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Summary

In longitudinal data analysis, statistical inference for sparse data and dense data could be

substantially different. For kernel smoothing estimate of the mean function, the convergence rates

and limiting variance functions are different under the two scenarios. The latter phenomenon

poses challenges for statistical inference as a subjective choice between the sparse and dense cases

may lead to wrong conclusions. We develop self-normalization based methods that can adapt to

the sparse and dense cases in a unified framework. Simulations show that the proposed methods

outperform some existing methods.
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1. Introduction

Longitudinal models have extensive applications in biomedical, psychometric and

environmental sciences (Fitzmaurice et al., 2004; Wu & Zhang, 2006). In longitudinal

studies, repeated measurements are recorded over time from subjects, and therefore

measurements from the same subject are correlated. One popular framework is to assume

that the observations from each subject are noisy discrete realizations of an underlying

process {ξ(·)}:

(1)

Here Yij is the measurement at time Xij from subject i, {ξi(·)} are independent realizations of

an underlying process {ξ(·)}, εij are errors with E(εij) = 0 and , ni is the number of

measurements collected on subject i, and n is the total number of subjects.

There are two typical approaches to taking between-subject variation into account:

functional principal component analysis (Yao et al., 2005a,b; Yao, 2007; Ma et al., 2012)

and the mixed-effects approach (Wu & Zhang, 2002; Zhang & Chen, 2007). The basic idea

of the latter is to decompose {ξi(·)} into a fixed population mean μ(·) = E{ξi(·)} and a

subject-specific random trajectory υi(·) with E{υi(x)} = 0 and covariance function γ(x, x′) =

cov{υi(x), υi(x′)}. Then (1) becomes
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(2)

The goal is to estimate the population mean μ(·) and construct a confidence interval for it.

Depending on the number of measurements within subjects, model (2) has two scenarios:

dense and sparse longitudinal data. Dense longitudinal data allow ni → ∞ and a

conventional estimation approach is to smooth each individual curve and then construct an

estimator based on the smoothed curves (Ramsay & Silverman, 2005; Hall et al., 2006;

Zhang & Chen, 2007). In sparse longitudinal data, the ni are either bounded or independent

and identically distributed with E(ni) < ∞, and due to the sparse observations from

individual subjects, it is essential to pool data together (Yao et al., 2005a; Hall et al., 2006;

Yao, 2007; Ma et al., 2012).

In practice, the boundary between dense and sparse cases may not always be clear, and such

ambiguity could pose challenges for statistical inference, since different researchers may

likely classify the same data set differently. To address this issue, Li & Hsing (2010)

proposed a unified weighted local linear estimator of μ(x). However, as shown in Section 2,

the latter estimator has different convergence rates and limiting variances under the two

scenarios. Therefore, to construct a confidence interval for μ(x), one should make a

subjective decision whether to treat the data as sparse or dense. In Section 2, we show that

the constructed confidence intervals based on a sparse or dense assumption could differ

substantially, depending on many unknown factors. Another challenging issue is that the

limiting variance function contains the unknown functions γ(x, x) and σ2(x). As shown by

Wu & Zhang (2002), Yao et al. (2005a,b), Müller (2005) and Li & Hsing (2010), covariance

estimation requires extra smoothing procedures.

We develop two unified nonparametric approaches that can successfully solve the

aforementioned issues. First, we establish a unified convergence theory so that inference can

be conducted without deciding whether the data are dense or sparse. Second, the unknown

limiting variance is canceled out through a self-normalization technique, and thus the

proposed methods do not require estimation of the functions γ(x, x) and σ2(x). The first

approach introduces a unified self-normalized central limit theorem that can adapt to both

cases. The second approach constructs a self-normalizer based on recursive estimates of the

mean function. The related methods have been explored mainly under parametric settings

for time series data (Lobato, 2001; Kiefer & Vogelsang, 2005; Shao, 2010). In the

longitudinal setting, our development of the self-normalization method is more attractive

due to the sparse and dense scenario and the more complicated structure such as the within-

subject covariance and overall noise variance function. Simulations show that the proposed

methods outperform some existing methods.

