI IP-seq in

the amoebozoan Entamoeba histolytica is also strongly suggestive of endo-siRNA

generation from sites of s-as transcription [60], although notably the E. histolytica genome

does not encode for any known RNaseIII-like enzymes involved in RNAi. Finally, small

RNAs derived from s-as transcription are observed in T. brucei [52] (Table 2). The

kinetoplastid genome is unusual among eukaryotes due to its organization into transcribed

long directional clusters containing consecutive protein-coding genes. The edges of these

clusters are often characterized by convergent transcription and appear to represent hotspots

for small RNA transcript generation [52]. The third mechanism, observed in organisms such

as C. elegans [61, 62], plants [63, 64] and some fungi, is dependent upon the presence of the

RdRP proteins and include the well-studied trans-acting (ta-) and natural cis-antisense

transcripts-associating (nat-) siRNAs [65] (Table 2). These siRNAs seem to be largely

involved in regulation of chromatin dynamics at protein-coding loci (see below, Figs. 1,2).

Little research on small RNAs has been performed in other basal eukaryotic lineages

including the heteroloboseans (Naegleria) and parabasalids (Trichomonas) and later-

branching chromalveolate lineages like apicomplexa and stramenopiles. However, they are

phylogenetically bracketed by Giardia, kinetoplastid, ciliate, amoebozoan, plant, animal,

and fungal lineages, which use sense-antisense siRNA; hence, is possible these lineages also

produce such s-as small RNA transcripts (Fig. 1). Thus, based on current experimental

evidence, s-as transcription appears to be the phylogenetically most widespread source for

RNAi-related small RNA going back to the last eukaryotic common ancestor (LECA), an

observation with deeper implications discussed throughout the remainder of this article.

Functions of small RNAs derived from s-as transcription appear to extend beyond the

classical endo-siRNA roles of post-transcriptional gene or repeat silencing to include several

forms of co-transcriptional and other more specialized forms of regulation; these roles are

discussed in subsections below. Research in Giardia and T. thermophila suggests that the

silencing of lineage-specific gene families via s-as transcriptional endo-siRNA-associated

with PIWI proteins might be more widespread than previously thought. This observation is

of particular interest in the context of regulation of lineage-specifically expanded multigene
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families which are present throughout eukaryotes, including several parasite antigens [66].

Possible parallels can also be seen in surface receptor protein silencing via small RNA

generation from s-as transcription in natural killer (NK) cells in vertebrates [67]. It should

be noted that while these small RNA transcripts were classified as piRNA-like by the

authors on the basis of transcript length and the presence of a protective 3′ modification

[67], there are multiple arguments against classifying these small RNAs as canonical

piRNAs: 1) piRNAs are not known to be generated by s-as transcription; 2) several classes

of small RNAs which are not piRNAs have been characterized with similar transcript

lengths in a range of eukaryotes; 3) 3′ modifications are not restricted to piRNAs. As such,

these transcripts appear more akin to endo-siRNA-like transcripts generated by s-as

transcription.

piRNA

piRNAs constitute a class of small RNA involved in germline maintenance [25] (Table 2).

On binding PIWI proteins, the piRNA, acting as a guide strand, associates with transposable

elements (TEs) resulting in TE-silencing and also influences heterochromatin dynamics by

mediating DNA cytosine methylation [68]. piRNAs are typically observed in clusters on the

genome, co-localizing with regions heavily-concentrated with transposable elements [69].

piRNAs are amplified via the “ping-pong” mechanism following single-stranded

transcription (Figs. 1,2), requiring the action of a series of nucleases and helicases on the

ribonucleoprotein complex formed after initial association of the piRNA with the PIWI

protein [70]. Notably, the piRNA biogenesis pathway lacks RNaseIII-like nucleases. piRNA

signatures have been detected in sponges and cnidarians, suggesting piRNAs were already

present in the common ancestor of metazoans [71] (Fig. 1). While the expression of piRNAs

has long-thought to be restricted to germline cells, increasing evidence suggests that piRNAs

may also function in select somatic cell types in vertebrates including neurons [72, 73] and

pancreatic tissue [74], suggesting a more generalized role for piRNAs in animal cell

differentiation.

snoRNA fragments

Early deep-sequencing small RNA profiles identified classes of sequences mapping to well-

characterized classes of longer ncRNA loci [53] (Table 2, Figs. 1,2). Several features of

these small RNAs, including conserved processing site locations, nucleotide biases, and the

predicted double-stranded character of the small RNA-derived region in the transcribed

ncRNA suggested that instead of representing decay products, a conserved functional role,

possibly linked to RNAi, existed for these small RNA [53]. Early PIWI IP-seq studies

detected a highly-expressed small nucleolar RNA (snoRNA) fragment; detailed

characterization confirmed an RNAi-related role for this snoRNA fragment in post-

transcriptional gene silencing similar to miRNAs [75]. Targeted investigation of snoRNA-

derived RNA (sdRNA) indicated sdRNAs were involved in post-transcriptional gene

silencing across fungi, animals, and plants [76]. The characterization of sdRNAs associated

with PIWI proteins in Giardia [77, 78] has shown that at least some, like the endo-siRNAs

described above, appear to function in the context of VSP transcript silencing [79]. Given

this distribution, it is likely that this class of small RNAs is an ancient, conserved processing

system that was present in the LECA (Fig. 1). sdRNA-like sequences were also observed in
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T. brucei, however, due to the randomly-distributed locations for the recovered fragments on

the snoRNA precursors, the authors speculated that these may represent non-specific PIWI

associations of degradation products [52].

tRNA fragments

In addition to the sdRNA class, recent research has uncovered PIWI-associated small RNAs

derived from tRNAs (Table 2, Figs. 1,2). Several distinct tRNA fragment (tRF) small RNA

classes have been identified based on location within the precursor tRNA transcript. At least

two of these classes are experimentally-confirmed to associate with PIWI proteins, the 3′

tRF-CCA class (derived from the 3′ end of the mature tRNA transcript) and the 3′ tRF-U

class (derived from the 3′ end of the precursor tRNA transcript) [80–82]. These two classes

have been found to associate with PIWI domains in animals [80–82] and at least the former

in plants [83]. Some evidence indicates the 5′ tRF class additionally associates with the

PIWI domain in both animals and plants [83, 84]. Fragments derived from tRNA falling

within the length range typically associated with PIWI cargo have also been observed in

Magnaporthe oryzae, amoebozoans, the apicomplexan T. gondii, and T. thermophila (Fig. 1)

[39, 40, 85]. Notably, in T. thermophila, the Twi12 PIWI protein was found to be

predominantly loaded with 3′ CCA tRNA cargo [86], starkly contrasting plant and animal

PIWI domains where tRFs comprise a small fraction of the total small RNA PIWI load.

While accumulating evidence implicates plant and animal tRF-PIWI complexes in post-

transcriptional gene silencing [80, 81, 83, 87], in T. thermophila tRF-Twi12 appears to be

involved in a drastically distinct function: assembly into a complex with the nuclear 5′–3′

exonuclease Xrn2 [88], activating it for rRNA pre-processing and degradation of improperly

processed rRNA transcripts [89–91]. Similar to snoRNA, tRNA fragments observed in T.

brucei PIWI IP-seq were claimed to be a non-specific association [52]. While this

manuscript was under review, a small RNA PIWI-IP seq dataset from the bacterium

Rhodobacter sphaeroides was published (see discussion below) [92]. Perhaps the most

surprising finding in this dataset was the association of half-tRNA sequences (~45nt)

cleaved at the anticodon with PIWI. Due primarily to sequencer length constraints, most

small RNA PIWI-IP deep seq datasets to this point have only captured small RNA with

lengths up to 30nt. However, the presence of a substantial, ancestral half-length tRNA

sequence population in eukaryotic cellular small RNA pools has been established [53, 93–

95], indicating that half-tRNAs could represent an ancient PIWI-associating substrate and

could be more widespread in eukaryotes than currently known. Intriguingly, half-tRNAs

have been linked to regulation of gene expression through association with the RNAse Z

nuclease [96–98], suggesting further investigation into potential functional roles for half-

tRNA-PIWI complexes in gene silencing pathways could be warranted.

Other fragments from larger ncRNA precursors

Classical PIWI proteins associate with several additional small RNAs processed from larger

ncRNA precursors (Table 2, Figs. 1,2). The vault RNA (vRNA) gives rise to a set of small

vault RNA-derived RNAs (svRNAs), one member of this class associates with a classical

PIWI protein to post-transcriptionally regulate expression of the CYP3A4 gene [99]. The

vRNA is associated with the vault which is an enigmatic nucleoprotein organelle found in

several eukaryotes. Its primary protein components are the MVP, with conserved EF-hand
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domains, the vault-polyADP ribose polymerase, and the TEP1 protein which contains an N-

terminal RNA-binding ROT/TROVE domain, a central NACHT NTPase module and a C-

terminal WD40 beta propeller. The vRNA probably binds the ROT/TROVE domain of the

latter protein. Two prevailing functional themes currently under investigation link the vRNA

to 1) drug resistance [99, 100] and 2) neuronal differentiation [101, 102]. Poor sequence

conservation of vRNA complicates efforts to trace its phylogenetic depth: while it is found

in the mycetozoan slime mold Dictyostelium as well as in vertebrates, it appears to have

been lost in many animal lineages and appears to be absent in other crown eukaryotic

lineages including plants and fungi [103]. svRNA functionality through association with the

RNAi pathway may therefore represent the recent colonization of a functional niche in

vertebrates, consistent with the differential gene expression patterns observed for svRNAs

[84] and the terminal cell types within which vRNA and derived svRNAs are thought to

function.

IP-seq experiments have also revealed the presence of small RNAs derived from hairpin-like

regions in small nuclear RNA (snRNA) and ribosomal RNA (rRNA) precursors associating

with PIWI/AGO [84, 104]; however, little is known about potential functional roles for these

small RNA-PIWI complexes and thus far they have been identified only in vertebrate IP-seq

datasets. In the ascomycete Neurospora crassa, qiRNAs are transcribed from rDNA loci as

ssRNA and subsequently amplified by RdRP activity before entering the RNAi pathway

[65]; a mechanism distinct from the dsRNA-cleaving mechanism used to generate the

ncRNA-derived small RNA classes described above (see below, Table 2). A recent report

describes at least two fragments generated by DICER-dependent processing of double-

stranded regions in the RNA component of mitochondrial RNA processing

endoribonuclease P (RMRP) which appear to be involved in RNAi-mediated post-

transcriptional gene silencing. Disruption of their expression is linked to Cartilage Hair

Hypoplasia syndrome [105]. A related report claims the telomerase reverse transcriptase

(TERT) complexes with RMRP to provide a substrate for RNAi in cancer lines; independent

confirmation awaits this observation [106].

More generally, the repeated extraction of small RNA sequences for PIWI cargo from larger

ncRNA sequences can again be viewed as the result of the preadaptions conferred by the

core RNAi protein apparatus to process such substrates. Like the class of transcribed hairpin

sequences described above, it seems likely that the selective advantage accrued from the

deployment of ncRNA-derived small RNA in lineage-specific gene silencing contexts led to

fixation of such small RNAs in several terminal lineages. The lack of known conservation of

any single ncRNA precursor across a wide range of eukaryotes can thus again be understood

through the lens of repertoire turnover: new ncRNA precursors are selected with old ones

being partially or entirely lost.