2. Motivation

For model (2), we consider two scenarios: (i) sparse longitudinal data: n1, … , nn are

independent and identically distributed positive-integer-valued random variables with E(ni)

< ∞; and (ii) dense longitudinal data: ni ≥ Mn for some Mn → ∞ as n → ∞.
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Throughout we let f(·) denote the density function of Xij and let x be an interior point of the

support of f(·). Li & Hsing (2010) proposed a sample-size weighted local linear estimator of

μ(x). For technical convenience, we consider the weighted local constant estimator

(3)

where K is a kernel function satisfying ∫ℝ K(u)du = 1 and b > 0 is a bandwidth, with

(4)

The convergence rates and limiting variances are different for sparse and dense longitudinal

data. To gain intuition about this, write

(5)

where the right hand side determines the asymptotic distribution of μ̂n(x), with

(6)

Recall γ(x, x′) = cov{υi(x), υi(x′)}. For j ≠ j′, by E(ξijξij′) = E{E(ξijξij′ | Xij, Xij′)},

(7)

Throughout, cn ≈ dn means that cn/dn → 1. Similarly,

(8)

Applying (7)–(8) to , we obtain

(9)

For sparse case with b → 0, var(ξi | ni) ≈ bf(x)ψK{γ(x, x) + σ2(x)}/ni; for dense case with ni

≥ Mn and Mnb → ∞, var(ξi | ni) ≈ b2f2(x)γ(x, x).

THEOREM 1. Assume Assumption 1 in the Appendix. Let f(x) be the density of Xij. Write

i. Sparse data: Assume nb → ∞ and supn nb5 < ∞. Then
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(10)

where  and τ = E(1/n1).

ii. (ii) Dense data: Assume ni ≥ Mn, Mnb → ∞, nb → ∞ and supn nb4 < ∞. Then

(11)

It is worth mentioning some related results. Li & Hsing (2010) established the uniform

consistency of μ ̂
n(x) with different rates under the sparse and dense cases, but they did not

obtain the asymptotic distribution. Wu & Zhang (2002) also showed that the local

polynomial mixed-effects estimator has different convergence rates and limiting variances

under the two scenarios. Under a Karhunen–Loève representation of longitudinal models,

Yao (2007) studied the sparse case by allowing ni to be dependent on n; see also Ma et al.

(2012).

By Theorem 1, the confidence interval for μ(x) is different under the two cases. Let z1−α/2 be

the 1 − α/2 standard normal quantile. Then an asymptotic 1 − α confidence interval for μ(x)

is

(12)

for sparse data, or

(13)

for dense data. Here, , γ̂(x, x), σ̂2(x), f̂(x) and ρ̂(x) are consistent estimates

of τ, γ(x, x), σ2(x), f(x) and ρ(x). The ratio of the lengths of the two confidence intervals is R

= [ψK τ̂{1 + σ̂2(x)/γ̂(x, x)}/{b f̂(x)}]1/2, which depends on the denseness parameter τ, the

signal-to-noise ratio γ(x, x)/σ2(x), the bandwidth b and the design density f(·). The further

away R is from one, the larger the discrepancy between the two constructed confidence

intervals.

REMARK 1. In the dense case, suppose ni is proportional to Mn → ∞. Theorem 1 (ii) studies the

case Mnb → ∞. If Mnb → 0, then the leading term in (9) is f(x)ψK{γ(x, x) + σ2(x)}b/ni. If

Mnb is bounded away from 0 and ∞, then both terms in (9) are of the same order. If b is

proportional to (nMn)−1/5, then a sufficient condition for Mnb → ∞ is . In many

practical problems, n is about 30–200, Mn is about 10–30, and  is sufficiently large.

3. Unified approaches for sparse and dense data

3·1. A unified self-normalized central limit theorem

The discussion in Section 2 suggests a need for a unified approach. For independent and

identically distributed random variables Z1, … , Zn, de la Peña et al. (2009) gave an

extensive account of the asymptotic properties of the self-normalized statistic
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. In this section, we present a unified self-normalized central limit

theorem for μ̂n(x). For Hn in (4), define

THEOREM 2. Assume Assumption 1 in the Appendix. Suppose nb/ log n → ∞, supn nb5 < ∞ for

sparse data or ni ≥ Mn, Mnb → ∞, nb2/ log n → ∞, supn nb4 < ∞ for dense data. Then

{μn̂(x) − μ(x) − b2 ρ(x)}/Un(x) → N(0, 1) in both the sparse and dense settings.