Proximal promoter and transcriptional unit-derived small RNA

The control exerted by synthetic, exogenously-introduced antigene or small activating RNAs

(agRNAs, saRNAs) designed to be complementary to promoter regions on gene activation

and repression following PIWI association have been discussed elsewhere [107, 108]; we

will focus here on PIWI association with endogenous sequences derived from proximal
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promoter and protein-coding gene body regions. Small RNA classes derived from divergent

transcription at transcriptional start sites have been described as transcription-initiated RNAs

(tiRNAs) and transcription start site-associated RNAs (TSSa) in two separate reports, and

are likely derived from polII transcriptional “backtracking” events [109, 110]. Most reviews

list these as distinct classes of promoter region-derived RNAs; however, similar median

lengths and distribution of the small RNA start sites around transcriptional start sites

indicate tiRNAs and TSSa RNAs are two descriptors for the same class of RNA. The

primary difference in the tiRNA and TSSa studies is that the latter investigated targeted

enrichment of promoter-derived small RNA transcripts at specific genes and observed that

the dominant small RNAs derived from these loci tended towards a longer length

distribution (~20–90nt) than evidenced by small RNA deep sequencing (limited to a length

of ~30nt at the time), while the former work did not investigate such enrichment.

Regardless, researchers immediately recognized the presence of small RNAs in the range of

~20nt as attractive potential cargo for PIWI domains. Initial reports did not recover TSSa/

tiRNAs in a Drosophila PIWI IP-seq dataset [109]; however, a subsequent report suggested

at least a subset of tiRNAs may associate with human AGO proteins [84]. The relationship

between these smaller RNAs and much longer divergent transcripts at transcriptional start

sites [111–113] remains unclear; however, similarities in the distributions of start sites could

suggest a relationship between these two RNA populations with the former representing

abortive or nuclease-processed versions of the latter.

Small RNA sequences associated with PIWI proteins that map along the length of protein-

coding loci in the genome have also been reported. One such example is seen at heat shock

loci in Drosophila; these sequences are enriched during heat shock but are also observed

under normal conditions across the complete set of Drosophila promoters [114]. Association

of these small RNAs with a classical PIWI protein in Drosophila positions polII and

contributes to transcriptional control at active loci. While the biogenesis of these Drosophila

small RNAs remains unexplored, the involvement of the DICER enzyme and the observed

antisense transcription start sites originating from points downstream of the 3′ end of the

sense transcript [114] suggests biogenesis occurs via a s-as transcriptional intermediate.

Given these observations, exploration of a potential link between the ISWI SWI2/SNF2

ATPase, which enables a switch to antisense transcription [115], RNAi pathways, and gene

expression may be of interest, particularly in organisms lacking canonical RdRP activity.

While their functions appear to be distinct, the s-as transcriptional mechanism generating

these small RNAs parallels the production of the gene-silencing “endo-siRNAs” described

above in Giardia and T. thermophila. s-as transcriptional products derived from gene bodies

and associating with PIWI proteins have also been observed in the plant [50], fission yeast

[51], amoebozoan [60], and kinetoplastid lineages [52] (Table 2). Additionally, in the

apicomplexan T. gondii many sequences are reported as mapping to protein coding regions;

it is unclear whether the authors distinguished between those mapping to sense and anti-

sense strands [39]. While these small RNAs might have endo-siRNA-like functions, their

generally wider distribution across the genome and lower levels of expression could point to

roles in co-transcriptional regulation, perhaps involving regulation of chromatin dynamics or

polII positioning as in Drosophila [52, 114].
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Typical production of RNAi-associating small RNAs from gene bodies appears to entail: 1)

s-as transcription at the generating locus, 2) re-association of complementary s-as

transcripts, 3) nuclease processing to generate short duplexes, 4) loading of a single strand

from the duplex onto PIWI, and, when encoded by the genome, 5) amplification of the

substrate via RdRP activity. In some lineages including plants, fission yeast, and C. elegans,

variations on this biogenesis mechanism have emerged (Table 2, Figs. 1,2); however, these

small RNAs can be functionally unified with the endo-siRNA-like molecules based on

probable shared roles in triggering heterochromatin formation and transcriptional

inactivation [63, 116]. In many plants, this process is accomplished through the plant-

specific polIV and polV RNA polymerases. We were unable to detect polIV or polV

homologs in algae, suggesting these polymerase versions are not an ancestral feature of the

whole plant clade. Mosses such as Physcomitrella contain fully-differentiated polIV and

polV homologs. Thus, polIV likely emerged at the base of land plant evolution through polII

gene duplication with polV emerging after subsequent polIV duplication [117]. In plants

containing these homologs, polIV generates transcripts at gene loci which are in turn subject

to RdRP activity, generating long s-as duplex transcripts which are then processed into

smaller duplexes by DICER activity and loaded onto a PIWI protein [63]. PolV

concomitantly generates long transcripts at the same loci which are targeted by the PolIV/

RdRP-generated complementary sequences associating with PIWI, resulting in recruitment

of chromatin modifying factors and ultimately transcriptional repression. In fission yeast,

RdRP acts on small transcript degradation fragments associating with a PIWI protein

(known as primal RNAs or priRNAs) [116]; meiotic silencing small RNAs in N. crassa are

transcribed from unpaired stretches of DNA which are, similar to priRNAs, amplified by

RdRP activity and ultimately loaded onto PIWI [118]. In C. elegans, specific mRNA

transcripts are targeted for endo-siRNA production via terminal RdRP activity and

subsequent DICER processing [119], a subset of these small RNAs is linked to chromatin

modification-induced silencing at gene loci [120, 121]. These lineage-specific mechanistic

variations are likely to represent secondary innovations from a broader theme involving

silencing through s-as transcription for reinforcement of particular regulatory interactions.

Despite mechanistic and functional shifts, two overriding implications can be derived from

combining the preceding observations: 1) s-as transcription at gene bodies represents an

ancestral source of RNA substrates for PIWI protein association and 2) small RNA derived

from s-as transcription for incorporation into RNAi pathways has an ancient eukaryotic

functional role in the regulation of chromatin dynamics, a possibility first raised over a

decade ago based on the strong concordance in phyletic patterns between RNAi components

and chromatin modifying factors [122].

An added wrinkle relevant to this discussion is the recent discovery of a novel, inactive

PIWI family in the Med13 protein (MedPIWI) [123], a component of the CDK8 subcomplex

which functions as the negative regulator of the Mediator transcriptional coactivator

complex. This domain is found across all major eukaryotic lineages with the exception of

the kinetoplastids and is predicted to bind small RNAs, triggering a conformational change

in the subcomplex resulting in allosteric inhibition of Mediator-polII association and

subsequent transcriptional activation. While the MedPIWI-associating small RNA substrate
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is unknown, either of the above classes of small RNAs represents possible candidate binding

partners.

Splice site-associated small RNA

Small RNAs derived from intronic regions have been identified as associating with the

classical PIWI module of AGO proteins by IP-seq experiments in humans and Drosophila

[24, 124, 125] (Table 2, Fig. 1). Splice site-associated RNA-PIWI complexes appear to play

a crucial role in recruitment of the splicing machinery, affecting decisions during alternative

splicing [24]. While the biogenesis of these small RNAs has yet to be determined

definitively, several clues have been presented: 1) the PIWI module appears to preferentially

associate with small RNAs transcribed in the sense direction [24, 124]. 2) targeted studies of

the CD44 gene locus indicated that the strongest enrichment for splice-site associated RNAs

overlapped with the site of a known small RNA transcribed antisense to CD44 [24]. 3)

DICER is required for their processing. These three observations strongly suggest splice

site-associated RNAs are also a product of convergent s-as transcription yielding duplex

RNA processed by RNaseIII activity.

While the complete extent of the deployment of RNAi in regulation of splicing has not yet

been extensively analyzed outside of animals, enrichment of small RNAs at splice sites has

been previously reported in at least one amoebozoan [60] (Table 2, Fig. 1). Also, as

mentioned above, many basal lineages have reported PIWI association with small RNAs

derived from s-as transcription along protein-coding gene bodies. This, taken with 1) the

observation that RNAi components strongly co-occur with splicing machinery components

across eukaryotic lineages [122] and 2) the documented links between the introduction of

introns and the initiation of eukaryogenesis [126, 127] suggests investigation into potential

ancestral roles for RNAi in regulation of splicing could provide substantial insight into the

evolution and functional diversification of RNAi systems (Fig. 1).

scanRNAs and DNA elimination/genome unscrambling in ciliates

Ciliates contain two nuclei in the same cell: the micronucleus and its derived macronucleus

which is formed through the process of DNA elimination of specific sequences present in

the micronuclear genome followed by extensive endoreplication [128]. In certain ciliates

like T. thermophila, a class of small RNAs, the scan RNAs (scnRNAs), guides this process

via association with a PIWI protein (Table 2, Fig. 1) [128, 129]. scnRNAs are generated via

s-as transcription likely occurring along the complete length of the micronuclear genome

followed by DICER processing. Thus, in terms of their biogenesis, scnRNAs be viewed as a

specialized, ciliate-specific class of small RNAs arising from s-as transcription (Table 2).

During conjugation, loaded scnRNA-PIWI complexes are imported into the parental

macronucleus. By processes not yet fully-understood, association between these complexes

with transcribed RNA results in degradation of scnRNAs which bind to cognate

complementary sequences. The remaining loaded PIWI proteins contain only scnRNA

which matches portions of the micronucleus excised in the parental macronucleus. These

scnRNA-PIWI complexes migrate from the pyknotic parental macronucleus to the newly-

forming macronucleus initiated by micronucleus duplication. scnRNA again base pairs with

nascent ncRNA transcripts during macronucleus transcription, resulting in recruitment of the
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histone methyltransferase Ezl1p and H3K9 methylation, which in turn acts as a marker for

genome elimination [130].

All ciliates studied to this point appear to utilize scnRNAs transcribed from the

micronucleus in some form of DNA elimination, including the oligohymenophorean ciliates

Tetrahymena [128, 129] and Paramecium [131] and the spirotrich ciliates Stylonychia and

Oxytricha [132]. Spirotrichs are likely to harbour a more complex DNA elimination

pathway due to the high proportion of genome sequence eliminated in the macronucleus (up

to 95%) and the size of many of the eliminated sequences (as small as 10nt, unlikely to be

efficiently targeted by ~25nt scnRNAs) [128]. Additionally, spirotrichal macronuclear

genomes undergo “unscrambling”, a process which restores the order of genes observed in

the parental macronucleus in newly-formed macronuclei which are scrambled during

frequent rearrangement events occurring during micronuclear meiosis. Unscrambling is

mediated not by small ncRNA, but by long ncRNA transcribed from the parental

macronucleus and imported into the new macronucleus wherein it appears to impose the

“correct” gene order as read by the long ncRNA [133].