Many papers treat sparse and dense data separately. For example, Yao et al. (2005a,b), Yao

(2007) and Ma et al. (2012) studied sparse longitudinal data. For the local polynomial

mixed-effects estimator, Wu & Zhang (2002) obtained different central limit theorems under

the two scenarios. By contrast, Theorem 2 establishes a unified central limit theorem, which

can be used to construct a unified asymptotic pointwise 1 − α confidence interval for μ(x):

(14)

While the confidence intervals (12)–(13) require estimation of the within-subject covariance

function γ(x, x) and the overall noise variance function σ2(x), (14) avoids such extra

smoothing steps and can adapt to the sparse or dense setting through the self-normalizer

Un(x).

To select the bandwidth b, we adopt subject-based cross-validation (Rice & Silverman,

1991). The idea is to leave one subject out in model fitting, validate the fitted model using

the left-out subject, and choose the optimal bandwidth by minimizing the prediction error:

(15)

where μ̂(−i)(x) represents the estimator of μ(x) based on data from all but the ith subject.

In practice, it is difficult to estimate the bias b2ρ(x) due to the unknown derivatives f′, μ′, μ″.

In our simulations, we use K(u) = 2G(u) − G(u/ √ 2)/ √2 with G(u) the standard normal

density. Then ∫ℝ u2K(u)du = 0 and ρ(x) = 0. However, this does not solve the bias issue. For

example, if f and μ are four times differentiable, then we have the higher order bias term

O(b4). The bias issue is inherently difficult and there is no good solution so far.

3·2. Self-normalization based on recursive estimates

In this section we introduce another self-normalization method based on recursive estimates.

For m = 1, … , n, denote by μ̂
m(x) the estimator in (3) based on observations from the first m

subjects. Then μ ̂
1(x), … , μ̂

n(x) are estimates of μ(x) with increasing accuracy. Moreover,

μ̂
m(x) has similar asymptotic normality as in (10)–(11). For example, for each 0 < t ≤ 1, the

counterpart of (10) for sparse data is
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. Throughout, ⌊z⌋ is the integer part

of z. Therefore, μ̂n(x) and μ̂
⌊nt⌋(x) have proportional convergence rates and the same limiting

variance, which motivates us to consider certain ratios between μ̂
n(x) and μ̂

⌊nt⌋ (x) to cancel

out the convergence rates and limiting variance.

Since the above analysis holds for all 0 < t ≤ 1, we consider an aggregated version

Throughout c > 0 is a small constant included to avoid unstable estimation at the boundary.

By our simulations, c =0·1 works reasonably well. Intuitively, we may interpret μ̂
m(x), m =

1, … , n, as observations from a population with mean μ(x) and treat μ ̂
n(x) as sample

average. Thus, Vn(x) can be viewed as a weighted sample standard deviation with the weight

m2 reflecting the accuracy of μ̂m(x), and Vn(x) mimics the usual normalizer in the Student-t

distribution.

THEOREM 3. Assume the conditions in Theorem 1. Let {Bt} be a standard Brownian motion.

Then  under either the sparse or the dense settings.

By Theorem 3, an asymptotic pointwise 1 − α confidence interval for μ(x) is μ̂
n(x) − b2 ρ̂(x)

± q1−α/2Vn(x), where q1−α/2 is the 1 − α/2 quantile of the limiting distribution. The latter

confidence interval is the same for both scenarios, with the convergence rate and limiting

variance being built into the self-normalizer Vn(x) implicitly. Our method can be viewed as

an extension of the parametric self-normalization methods in Lobato (2001), Kiefer &

Vogelsang (2005) and Shao (2010) for time series data to the nonparametric longitudinal

model (2).

In practice, however, subjects have no natural ordering, and we can use the average of

multiple copies of  through permuting the subjects. For a large n, since it is

computationally infeasible to enumerate all permutations, we consider only a fixed number,

say T, of random permutations. Denote the corresponding Vn(x) by .

Consider

By the above analysis, the asymptotic distribution of T̃
n(x) is the same under both the sparse

and dense settings. However, it is not clear whether T̃
n(x) is asymptotically normally

distributed. Nevertheless, in light of the asymptotic normality of μ ̂
n(x), the proof of Theorem

3 and , we propose the pointwise confidence

interval

Kim and Zhao Page 6

Biometrika. Author manuscript; available in PMC 2014 June 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(16)

Here z1−α/2 is defined in (12). We call it the rule-of-thumb self-normalization based

confidence interval. Our quantile-quantile studies show that the empirical quantile of Tñ(x)

with 200 permutations matches well with that of N(0, c1) under the settings in Section 4.