From a broader perspective, the linkage between RNAi pathways and transmission of

epigenetic information is by no means unique to ciliates. As described above and elsewhere,

small RNAs and long ncRNAs contribute to and direct chromatin modifications in a variety

of contexts. However, one striking feature of ciliate scnRNA and ncRNA usage is that the

epigenetic information is passed to progeny not through the formation of chromatin marks

but in the transmission of the RNA itself as proposed in the case of the plant-specific

phenomenon of paramutation [134]; the formation of chromatin marks in ciliate DNA

elimination acts as transient guides directing removal of marked DNA segments. In some

ways this ciliate-specific process parallels trans-, rather than cis-based epigenetic transfer, as

is seen in ncRNA-mediated imprinting in animals genomes.

DNA damage-induced small RNA

Recent studies have demonstrated small RNAs are generated at double stranded break

(DSB) sites of DNA damage in humans, Drosophila, and plants. The common denominator

in these events is the activity of polII and DICER homologs, which is supplemented by

DROSHA and RdRP activity in humans and plants, respectively [135–137] (Table 2, Figs.

1,2). In at least plants and Drosophila, these small RNAs are loaded onto classical PIWI

proteins and the resulting complexes appear to contribute to DSB repair by either recruiting

DSB repair proteins to breakage sites [135] or by binding to and clearing transcribed

products from the repair region [136]. The generation of these small RNAs occurs either

through processing of duplexes formed via convergent s-as transcription around the

breakage site [136, 137] or, in plants, through the activity of RdRP on ssRNA generated at

the site [135].

The aforementioned qiRNAs in fungi are also transcribed in response to DNA damage, but

in contrast to the cis-acting effects of the above-described small RNAs, these appear to

enable a trans response as DNA damage stimulates the generation of qiRNA at rDNA loci.

Complements of these transcripts are then transcribed by RdRP action, cleaved by DICER,
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and loaded onto PIWI; this association then appears to globally inhibit protein synthesis by a

mechanism which remains unclear [65, 138].

Potential prokaryotic PIWI substrates

Two distinct PIWI families are present in prokaryotes, the prokaryotic homologs of the

classical eukaryotic PIWI/Argonaute family (pPIWI) [29, 139] and the recently-discovered

pPIWI-RE family [123]. Biochemical studies indicate that several pPIWI proteins have a

preference for DNA-RNA hybrids, unlike the eukaryotic versions that have been primarily

shown to bind dsRNA substrates [140, 141]. Consistent with this, pPIWI-RE is predicted to

function as an RNA-dependent restriction system in prokaryotes as part of a mobile three-

gene operon. In this system, the pPIWI-RE domain is predicted to bind/process DNA-RNA

hybrid R-loops formed by invasive plasmids and/or phages during replication in cooperation

with the R-loop-specific DinG-type helicase encoded by one of the three operon genes

[123]. pPIWI-RE loaded with R-loop-derived small RNA sequences are then predicted to

initiate cleavage of invasive DNA by recruiting the third protein encoded by these operons, a

restriction endonuclease fold DNase. The substrates for the classical pPIWI proteins are

poorly characterized; it has been suggested on the basis of genome associations that pPIWI

proteins might act as components of prokaryotic systems involved in defense against

invasive DNA [142]. A more recent examination of the operonic associations of pPIWI

proteins reveals that nearly all major lineages of pPIWI domains are combined in operons

with a diverse range of endoDNases (Further Resources). These versions could very well

participate in plasmid/phage restriction systems in a manner similar to the pPIWI-RE family

with RNA guides to target restriction by the coupled DNases.

While this manuscript was under review, the first description of the nucleotide content

associating with a bacterial PIWI protein (from Rhodobacter sphaeroides) was published

[92]. The results support much of the above-outlined experimental and computational

research in this area: two major classes of nucleotide sequences in addition to the

aforementioned half-tRNAs (see above) were observed associating with PIWI: 1) a class of

16–19nt small RNAs predominantly antisense to genic regions and 2) a class of 21–25nt

small DNAs sense to genic regions. The two classes of sequences map to the same genome

regions, indicating that the duplex initially loaded into the PIWI protein, as predicted by

biochemical studies [140, 141], is a DNA-RNA hybrid duplex. Consequently, the authors

named the classes the DNA-interacting RNA (diRNA) and RNA-interacting DNA (riDNA)

[92]. diRNA appears to associate much more frequently than riDNA, suggesting a bias

towards retention of the RNA of the duplex as the guide strand. Such bias is not a novel

concept, the structural thermodynamic determinants governing duplex orientation during

loading and subsequent guide strand selection has been well-studied in eukaryotes [143,

144]. The authors speculate that the source of the diRNA is likely to be RNA degradation

fragments. We agree on this possibility, but question the assertion that these degradation

fragments are loaded as single strands onto the PIWI protein. Parallels drawn to piRNA are

unconvincing; from an evolutionary standpoint the poorly-understood single-stranded

piRNA loading step represents a highly-specialized, lineage-specific adaptation present only

in the animal lineage and is therefore extremely unlikely to represent an ancestral form of

PIWI loading. Considering the discovery of the pPIWI-RE domain and its accompanying
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conserved operonic associations, we can instead propose that RNA fragments in

Rhodobacter and prokaryotes with related PIWI domains (see below, Further Resources)

initially form R-loop-like hybrid duplexes with DNA which in turn are recognized and

bound by PIWI as a hybrid duplex. PIWI binding then recruits the strongly associated

endonuclease domain (see below) that cleaves the regions surrounding the site of diRNA-

PIWI binding. After cleavage, one strand of the PIWI-duplex is unwound and the resulting

PIWI-diRNA or less-frequent PIWI-riDNA complex would be free to re-associate with

another stretch of invasive DNA/RNA to effect a continued silencing. As such R-loops are

more likely to be formed at sites of invasive DNA replication [145], this also provides an

explanation for the capacity, described in the recent paper, of the R. sphaeroides PIWI

domain to discriminate between invasive DNA species and “self” DNA. Such targeting

explains why diRNA production is dependent on PIWI expression[92]; PIWI association is

upstream of the DNA endonuclease activity (see below for further discussion on the

evolution of PIWI proteins).

A subset of pPIWI proteins, distinct from R. sphaeroides and closely related pPIWI proteins,

is encoded as part of a novel CRISPR/Cas system. In this case we predict that they are likely

to use the small CRISPR RNAs as potential substrates. Yet another distinct subset of pPIWI

proteins with the closest affinities to the eukaryotic PIWI proteins does not seem to show

any conserved operonic association with any other genes. Given the extensive utilization of

s-as transcription as material for PIWI cargo in eukaryotes, this group of pPIWI domains

could recognize s-as transcription at overlapping coding regions, recently observed as a

rampant occurrence through the use of RNA-seq technologies in diverse prokaryotic

lineages [146]. The persistent role observed across classical PIWI domains in regulation of

transcription along with the recent discovery of the MedPIWI module [123] suggests that in

the eukaryotic stem lineage itself the PIWI domains already had distinct roles in

transcription regulation. Hence it is conceivable that pPIWI domains which potentially

recognize s-as RNA products might also have an as-yet uncharacterized role in transcription

regulation, marking a shift from roles in defence against invasive DNA.

EVOLUTION OF PROTEIN COMPONENTS IN RNAI PATHWAYS IN

RELATION TO ASSOCIATED SMALL RNAS

While several overviews of the natural history of the protein components of the RNAi

pathway have been previously published [27, 28, 147, 148], until recently it has not been

possible to include a comprehensive account of the RNA components of the pathway in this

analysis. However, with the publishing of several RNA IP-seq and total cell small RNA-seq

datasets from diverse eukaryotic lineages (Table 1), we can begin to consider the

contributions of the RNA components of the system and analyze its evolutionary trajectories

in comparison to the proteins. Moreover, recent genomic and structural data have thrown

considerable new light on the origin of the key protein components of the eukaryotic RNAi

system. The core eukaryotic protein apparatus for RNAi in many of its various

manifestations consists of the PIWI domain, an RNaseIII (Dicer-like) domain, and the RdRP

domain. This section will first discuss the prokaryotic origins of these core eukaryotic RNAi

components and then move into discussions on innovations occurring after the core system
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was in place. In addition to information contained in Figure 1, Figure 3 provides an

overview of expansion and loss of core protein RNAi components.

The anatomy and origin of the PIWI superfamily, the heart of the eukaryotic RNAi system

The PIWI superfamily proteins are the primary players in the eukaryotic RNAi system.

Indeed, there is evidence that they can function in RNAi systems independently of the other

core components, namely the DICER-like and RdRP enzymes. In the piRNA system,

different versions of the PIWI superfamily function with distinct, non-RNaseIII nucleases

both in piRNA production and as effectors of piRNAs [25]. In E. histolytica and T. gondii,

PIWI proteins bind a variety of small RNAs which appear to be the end products of complex

processing pathways [39, 60] despite the apparent absence of genomically-encoded

RNaseIII enzymes. Finally, a DICER-independent miRNA pathway also exists in which a

catalytically active PIWI domain cleaves the precursor hairpin independent of RNaseIII to

yield mature miRNA [149]. While this pathway was once thought to be restricted to a single

miRNA-like hairpin substrate, it now appears that a range of precursors can be processed

[150, 151]. In most archaea with pPIWI proteins there is no RNaseIII encoded in the

genome. Furthermore, there is neither direct physical evidence nor contextual support from

comparative genomics for associations between RNase III-like and RdRP enzymes and

PIWI proteins in bacteria. This suggests that basic versions of RNAi pathways could have

emerged with just a nuclease-active PIWI protein.

Recent structure-function studies on the PIWI proteins have elucidated how they might

accomplish several distinct actions as part of their function. Eukaryotic PIWI proteins are

comprised of the following domains: 1) a dyad of PIWI-N-terminal domains (PNTD1 and

PTND2; Figs. 4, 5A). These two domains have arisen through duplication followed by a

circular permutation at the N-terminus of one of the copies from an ancestral domain with 4

strands and two helices (Fig. 4). The N-terminal extension to the PNTD1 and PNTD2

domains contains an extended region with a highly conserved asparagine (Further

Resources). The boundaries of these two domains have been inaccurately established in

several studies resulting in two inappropriately-defined segments termed the N-terminal and

Linker-1 domains. In the kinetoplastid-specific PIWI proteins a RNA-binding OB-fold

domain of the NOB superfamily [152] is inserted between PNTD1 and PNTD2. 2) These

domains are followed by PAZ, which is a RNA-binding domain adopting a SH3-like fold

and plays an important role in recognition of the 3′end of the guide strand. 3) A conserved

linker region (typically termed Linker-2). 4) The α/β sandwich MID domain which

specifically binds the 5′ end of the guide strand. 5) The RNaseH fold domain which binds

the target strand, and if active, uses its metal-dependent RNaseH active site to cleave target

and passenger strands (Figs. 4,5A). This architecture of the PIWI proteins along with the

distinctive domains for the recognition of the termini of the guide strands appears to have

been the primary evolutionary constraint for the characteristic modal length of the small

RNAs deployed in RNAi. Recent studies have shown that the PNTD1 and PNTD2 domains

form an extended channel for binding of the duplex substrate and also play a key role in

melting the passenger strand (i.e. the complementary strand in the dsRNA precursor of

miRNA)-guide strand duplex by actively prying them apart to facilitate cleavage of the

former. It is also supposed to play a similar role during cleavage of the target strand [153,
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154]. This suggests the PNTD1/2 domain dyad acts as an inbuilt and ancestral switch

allowing the RNaseH domain of the PIWI proteins to catalyze cleavage only when the

former domains establish an appropriate conformation of the nucleic-acid protein complex.

Furthermore, the PNTD1/2 domain dyad facilitates disengagement by preventing duplex

propagation.

The PIWI RNaseH fold domain is most closely related to the Endonuclease V (EndoV)

family of endoDNases, which is found in the EndoV and UvrC proteins [155]. While pPIWI

proteins show a sporadic distribution in a relatively small group of prokaryotes, the UvrC

proteins are highly conserved across bacteria and EndoV proteins across eukaryotes and

archaea suggesting that an ancestral EndoV-like domain was probably already present in the

last universal common ancestor. Hence, the PIWI RNaseH fold domain could have been

derived from such an EndoV-like precursor originally involved in DNA repair in one of the

prokaryotic superkingdoms (Fig. 5B). The pPIWI proteins, in particular the recent discovery

of the pPIWI-RE clade of the PIWI superfamily, further clarifies the evolution of the

characteristic domain architecture and the ancestral role of the PIWI superfamily. Sequence

comparisons suggest that the pPIWI-RE clade was the first to branch off, with the remaining

pPIWI proteins falling into two major clades, pPIWI class-I and class-II, in phylogenetic

trees. Eukaryotic PIWI proteins emerge from within the class-II pPIWI clade (Fig. 4B). By

the time of the divergence of the pPIWI and pPIWI-RE proteins, the PIWI proteins had

already acquired the distinctive combination of the MID and the RNaseH domains and had

probably added the distinctive N-terminal domains in addition [156]. Genome context

analysis reveals that, like pPIWI-RE, most members of both classes are encoded in

conserved operons alongside one or more several distinct endoDNases (Fig. 5, Further

Resources): 1) 7 distinct families of nucleases of the restriction endonuclease (REase) fold;

2) a distinctive family of Sirtuin domains, which is comparable to those associated with the

HerA-like DNA-pumping ATPases and is predicted to function as a DNase rather than as a

deacylase [157]; 3) a distinct clade of TIR domain protein which were previously found in

Restriction-Modification systems [158] and are also predicted to function as DNases. These

observations, when superimposed on the relationships of the PIWI proteins (Fig. 5B),

suggest that the ancestral function of the PIWI domain was in RNA-guided restriction of

DNA. The report of the nucleotide content bound to a pPIWI domain in R. sphaeroides

published while this manuscript was under review supports this contention [145]; the pPIWI

system in R. sphaeroides belongs to the class-II pPIWI clade (Fig. 5B).

A major subset of the class-I pPIWI proteins are typically distinguished by the absence of

the N-terminal PNTD1/2 and PAZ domains. However, in these cases these domains are

found fused to the C-termini of the different endoDNase operonic partners with which the

pPIWI is combined (Fig. 5A). A subset of these PNTD1/2 and PAZ domains in the case of

those pPIWIs associated with Sirtuins were previously erroneously described as the analog

of PAZ (aPAZ) domains [142]. This combination of the PNTD1/2 domains with the

endoDNase domains, separately from the catalytic core of the class-I pPIWI proteins,

suggests that they probably play a role in preventing deployment of the DNase component

of the system until it joins the guide RNA-bound pPIWI protein and the PNTD1/2 facilitate

proper target-guide pairing by virtue of their role in prying apart duplexes. This separation
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of the N-terminal domains is not observed in the class-II pPIWI clade, though a few of them

might have entirely lost those domains (Fig. 5). This suggests that coupling with the DNA

restriction component proceeds through distinct mechanisms in the two pPIWI clades (see

above for more discussion on pPIWI-associating substrates). Certain class-II pPIWI proteins

constitute a distinctive CRISPR/Cas system in which they are combined with the spacer-

integration components Cas1 and Cas2 (Fig. 5). Since these systems lack the typical

CRISPR/Cas processing RNases like Cas6, the class-II pPIWI proteins are likely to play a

role in possibly processing and utilizing CRISPR RNAs for targeting invasive nucleic acids.

Certain class-II pPIWI proteins are combined in operons with the endoRNase HEPN

domains (Fig. 5) [159]. These along with the other class-II versions which show no linkages

to endoDNases, including those close to the origin of the eukaryotic PIWI proteins, might be

involved in purely RNA-guided RNA-targeting activities (Fig. 5). Thus, the situation in the

pPIWI systems with numerous DNA-targeting versions alongside few RNA-targeting ones

is comparable to the CRISPR/Cas systems, where most are RNA-guided DNA-targeting

versions (such as the Cas9-containing type-II, Type-U, Type-I and many Type-IIIs) along

with a few that target RNA (type III-B) [20, 160]. Eukaryotes, in contrast, appear to have

built their systems primarily upon the RNA-targeting PIWI systems acquired early in their

evolution from prokaryotes.

Coalescence of the eukaryotic RNAi core apparatus: the RdRP and RNaseIII domains

Like the PIWI superfamily, both the eukaryotic RdRP and the RNaseIII domains ultimately

emerged from prokaryotic precursors. Studies on early-branching eukaryotic lineages and

the shared phyletic distribution patterns of RNaseIII, PIWI domains, and RdRP suggest that

they had come to together as a functional unit in the LECA [27–29]. Of these there is no

evidence that the prokaryotic precursors of the RdRP had any direct role at all in RNAi-like

processes. Instead the eukaryotic RdRPs evolved from enzymes that functioned as DdRPs in

the transcription of certain bacteriophages, such as SPBC2, or primer-synthesis of certain

distinctive bacterial mobile elements [125, 126]. However, it is possible that the transcripts

generated by these DdRPs were used as substrates by prokaryotic phage-restriction systems

with PIWI proteins. Thus, in eukaryotes there appears to have been a shift to using RNA

templates as opposed a DNA one, paralleling the RNA-targeting specificity of the

eukaryotic PIWI proteins. Unlike their prokaryotic precursors, upon acquisition the RdRPs

have been inherited vertically throughout eukaryotic evolution.

Studies on the bacterial type II CRISPR/Cas systems have shown that the regular bacterial

RNaseIII used in cellular dsRNA processing works in conjunction with the Cas9 protein (a

RNaseH fold nuclease like PIWI) in dicing CRISPR transcripts in a complex with a

complementary small RNA called the tracrRNA [161]. This suggests that RNaseIII enzymes

might have generically functioned with multiple, evolutionarily distinct systems that

involved dsRNA processing even in prokaryotes. Evolution of the eukaryotic RNaseIII

enzymes has been unclear because previous sequence-based phylogenetic analyses have not

been able to unequivocally confirm relationships between DICERs characterized in basal

eukaryotes and those found in the crown group [148]. This is exacerbated by the high

divergence of RNAi-active RNaseIII superfamily nucleases that have recently been

identified in select kinetoplastids including T. brucei, Trypanosoma congolese,
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Trypanosoma vivax (but not Trypanosoma cruzi) [162], and Leishmania braziliensis (AMB,

LA personal observations).

In an effort to resolve this issue, we exhaustively collected individual RNaseIII domains

across prokaryotes and eukaryotes and generated phylogenetic trees from their sequences.

The following main features of these trees are relevant to the early evolution of eukaryotic

RNaseIII proteins: 1) all eukaryotic RNaseIII domains appear to be of common origin. 2) At

least two copies of the domain can be traced to the LECA, both arranged in tandem in a

single protein [163]. 3) The tandem RNaseIII domain copies observed in basal eukaryotes

are closely related to each other and form a monophyletic assemblage, while the tandem

repeats found in proteins belonging to crown eukaryotic lineages have diverged

considerably. 4) The two repeats are followed by a single dsRBD domain, consistent with

the canonical architecture observed in bacteria (RNaseIII+dsRBD). We can thus speculate

the RNaseIII domain was acquired from an ancestral bacterial source with the dsRBD

domain intact and subsequently underwent a partial duplication of only the RNaseIII

domain. Sequence specialization between the two domains likely did not begin until the

emergence of the kinetoplastid and chromalveolate lineages, which also coincided with the

emergence of the mitochondrial MRPL44-like protein which can be traced to kinetoplastids

and contains a single inactive RNaseIII domain and likely emerged via duplication and

inactivation of a single copy of the more ancestral tandem RNAseIII protein. This tandem

version might have also undergone a N-terminal fusion to the 5′ end RNA-binding PAZ

domain as suggested by the architecture of the version from the basal eukaryote Giardia.

Several additional domains associated with these core domains early in eukaryotic

evolution. A member of the superfamily II (SF-II) helicases appears to have fused with the

core DICER domains prior to the divergence of the heterolobosean Naegleria lineage (Fig.

1).

Early evolution of the small RNA component in RNAi systems

In attempting to reconstruct the ancestral small RNA substrate of RNAi systems, here we

consider 1) known/probable RNAs associating with basal eukaryotic PIWI domains and 2)

distribution of classes of RNA substrates across all eukaryotic lineages; the more widely

appropriated an RNA substrate, the more likely it is to be ancestral. While keeping in mind

that research on PIWI-RNA cargo in basal eukaryotes is still in its infancy, current findings

suggest these RNAi pathways are capable of incorporating 1) hairpin-derived small RNA in

both Giardia and Trichomonas [37, 38, 164], 2) dsRNA derived from convergent

transcription as confirmed experimentally in Giardia and possibly in Trichomonas based on

observed small RNA-mapping to gene loci [37, 56, 164], and 3) small RNA derived from

double-stranded regions of longer classes of ncRNA such as snoRNAs whose derivatives are

observed in Giardia [77, 78]. These three classes also appear to be the most broadly-

distributed classes of small RNA associating with PIWI across diverse eukaryotic lineages

(Table 2). Of the three, the most widely-distributed substrates appearing in every major

lineage are dsRNA duplexes arising from convergent s-as transcription through a largely-

conserved common mechanism. This is a particularly attractive candidate for an ancestral

substrate given the widespread presence of overlapping s-as transcription in prokaryotic

genomes, possibly reflective of conditions in the stem eukaryotic lineage [146].
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While imperfectly-complementary hairpin processing and product association with PIWI

from genome-encoded loci appears to be present in the basal eukaryotes Giardia and

Trichomonas, as well as the apicomplexan T. gondii, plant, and fungi/animal lineages,

evidence for these products is currently lacking elsewhere. Processing of larger ncRNA

classes into small RNAs for RNAi pathways shows a widespread yet patchy distribution.

ncRNA processing into PIWI cargo has not yet been observed in Trichomonas,

kinetoplastids, or fungi, although tRNA fragments have recently been reported in

Magnaporthe [85] but not yet investigated for PIWI-binding potential. Of the ncRNA-

derived small RNA classes, tRNA-derived fragments are most commonly reported, notably

present in amoebozoans, ciliates, and apicomplexa although they appear to be absent in

Giardia and kinetoplastids, while snoRNA fragments are perhaps the most ancient form of

processing given their presence in the basal Giardia [77]. Of additional potential relevance

is the observation of half-tRNAs associating with a pPIWI domain [145]. Thus, products of

imperfectly-complementary hairpins (miRNA-like) and larger ncRNA precursors could have

been small RNA partners of the RNAi machinery in early eukaryotes; however, the

functions of these RNA classes appear to have undergone considerable lineage-specific

tinkering.

Later gene duplications and component specialization in the core RNAi machinery

The core protein components of the RNAi machinery display an extensive evolutionary

history of lineage-specific duplications (Fig. 3). Diversification of PIWI proteins through

duplication began right in the eukaryotic stem lineage, where it bifurcated into the classical

PIWI family and the MedPIWI family (Figs. 1,5B), which was incorporated as an integral

component of the CDK8 subcomplex of the Mediator complex [123]. A much later

duplication of the PIWI proteins gave rise to the distinct Argonaute (AGO) subfamily in the

common ancestor of animal, fungi, and plants [28] (Fig. 2). In animals, the PIWI “proper”

clade became tightly functionally-linked with the emerging piRNA class of small RNAs and

the nuage complex comprised of several proteins with RNA-binding and methylated

arginine-binding domains involved in protection of germline integrity. The AGO clade

retained roles typically attributed to the ancestral PIWI proteins in other eukaryotic lineages.

Several lineage-specific duplications have occurred in PIWI/AGO proteins (Fig. 2). These

duplication events can be accompanied by specialization of the small RNA substrates

binding the PIWI protein with notable examples observed in T. thermophila, Oikopleura (a

tunicate with an otherwise reduced genome), Adineta vaga (a bdelloid rotifer which is an

asexual animal), and C. elegans [147, 165] (Fig. 2). On other occasions duplication events

have given rise to apparently functionally redundant PIWI proteins, as in the mammalian set

of four AGO proteins [166].

Similarly, duplications have played a major role in the evolution of the RNaseIII

superfamily. A second version of the tandem RNaseIII repeat-containing protein emerged

possibly as early as the heterolobosean lineage. The first version, showing strongest affinity

to the single ortholog present in basal lineages like Giardia and Trichomonas, is related to

the classical DICER-like enzymes from other eukaryotes. The second, faster-evolving

version includes the DROSHA-like enzymes known in animals for their intermediary role in

miRNA production. While it has long been assumed that DROSHA homologs are restricted
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to animals, we contend on the basis of the sequence profile comparisons and phylogenetic

analyses outlined above that DROSHA homologs exist across many major eukaryotic

lineages including the plants (as typified by the previously uncharacterized Arabidopsis

thaliana AT4G37510 protein—see Further Resources), chromalveolates, and possibly the

heterolobosean Naegleria. The most parsimonious evolutionary scenario for the emergence

of the DROSHA-containing clade is simple duplication of the DICER-like protein of basal

eukaryotes described above. This is consistent with the general dearth of N-terminal domain

fusions (e.g. the helicase domains) observed in both basal DICER-like enzymes and

members of the DROSHA-containing clade. However, we cannot rule out the possibility of

DROSHA-like enzymes emerging first in the common ancestor of animals and plants, with

lateral transfers to heteroloboseans and chromalveolates. The discovery of DROSHA-like

homologs in plants also raises questions about their function. In animals, DROSHA

processes the pre-miRNA from the pri-miRNA transcript; in plants, however, this step,

along with the ensuing step processing the dsRNA hairpin from the pre-miRNA, are

catalyzed by successive action of the DICER enzymes. Given that the tandem RNaseIII-like

architecture in eukaryotes to this point has exclusively been involved in RNAi pathways, we

predict the plant DROSHA-like enzymes have an as-yet-undetermined role in a plant RNAi

pathway.

In kinetoplastids, the tandem RNaseIII architecture-containing protein has duplicated on at

least one occasion and is currently known from T. brucei, Trypanosoma congolese,

Trypanosoma vivax [162], and Leishmania braziliensis (AMB, LA personal observations).

The rapid divergence of the kinetoplastid RNaseIII repeats in these proteins contributes to a

lack of confidence in assessing their affinities, although the second RNaseIII repeat shows

affinity for the DICER-like clade suggesting a possible vertical inheritance from the basal

tandem RNaseIII domain-containing versions followed by a particularly rapid divergence of

the first RNaseIII repeat in kinetoplastids (Fig. 3). RNaseIII domains belonging to two

distinct proteins containing the tandem architecture from the amoebozoan Acanthamoeba,

Dictyostelium, and Polysphondylium organisms similarly cluster together largely outside of

the major clades. The first and second RNaseIII repeats from both versions cluster together

to the exclusion of other RNaseIII domains, suggesting the independent emergence of the

tandem RNaseIII architecture in these organisms. Fungi contain several distinct RNaseIII

domain proteins. While the loss of the canonical DICER in budding yeast has been well-

documented, several ascomycetes and basidiomycetes have retained canonical DICER-like

enzymes. In addition, most fungi contain inactive Yml15-like enzymes belonging to the

MRLP44-like clade. This clade, despite a sporadic distribution in early-branching eukaryotic

lineages, appears to have been fixed in the common ancestor of plants, animals, and fungi.

Rnt1p-like enzymes represent a group of active single RNaseIII domain proteins in fungi

along with their sister group, the so-called DCR1-like enzymes linked to RNAi activity in

some budding yeasts [167–169]. Our analyses suggest that the Rnt1p-, DCR1-, and pac1 (a

group of snoRNA-processing enzymes primarily observed in fission yeast)-like enzymes

share a monophyletic origin, suggesting late emergence from a more ancestral active

RNaseIII domain. Retention of a C-terminal dsRBD domain and their monophyly with other

eukaryotic RNaseIII domains points to the origin of these fungal proteins from the tandem
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domain-containing version accompanied by loss of the N-terminal RNaseIII domain (Figs.

1,3).

Duplication of the RdRPs at various points in eukaryotic evolution (e.g. in plants and in A.

vaga) appear to have been frequently accompanied by a concomitant proliferation and

specialization of a DICER/RdRP homolog with specific small RNA substrates [170] (Fig.

3). Of note in this regard is A. vaga which possesses an expansion of RdRPs (20 copies) and

DICERs (8 copies) [165].

Gene loss in the core RNAi machinery

The RdRP enzyme is observed to be frequently lost despite retention of DICER and

PIWI/AGO (e.g. independently in insects and vertebrates) (Fig. 3). Loss of RdRP does not

appear to coincide with a decrease in either the diversity of small RNA substrates found

associating with PIWI/AGO or in the number/variety of distinct functional contexts

occupied by RNAi, at least in well-studied lineages. In addition to isolated component loss,

the entire or partial complement of core RNAi components has been lost in several fungal

lineages, with the best-known example being the complete loss of the RNAi machinery in

several budding yeast lineages [171] and in the fungus Ustilago maydis [172]. In the

budding yeasts like S. cerevisiae the loss of the core RNAi system is accompanied by

extensive loss of spliceosomal introns and spliceosomal components. Similarly, several

kinetoplastids including Trypanosoma cruzi, Leishmania major, Leishmania infantum,

Leishmania donovani, and Leishmania mexicana as well as most apicomplexa have

respectively partially or entirely lost the complement of core RNAi components, although

notably all kinetoplastids contain at least one PIWI domain with the characteristic insertion

of the NOB domain (Figs. 3,5A).

Loss and re-emergence of core RNAi components in closely-related organisms from both

fungi and kinetoplastids can be instructive in understanding the adaptability of the system

and its relation to the small RNA substrate (Fig. 3). IP-seq has been performed on classical

PIWI proteins for RNAi-active T. brucei [52] and small RNA-seq on T. cruzi, which

contains only the distinctive kinetoplastid-type PIWI protein with the NOB domain (Figs.

3,5A) [173]. Similarly, small RNA-seq has also been performed in RNAi-active

Saccharomyces castellii (now known as Naumovozyma castellii) and the RNAi-deficient

Saccharomyces cerevisiae that lacks even a PIWI protein [167]. In both pairs of organisms,

RNA profiles of the RNAi-deficient organisms appear to primarily consist of degradation

products derived from rRNA, tRNA, repeats, and coding regions. Interestingly, consistent

with the presence of a PIWI protein in T. cruzi, at least a portion of the sequences derived

from snRNA, snoRNA, and coding regions are found in the length range typical of AGO/

PIWI-associating small RNA (~20–23nt) [173]. Hence, it is conceivable that kinetoplastids

other than T. brucei, while lacking conventional RNAi, possess some lineage-specific

specialized version that uses their distinctive version of the PIWI protein. These profiles

contrast drastically with those from organisms with active RNAi. In T. brucei the PIWI-IP

profile reveals association with several distinct classes of small RNA including small RNAs

derived from s-as retrotransposon transcription, satellite-like repeats, convergently-

transcribed protein coding regions, and inverted repeats [52]. The small RNA population of
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S. castellii and related budding yeasts, which appear to have reused a member of the Rntp1/

DCR1/Pac1 radiation for endonuclease activity to “reconstitute” an active RNAi system,

also contain a rich assortment of sequences similar to other eukaryotes including those

derived from s-as, inverted repeats, and other ncRNA sources [167] (Fig. 2). Thus, it

appears the re-emergence of a functional RNAi system results in generation of similar small

RNA substrates, pointing again to the inherent predisposition of the system to specific

classes of precursor substrates.

Evolution of ancillary RNAi machinery and specialized classes of small RNA

The above-described core machinery is in large part sufficient to process substrates for

RNAi from double-stranded sequences derived from s-as transcription, simple genome-

encoded hairpins, and regions from larger ncRNA species. Consistent with this, little to no

elaboration to the core machinery is typically observed in the processing of these substrates

across eukaryotes (Fig. 2). Instead, elaboration of the core machinery appears to have

occurred primarily in two contexts: 1) the emergence of novel classes of small RNA

substrates, e.g. piRNAs and 2) the “institutionalization” and subsequent rapid expansion of

particular classes of small RNA substrates, with examples including the animal and plant

miRNA pathways. An unusual elaboration is observed in the case of the so-called “social

RNA”, where a RNA substrate import apparatus centered on the ceramidase domain-

containing transmembrane SID-1 protein appears to have been superimposed on the core

machinery [311–313].

Recruitment of further RNase domains to the RNAi system

One of the earliest elaborations on the core RNAi machinery appears to have occurred in the

kinetoplastid lineage. In addition to core components, RNAi in T. brucei was recently

discovered to depend on the TbRIF4 and TbRIF5 genes, both of which are present only in

kinetoplastid lineages which retained the active RNAi pathway [174]. TbRIF4 contains an

active Maelstrom-like RNase H fold 3′->5′ exonuclease domain and assists in processing

RNAs bound by the guide strand of the T. brucei PIWI domain [174]. We also propose a

similar role for the Maelstrom-like nucleases in processing small RNAs in Entamoeba,

which lacks a member of the RNaseIII superfamily (Fig. 3). While Maelstrom-like nucleases

in many later-branching eukaryotic lineages are inactive, experimental evidence indicates

they retain roles related RNAi, namely in piRNA biogenesis and transposon silencing in the

germline [175]. Inactive Maelstrom-like domains are predicted to contribute to these

functions through a RNA-binding role [176] which in turn regulates cytosine methylation of

DNA, perhaps requiring their N-terminal HMG domain (Fig. 1) [177]. While the initial

study identifying TbRIF5 did not observe any conserved regions in the protein, we identify

for the first time here the presence of two tandem, N-terminal copies of the Staphylococcus

nuclease (SNase) domain which appear most closely related to SNase domains found in the

Tudor-SN/P100 proteins (AMB, LA, personal observations) (Further Resources) [178].

Tudor-SN proteins have previously been linked to RNAi systems, involved in degradation of

hyper-edited inosine-containing miRNA precursors [179, 180]. Tudor-SN is an innovation

traceable to the LECA (also present in kinetoplastids); suggesting TbRIF5 likely emerged

via at least partial duplication of Tudor-SN in the kinetoplastid lineage. While we currently

do not observe a Tudor domain in TbRIF5, there remain several uncharacterized globular
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regions C-terminal to the SNase domains that could harbour divergent copies of Tudor or

additional SNase domains. The observed physical association between the T. brucei tandem

RNaseIII domain-containing (DICER-like) protein and TbRIF5 in T. brucei [174], suggests

that the SNase domains of TbRIF5 contribute to the processing of dsRNA targets.

In course of eukaryotic evolution several other nucleases appear to have been recruited to

the RNAi machinery. The HKD-type nuclease found in the Zucchini protein and the Mut7-N

(Nibbler) nuclease of the PIN fold were first experimentally identified as RNAi components

in Drosophila [181–183] and Caenorhabditis [184], respectively (see below). They emerged

at least prior to the divergence of the alveolates, plants, animals and fungi from their

common ancestor, but have been lost in several lineages. The Drosophila squash protein was

originally claimed to be a nuclease [181] but analysis using sequence profiles indicates that

it is a low-complexity protein limited to arthropods. In addition, two distinct nucleases were

recruited for regulation of miRNA following maturation: the RNase H fold 3′-to-5′

exonuclease SDN1 in plants [185] and the 5′-to-3′ exonuclease XRN2 in animals [186].

XRN2 is highly conserved and likely to have been present in the LECA with a primary role

in rRNA processing; further investigation into potential roles in RNAi for XRN2 in other

eukaryotes might be of interest, particularly in light of its linkage to RNAi systems in T.

thermophila (Fig. 1) [88]. Similarly, the Eri-1 nuclease, which combines an N-terminal SAP

domain with a 3′-to-5′ exonuclease domain has been found to have a role in both 5.8S rRNA

processing and regulation of RNAi [187]. In the latter processes it has been implicated in

both the maturation of certain siRNAs and negative regulation of silencing by degradation of

small RNAs [188]. Bacterial orthologs of Eri-1 are often found in a conserved gene-

neighborhood with genes for tRNAs and rRNAs, suggesting that it plays a role in the

processing of these RNAs. The LK-nuclease domain, a member of the 5′->3′ exonuclease

superfamily [189], is fused to C-terminal RRM and OST-HTH RNA-binding domains [189,

190] in the MARF1 protein and its homologs. Recently MARF1 has been implicated as a

female germ cell analog to the piRNA-PIWI complex in control of retrotransposon silencing

in oocytes [191]. This nuclease domain is likely to regulate processing of as-yet-unidentified

small RNAs in this process. Both the Eri-1-like and LK-nuclease domains are widespread in

bacteria but largely absent in archaea. Thus, they appear to have been transferred to

eukaryotes at different points from bacteria: prior to the divergence of kinetoplastids (Eri-1)

and in the common ancestor of plants and animals (LK-nuclease). The metallo-β-lactamase

(MβL) fold-containing RNase Z protein has been implicated in DICER-independent

processing of tRNA in animals during production of 3′ tRF-U small RNAs [81]. RNase Z

belongs to a higher-order assemblage in the MβL fold which includes two other families

which act as endonucleases [192], the DNA-cleaving SNM1 family involved in DNA repair

[193] and the RNA-cleaving CPSF family which cleaves the 3′ cleavage signal in pre-

mRNA transcripts [194]. Two paralogous versions of RNase Z are present in eukaryotes

with at least one of these versions traceable to the LECA; however, the version which

appears to be implicated in small RNA generation is traceable only to Naegleria,

stramenopiles, and possibly some apicomplexan lineages, suggesting it emerged from the

more ancestral version later in eukaryotic evolution.
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Recruitment of enzymes modifying small RNAs to the RNAi system

RNA-modifying enzymes such as methylases and nucleotidyltransferases play a major role

in maturation, processing, and stability of certain RNA components of the RNAi system.

The distinctive methylation of 2′ OH at the 3′end of specific small RNAs is catalyzed by the

HEN1 RNA methylases [195]. In animals this modification is an integral part of the

maturation of piRNAs. In plants, degradation of miRNAs is mediated by competition

between degradation-blocking HEN1 RNA methylation [196, 197] and degradation-

inducing polyuridylation by the nucleotidyltransferase MUT68/HESO1 [198–200]. In

ciliates, Hen1 methylates the 3′ terminus of scnRNA during biogenesis, contributing to

scnRNA stability [195]. Hen1 appears to have been first recruited to RNAi machinery via

HGT from a bacterial source, where it appears to regulate RNA repair (Fig. 1) [201]. The

above observations suggest that HEN1’s recruitment in eukaryotes was followed by its

deployment in modifying small RNAs from different limbs of the RNAi system in different

eukaryotic lineages. However, given the role of both animal piRNAs and ciliate scnRNA in

suppressing gene disruption via transposons or selfish DNA, it is conceivable that

modification by HEN1 is a fairly ancient aspect of RNAi-dependent protection of genes

from selfish elements [202] (Fig. 1). Nsun2 is an additional methyltransferase containing the

same fold as Hen1 recently observed in position-specific methylation of vault RNA as a

prerequisite for svRNA generation [203]. Nsun2 is a tRNA-modifying enzyme traceable to

the LECA, suggesting it acquired an additional functionality in vault RNA processing

following the fixation of the vault RNA after emergence of the crown group (Figs. 1,2).

The other major modification, namely 3′ addition of nucleotides, is catalyzed by the TRF

polymerase family of 3′ nucleotidyltransferases of the DNA polymerase β (DNA pol-β)

superfamily [204] (Table 3, Figs. 1,2). The TRF family of polymerases is specifically related

to the poly(A) polymerase, also catalyzing 3′ template-free homopolymerization of

particular nucleotides. In animals, the GLD-2 subfamily of TRF-like nucleotidyltransferases

adenylates mature miRNAs which stabilizes miR-122 in liver cells [205] and appears to

generally act to reduce affinity for AGO proteins [206]. The ZCCHC6/ZCCH611

nucleotidyltransferases were recently shown to catalyze the monouridylation of pre-let-7

miRNAs, a step required for maturation [207]; however, in the presence of the lin28

cofactor (see below) this subfamily polyuridylates pre-let-7 miRNAs, apparently blocking

interaction with DICER and leading to decay [208]. They also uridylate mature miRNAs,

modulating their effectiveness [209, 210] and perhaps facilitating their degradation similar

to the plant MUT68/HESO1 uridylyltransferases [198–200]. MUT68/HESO1

uridylyltransferases are also implicated in 3′ modification of RISC-cleaved fragments [198,

211]. In Tetrahymena, the uridylyltransferases Rdn1 and Rdn2 form distinct complexes with

the RdRP to mediate processing/amplification of distinct groups of 23–25nt RNAs [212].

Related TRF nucleotidyltransferases also appear to be involved in highly selective

modification of other subsets of RNA transcripts in animals; TUT1 is implicated in

polyadenylation of specific mRNAs [213] and polyuridylation of specific snRNA [214]

transcripts in the nucleus while MTPAP polyadenylates mitochondrial transcripts [215].

A detailed analysis performed on the TRF polymerase family revealed two members of the

family can be confidently traced to LECA, one belonging to the classical TRF4/5 subfamily
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found across eukaryotes and involved in nuclear RNA surveillance which tags various non-

coding RNA through 3′ polyadenylation for degradation by the exosome [216] and another

belonging to the functionally uncharacterized AT3G56320-like subfamily found in Giardia,

kinetoplastids, Naegleria, chromalveolates, and plants (Table 3). Extensive diversification in

the TRF family occurred in kinetoplastids: in addition to retaining members of the

aforementioned subfamilies, additional kinetoplastid-specific subfamilies emerged,

including the RET1-like, MEAT1-like, and ncPAP2-like subfamilies, which play a wide

range of roles in the cell (Table 3). Phylogenetic analysis indicates the large RET1-like

clade, which includes the TbTUT3, TbTUT4, and KPAP1 paralogs in addition to RET1 and

RET2, might be derived from early duplication of a member of the AT3G56320-like clade.

Despite this diversification, to this point no kinetoplastid TRF members have been linked to

RNAi; however, they could be involved in the distinctive RNA editing of kinetoplastids,

which involves additions of polyuridine tracts. The ciliate Rdn1 and Rdn2[251] cluster

together with other representatives from ciliates and several alveolates, stramenopiles, and

Naegleria along with the GLD-2/PAPD4-like and ZCCHC6/ZCCHC11 repeat 2-like clades.

The ZCCHC6/ZCCHC11 repeat 2-like clade, present across crown group eukaryotes,

appears to retain the 3′ RNA uridylation observed in more basal versions typified by the

ciliate enzymes. In animals the ancestral ZCCHC6/ZCCHC11 catalytic domain underwent

an intra-protein duplication resulting in the repeat 1-like subfamily (Table 3). This version

with polymerase domains further duplicated spawning the paralogous ZCCHC6 and

ZCCHC11 clades early in animal evolution. Orthologs of these enzymes underwent

additional, distinct duplications in certain lineages, most notably the Cid11 and Cid13

paralogs in S. pombe and a duplication at the base of fungi giving rise to a set of paralogs

including S. pombe Cid1 (Table 3). The GLD-2/PAPD4-like family emerged later in

animals, likely concomitant with the apparent functional shift to 3′ RNA adenylation. The

extensive linkage of this assemblage of clades (Table 3) to different steps in RNAi systems

(see below) suggests a possible ancestral role in modifying RNA substrates of RNAi

pathways. However, both the GLD-2/PAPD4-like and ZCCHC6/ZCCHC11-like subfamilies

have been linked to additional roles in cytoplasmic mRNA 3′ modification suggesting

considerable substrate promiscuity (Table 3). Additionally, we identify three

uncharacterized T. thermophila homologs clustering tightly with Rdn1 and Rdn2,

exploration of the functions of these homologs could shed further light on the potential

ancestral role for this assemblage of TRF subfamilies. Two additional clades, prototyped by

TUT1 and MTPAP, form a monophyletic, higher-order assemblage which emerged at the

base of animals but diverged into distinct clades early in animal evolution, sometime after

early-branching animal lineages like Nematostella and Trichoplax which contain only single

representative copies of the assemblage (Table 3). Several additional lineage-specific clades

are seen in the TRF family including the plant-specific MUT68-like clade, the

uncharacterized MEE44-like clade, the uncharacterized insect-specific clades Monkey King

and CG1091, and the apicomplexan-specific PFD1045c (Table 3). PFD1045c was earlier

linked to host antigen expression in Plasmodium falciparum [217]. In light of the recently-

uncovered role for s-as transcription in regulation of the surface antigen var gene family in

P. falciparum [66] and noted cases of TRF family-mediated 3′ addition to hairpin/duplex

RNA, it might be worth investigating potential roles for PFD1045c-mediated degradation of

repressed var transcripts.
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Thus, it appears that on at least two occasions TRF family polymerases have been

specifically recruited to RNAi activities, once at the base of the GLD-2/PAPD4-ZCCHC6/

ZCCHC11 assemblage and once in the plant MUT68-like subfamily. Other RNAi-related

roles observed for the family in the classical TRF, MTPAP, and TUT1 subfamilies likely

represent secondary functional acquisitions, consistent with the restricted number and cell-

type specificity of observed substrates [206, 218]. Thus, the current data point to the

accretion of HEN1 methylases occurring relatively late, i.e. prior to divergence of

chromalveolates and the crown group, whereas nucleotidyltransferases might have been

recruited earlier (Figs. 1,2). Currently modification of pri-miRNAs (e.g. pri-miR-142, the

precursor of miRNA-142) by deamination of adenines to inosines by the dsRNA-specific

ADAR enzymes has been reported in vertebrates; this modification counters processing by

Drosha and routes the pri-miRNA for degradation by Tudor-SN [179]. The ADAR enzymes

emerged first in metazoans via duplication of the pan-eukaryotic tRNA adenine deaminase

Tad1 and modify both mRNAs and miRNAs (Figs. 1,2). it remains to be seen whether Tad1

might intersect with the RNAi system in other eukaryotes: recently a clade of predicted

cytidine deaminases fused to Tudor domains has been reported in stramenopiles which

might have independently been recruited for modification of small RNAs in this clade [219].

RNA-binding proteins and other ancillary components of the RNAi system

Above discussion regarding the recruitment of processing and modifying enzymes indicates

that in the crown group clade (the common ancestor of animal and plants and all their

descendants), many major innovations are centered on the miRNA system. Analysis of other

ancillary components also points in a similar direction, with comparable roles emerging in

plants and animals: the dual dsRBD-containing Hyl1/Pasha/DGCR8 protein which binds

pri-miRNAs and the exportin-5/HASTY protein which exports pre-miRNAs to the

cytoplasm have been found in both plants and animals but are lost in fungi (Fig. 1). Several

of these proteins appear to have been recruited as regulatory factors at different steps in

miRNA biogenesis; these globally regulate miRNAs or function in narrower contexts

regulating specific miRNAs or miRNA families. Some examples include the C2H2-Zn-

finger-containing Ars2/SERRATE protein which widely stabilizes pri-miRNAs and

augments their processing to miRNAs in plants and animals [220–223] (Fig. 1). Likewise

the FHA domain-containing DAWDLE protein, which globally stabilizes pri-miRNAs

[173], points to a common mechanism involving regulation of miRNA maturation via

protein serine/threonine phosphorylation in both plants and animals. The lin-28 protein

which combines a S1-like and dual zinc knuckle RNA-binding domains inhibits DICER

processing of particular miRNAs in conjunction with 3′ terminal polyuridylation [224–227]

(Fig. 1). While lin-28 has been implicated in a miRNA-related role in both plants and

animals, highly-divergent copies appear to be present in earlier-branching lineages such as

ciliates and kinetoplastids, where they are implicated in RNA editing [228]. This suggests

that a Lin-28 like protein might have been acquired earlier from bacteria, where it has been

shown to function as a mRNA chaperone and transcription anti-terminator that destabilizes

mRNA hairpins [229] (Figs. 1,2). In contrast, other proteins associated with the miRNA

system show a more limited phyletic pattern: the RRM domain-containing proteins TRBP/

Loquacious and PACT, which associate with DICER and contribute to miRNA substrate and

cleavage specificity, appear to be animal- and vertebrate-specific, respectively [230]. The
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animal RNA-binding zinc finger domain-containing MBNL1 protein binds to and regulates

expression of pre-miR-1 in muscle cells [231]. In plants the SQUINT protein with a peptidyl

prolyl-cis/trans-isomerase cyclophilin and a TPR domain appears to be a protein folding

chaperone that augments AGO activity [232] (Fig. 1).

The above discussion points to a rather extensive regulatory infrastructure being in place

prior to the divergence of animals and plants, which could have acted as a pre-adaptation

facilitating emergence of the numerous miRNAs in these lineages. It has been proposed that

miRNAs with physiologically important targets originate with low expression levels. As

deleterious off-target sites are purified over time the expression and relative functional

importance of the miRNA is believed to increase [233]. Indeed, the above-outlined

regulatory infrastructure could have provided sufficient robustness to limit the negative

consequences of off-target interactions by means of multiple control steps even as the

miRNA-system evolved greater specificity. In fungi, the concerted loss of this system

appears to have precluded the use of miRNAs. Nevertheless, the remnant RNAi systems in

fungi appear to have undergone further elaboration by addition of distinctive ancillary

proteins including the SF1-helicase SAD-3/Hrr1, the CHROMO+RRM domain-containing

Chp1, and the nucleotidyltransferase Cid12 [65] (Figs. 1,2).

The other major recruitment of ancillary proteins concerns the interface between the RNAi

machinery and chromatin dynamics. This link appears to have emerged as an offshoot of

ancestral transcriptional regulation by PIWI family proteins in the nucleus. Evidence from

ciliates suggests that relatively early in eukaryotic evolution the RNAi-chromatin interface

was already regulating generation of epigenetic marks by histone methylation. This also

appears to have marked the emergence of the precursors of the nuage-like RNP complexes,

which expanded further in animals with the emergence of piRNAs as major defenders of the

set aside germline. The initial phase of the evolution of the precursors of nuage-like

complexes appears to have been accompanied by the recruitment of the HKD nuclease

Zucchini [181], the SF-I helicase-containing Armitage (also found in plants) [234–236] and

possibly the 3′-5′ nuclease domain-containing Maelstrom [175]. Another key innovation in

this phase was the expansion of the predicted dsRNA-binding OST-HTH [190] and Tudor

domain proteins which bind methylated arginines common in RNA-binding proteins

generated by the PRMT family of methylases. In animals there is evidence for the apparent

burgeoning of this system as suggested by several distinct components identified over the

past two decades: 1) SF-II RNA helicases like Vasa [237], 2) the chaperones Hsp90 and

Shutdown/FKB6 with a peptidyl prolyl-cis/trans-isomerase and TPR domains [238, 239], 3)

and an expansion of Tudor domain fusion proteins, such as Tudor [240], the insect-specific

Krimper [241], SF-II helicase-fused Spindle-E [237, 241], Yb, BoYb and SoYb [234–236],

the dsRBD-containing Vret present in at least insects and sea urchins [242], the RING and

B-box containing qin/Kumo proteins [243, 244], and the histone methyltransferase SET

domain-fused SETDB1 [245]. In addition, RNAi systems of both animals and plants

interface DNA modification by DNA cytosine methylases which generate 5mC. In this

context it is of interest to note that a SM-like domain is found at the N-terminus of many

DNMT1-like methylases [246]. In prokaryotes, SM domains bind several specialized small

RNAs, effecting regulation of mRNA stability and ribosome association [247, 248]. Hence,
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the possibility of direct interactions between small RNAs and DNMT1 in eukaryotes

remains a matter of interest.

General Conclusions

Characterization of the RNAi system has been a principal driving force in the discovery of a

veritable “RNA world” which practically remained out of sight even as little as 15 years

ago. The characterization of these RNAs has led to an appreciation of their extensive

involvement with several major biological processes. This has also had a major

biotechnological impact with RNAi-based technologies rapidly occupying the center-stage

in molecular biology for several model systems. However, several basic biological questions

concerning this system are only recently coming into greater focus.

First among these is the functional relevance of the RNAi system in the greater hierarchy of

regulatory mechanisms comprised of direct transcription control, chromatin level control,

splicing, and RNAi-independent regulation of transcript maturation and stability. Some

workers have expressed a rather maximalist view of the role of the RNAi system: 1) based

on the role of the system in countering killer plasmids and other selfish elements some have

speculated that organismal lineages cannot survive over long evolutionary times without

such systems [249]. 2) Others have suggested that emergence of complex nervous systems

in vertebrates relates to the proliferation of miRNAs [249, 250]. 3) Yet others have proposed

a role for the RNAi system in emergence of organizational complexity in animal and plants

[71]. However, actual evidence for such maximalist positions remains equivocal at best.

Studies on regulatory networks have suggested that a distributed architecture with regulatory

backups and division of the regulatory “responsibility” among several separate systems,

each with a small individual effect, helps minimize the risk of failure [251–253]. Elaboration

of the RNAi system in eukaryotes supports this principle as it adds a level across which

regulatory “responsibility” can be distributed and also provides a backup for other systems.

However, there still appears to be a hierarchy among the eukaryotic control systems – while

very few eukaryotic lineages apparently lack specific transcription factors, there are several

lineages that have partly or entirely lost their RNAi system. For example, the blood cell-

infecting apicomplexans have thrived without a functional RNAi system for at least 300

million years. On the other hand, successive sister groups of vertebrates like the tunicate

Ciona and Branchiostoma respectively possess reduced and elaborate RNAi systems, yet

they display comparable organizational complexity (Fig. 2). Thus, even though a fairly well-

developed RNAi system can be reconstructed as being already present in the LECA, it

appears to have been repeatedly lost or reduced in several lineages. However, practically all

these lineages never had a paucity of transcription factors (barring kinetoplastids) or

chromatin-level regulators, suggesting that as a regulatory system RNAi is probably lower in

the hierarchy than the former two nuclear systems. The exact reasons for loss or diminution

of RNAi remain unclear, particularly because of the presence of sister species with similar

lifestyles that differ in its presence or absence (e.g. Naumovozyma and Saccharomyces or T.

cruzi and T. brucei). However, the converse issue, i.e., the strong tendency to retain RNAi in

certain lineages (e.g. plants) might relate to the entanglement of the system with regulation

of important genes. Indeed, the presence of conserved miRNAs across animals supports this

possibility for the animal miRNA system.
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The second major question regarding the natural history of the RNAi system is that of it

being an apparently unique derived feature of eukaryotes. This is particularly interesting

because prokaryotes possess their own widespread, well-elaborated RNA-based interference

or restriction system, namely the CRISPR/Cas system; in addition to the less frequent

pPIWI-dependent systems. One extreme proposal could be that there was a RNAi system

already present in the last universal common ancestor but the protein components associated

with it have diverged extensively. Indeed such a situation is seen in the case of the ribozyme

RNaseP, where the RNA component is conserved across the three superkingdoms of life, but

its protein components are markedly distinct between bacteria and the archaea-eukaryotic

lineage. However, a comparison of the RNA and protein components and processing

mechanisms of the eukaryotic and prokaryotic RNA-based interference systems does not

currently support a unified origin for them in their common ancestor. This raises the

question as to why the widespread prokaryotic CRISPR/Cas system was never acquired by

eukaryotes. A possible answer for this comes from the observation that eukaryotes also lost

several other multigene defense systems such as the Restriction-Modification systems (along

with their recently described RNA-targeting components), the Pgl system and toxin-

antitoxin systems [159]. All these systems are themselves mobile, selfish elements that

appear to depend on strong genomic linkage (i.e. existence of operons) for the physical

assembly of their products and neutralization of their toxic components via the linkage of

transcription and translation in prokaryotes. The emergence of the nucleus in eukaryotes,

with the resulting breakdown of transcription-translation coupling rendered such systems

incapable of survival due to the potential danger of the toxic restriction components to the

cell. Indeed, expressions of CRISPR/Cas systems in eukaryotes with appropriate RNA

guides, e.g. type-II systems, introduce double strand breaks in DNA with serious mutagenic

consequences [254, 255]. The eukaryotic RNAi system appears to have been rebuilt by

elaboration around a core formed by the simpler prokaryotic pPIWI-based systems,

specifically those that did not have strong operonic linkages with DNA-targeting

components.

This process appears to have proceeded via: 1) accretion of several components from

unrelated prokaryotic RNA processing and other systems and 2) drawing on components

(e.g. helicases and RNA-binding domains) from the parallel, massive expansion of RNA-

processing systems related to processes such as splicing and polyadenylation that were

emerging or elaborating in eukaryotes. Among the proteins drawn from unrelated

prokaryotic systems are the RdRPs which appear to have been derived from among DdRPs

of distinct phages and selfish elements that were involved in transcription or production of

primers. Likewise, the RNases, namely, RNaseIII, Eri-1-like, Mut7-C, HKD-type Zucchini-

like, LK, and SNase, the methylase Hen1, and the RNA-binding protein Lin-28 all appear to

have been picked up from general RNA-processing and modifying systems in prokaryotes.

To date none of these, barring the general role of RNaseIII proteins in processing Type-II

CRISPR/Cas RNAs [256], have been implicated specifically in a prokaryotic RNAi-like

process. Thus, it appears that their generic ability to handle RNA substrates similar to those

generated in the RNAi system led to their recruitment. We can state with some confidence

that ancestral eukaryotic RNAi system had proteins with two tandem RNaseIII domains, a

PIWI module, the RdRP module, at least a single dsRBD, at least one PAZ RNA-binding
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domain, and the tandem PIWI N-terminal repeat domains. This probably operated on

dsRNA products formed by overlapping s-as transcription, likely initially at protein coding

genes and later at other non-coding and repeat sequences as these began to expand in

eukaryotic genomes. Hence, the origin of the RNAi system of eukaryotes from ancestral

prokaryotic components appears to be rather distinct from the origin of the Ubiquitin (Ub)

system, which also coevally elaborated in the eukaryotes [257–260]. In the latter case the

core components had already developed functional linkages and physical interactions in the

prokaryotes themselves and these interactions were inherited and retained as is in the

eukaryotes [261–263]. The evolution of the RNAi system instead more closely resembles

that of the eukaryotic chromatin modification system wherein numerous components were

picked up from functionally unrelated prokaryotic systems, particularly those involved in

genomic conflicts, and assembled in to an entirely distinct regulatory system in eukaryotes

[246, 264]. However, just as in the case of the Ub-system, the eukaryotic nucleus appears to

have facilitated the evolution of compartmentalized versions of the RNAi system, with

distinct limbs acting in the nucleus and cytoplasm [257]. Nuclear RNAi systems are

primarily concerned with pre-transcriptional regulation through interface with chromatin

modification systems, regulation of polII, and direct interactions with nascent transcripts via

splicing regulation and silencing, while cytoplasmic RNAi systems are primarily involved in

post-transcriptional gene regulation (Fig. 1). The small RNA substrates participating in these

RNAi systems are largely derived from a pool of RNA sources consisting of independently-

transcribed, genome-encoded hairpins, double-stranded structures in larger ncRNA

precursors such as snoRNA, tRNA, invasive RNA, and vRNA, and, most prominently,

double-stranded duplexes formed via s-as transcription. Incorporation of small RNA into

RNAi systems from sources outside of this pool appears to have occurred only on rare

occasions. However, the ability to appropriate such substrates from this pool regardless of

context likely contributed to the expansion of functional roles for RNAi systems outside of

the ancestral role in gene regulation, with examples including DNA repair in the crown

group and exonuclease activation in T. thermophila.

In conclusion, further studies on both the protein components and RNA cargo via deep-

sequencing of the immunoprecipitated PIWI proteins from diverse prokaryotes and

eukaryotes are likely to yield an even-clearer picture of the evolution of the RNAi systems.

Further clarification of the evolutionary principles governing the emergence and

diversification of eukaryotic RNAi systems, such as those discussed here, might help in the

design of synthetic versions of RNAi-like systems.
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Figure 1.
Temporal diagram depicting emergence of RNA substrates (left column) and core and

ancillary protein domains (right column) comprising RNAi systems against the divergence

of major eukaryotic lineages labeled to the left. RNAi substrates are divided according to

potential for acting in the nuclear and cytoplasmic compartments. Protein domains are

depicted by labeled polygonal shapes and are not drawn to scale. Names of the proteins with

the depicted architectures are provided below the domains. Inferred origins for several

proteins are depicted where appropriate. Affixed asterisks indicate uncertainty in terms of

timing of the origins of a RNA substrate or associating protein. Affixed ampersands are

indicative of a protein with a deep phylogenetic origin but potential associations with RNAi

pathways in early lineages remains unexplored. Abbreviations: PNTD1, PIWI N-terminal

domain 1; PNDT2, PIWI N-terminal domain 2, L2, Linker-2 domain; SNase, Staphylcoccal

nuclease; nuc, nuclease; Znk, zinc knuckle; FHA, Forkhead-associated; PPlase, peptidyl

prolyl-cis/trans-isomerase; Znf, zinc finger; dsRBD, double-stranded RNA-binding domain;

HTH, helix-turn-helix; RdRP, RNA-dependent RNA polymerase.
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Figure 2.
General overview of the biogenesis of various classes of small RNA. Extremely generalized

biogenesis pathways for the classes of small RNA listed in Table 2 are provided for

reference. Classes of small RNA cargo are depicted and labelled numerically on the far left.

Domains catalyzing or providing assistance in various lineages at steps in the pathway are

shown in relevant locations. For the temporal timing of the emergence of such domains in

eukaryotic evolution, please refer to Figure 1. Domains contributing to post-transcriptional

modification, degradation, or amplification of small RNAs are shown to the left of each

pathway. For ease in comparison, coloring of RNA and protein domains matches Figure 1.

Proteins/domains which participate in RNAi pathways but cannot yet be clearly assigned to

any specific pathway are not included. Core domains are labelled in white lettering.
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Figure 3.
Loss and expansion events of core RNAi proteins during eukaryotic evolution. Core RNAi

protein components undergoing loss or extensive expansion are listed and labeled with

specific affected lineages in the center columns, plotted against major eukaryotic

evolutionary transitions to the left. Boxes to the far right provide more detailed resolution of

loss and gain events in the kinetoplastid (bottom) and fungal/yeast lineages (top).

Abbreviations: Mael, Maelstrom.
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Figure 4.
Structural anatomy of PIWI N-terminal domain 1 (PNTD1) and PIWI N-terminal domain 2

(PNTD2). (A) Cartoon rendering and topological diagrams of the PNTD1 and PNTD2

domains. PNTD2 has previously been referred to as the Linker-1 domain, however, as these

renderings make clear, the PNTD2 domain emerged via duplication and circular permutation

from the PNTD1 domain, forming a single N-terminal module which is evolutionary present

across all three superkingdoms of Life and is found in architectures outside of the well-

studied classical PIWI architecture depicted in the center of the figure (see also Fig. 5A). β-

strands are colored in orange, α-helices are colored in purple, and extended loop regions are

colored in grey. N- and C-termini are labeled with “N” and “C”, respectively. (B) Cartoon

renderings of the PNTD1/PNTD2 dyad along with the N-terminal leader region containing

the well-conserved asparagine residue. Three protein representatives from the three

superkingdoms of Life are depicted, labeled by species and pdbid at the bottom. PNTD1 is

colored in yellow, PNTD2 is colored in blue, and the leader region is colored in red. The

asparagine residue is rendered as a ball and stick, colored in red, and labeled as “Asn”.
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Figure 5.
Genome associations and evolutionary history of the PIWI domain. (A) Domain

architectures and conserved gene neighborhoods involving the PIWI domain. The inset,

boxed in purple, depicts all known domain architectural themes for the PIWI domain with

the phylogenies and/or PIWI families which contain these architectures provided below.

Individual domains are depicted as labeled, boxed polygons. Outside of the inset,

architectures and conserved gene neighborhoods containing PIWI domains and various

nucleases in prokaryotes are provided. Depicted gene neighborhoods are single
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representatives of a cluster of sequences with the same, conserved neighborhood (for

complete lists, see Further Resources). Conserved neighborhoods and domain architectures

are labeled by species name and gene identifier (gi) number, separated by a semicolon. (B)

Major events in the evolutionary history of the PIWI domain. Emergence of the PIWI

domain from an Endonuclease V/UvrC ancestor, the likely cluster of pPIWI domains from

which the eukaryotic PIWI versions emerged, and the higher-order relationships of

individual PIWI families are depicted. Related groups of pPIWI class I and class II proteins

are labeled in green according to the genome associations observed in (A). The group

containing the recently-published PIWI-IP seq dataset from R. sphaeroides (α-helical

+REase) is denoted with a blue asterisk. Predicted functional shifts for PIWI-centered

systems are labeled in red. Dashed lines indicate uncertainty in terms of the origins of a

lineage or timing of an event. Abbreviations: REase, Restriction endonuclease; put. nuc.,

putative nuclease; H-kinase, histidine kinase.
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Table 1

Selected small RNA deep sequencing in diverse eukaryotic lineages.

Organism Clade Type of dataset References

Human animal vertebrate IP-seq/small RNA-seq [84, 265–267]

mouse animal vertebrate IP-seq/small RNA-seq [47, 268, 269]

Drosophila animal insect IP-seq/small RNA-seq [270–272]

C. elegans animal nematode IP-seq/small RNA-seq [119, 273]

Saccharomyces castellii budding yeast small RNA-seq [167]

Saccharomyces cerevisiae budding yeast small RNA-seq [167]

Schizosaccharomyces pombe fission yeast IP-seq [51]

Magnaporthe oryzae filamentous fungus small RNA-seq [85]

Arabidopsis thaliana plant IP-seq/small RNA-seq [50, 274–276]

Chlamydomonas reinhardtii algal plant small RNA-seq [277]

Entamoeba histolytica amoebozoan IP-seq [60]

Dictyostelium discoideum amoebozoan mycetozoa (slime mold) small RNA-seq [40]

Toxoplasma gondii apicomplexa small RNA-seq [39]

Tetrahymena thermophila chromalveolate ciliate IP-seq/small RNA-seq [59]

Trypanosoma brucei kinetoplastid IP-seq [52]

Trypanosoma cruzi kinetoplastid small RNA-seq [173]

Trichomonas vaginalis parabasalid small RNA-seq [37, 164]

Giardia lamblia diplomonad small RNA-seq [37, 164]
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