4. Numerical results

Following Li & Hsing (2010), we consider the model

where αik ~ N (0, ωk) and εij ~ N(0, 1). Let μ(x) = 5 (x − 0.6)2, Φ1(x) = 1, Φ2 (x) = √2

sin(2πx), Φ3(x) = √2 cos(2πx), (ω1, ω2, ω3) =(0·6,0·3,0·1), and n = 200. Then the variance

function γ(x, x) =0·6+0·6sin2(2πx)+0·2cos2(2πx). Two noise levels σ = 1, 2 are considered.

The design points Xij are uniformly distributed on [0, 1]. For the vector N = (n1, … , nn) of

the number of measurements on individual subjects, we consider four cases

(17)

(18)

Here U[ ] stands for the discrete uniform distribution on a finite set .

We compare six confidence intervals: the two self-normalization based confidence intervals

in (14) and (16) with 200 permutations, the asymptotic normality based confidence intervals

(12)–(13) assuming sparse and dense data, respectively, the bootstrap confidence interval

with 200 bootstrap replications from sampling subjects with replacement, and the

confidence interval

(19)

The confidence interval (19) is practically infeasible as we need to estimate the unknown

functions. Nevertheless, by using the true theoretical limiting variance function in (9), (19)

serves as a standard against which we can measure the performance of other confidence

intervals. When using the local linear method in Li & Hsing (2010) to estimate γ(x, x), we

found that negative estimates of γ(x, x) occur frequently, especially when the noise level σ is

high. For the purpose of comparison, we use the true functions γ(x, x), σ2(x) and f(x) to

implement (12)–(13).

We consider two criteria: empirical coverage probabilities and lengths of confidence

intervals. Let x1 < ⋯ < x20 be 20 grid points evenly spaced on [0·1, 0·9]. For each xj and a

given nominal level, we construct confidence intervals for μ(xj), and compute the empirical
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coverage probabilities based on 1000 replications. For each of the six confidence intervals,

we average their empirical coverage probabilities and lengths at 20 grid points. To facilitate

computations in bandwidth selection, instead of using (15) for each replication, we set b to

be the average of 20 optimal bandwidths in (15) based on 20 replications from each set of

parameter choices.

The results are presented in Table 1. The performance of the confidence intervals (12)–(13)

depends on whether the data are sparse or dense. As we increase the number of

measurements on each subject from the sparse setting N1 to the dense setting N4, (12) under

sparse assumption performs increasingly worse whereas (13) under dense assumption

performs increasingly better. The simulation study further confirms the theoretical results in

Theorem 1 that the confidence intervals (12)–(13) perform well only under their

corresponding sparse or dense assumption. By contrast, the self-normalization based

confidence intervals (14) and (16) deliver robust and superior performance: (i) they have

similar widths but slightly better coverage probabilities than the bootstrap confidence

interval; and (ii) they perform similar to the infeasible confidence interval (19) with true

functions. Finally, (14) and (16) have comparable performance.
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Appendix: Regularity conditions and proofs

ASSUMPTION 1. (i) K(·) is bounded, symmetric, and has bounded support and bounded

derivative. (ii) {υi(·)}i, {Xij}ij, {εij}ij are independent and identically distributed and

mutually independent. Furthermore, the density function f(·) of Xij is twice continuously

differentiable in a neighborhood of x and f(x) > 0. (iii) In a neighborhood of x, μ(·) is twice

continuously differentiable, σ2(·) is continuously differentiable; in a neighborhood of (x, x),

γ(x, x′) = cov{υi(x), υi(x′)} is continuously differentiable. Moreover, γ(x, x) > 0, σ2(x) > 0.

(iv) E{|υi(·) + σ(·)εij |4} is continuous in a neighborhood of x and E{|υi(x) + σ(x)εij |4} < ∞.

Proof of Theorem 1. Let ξi be defined in (6). Recall the decomposition (5). Write

(20)

(21)

By the symmetry of K and Taylor’s expansion, E(νij) = {1 + O(b2)}bf(x), var(νij) = O(b),

E(ζij) = b3f(x)ρ(x) + o(b3), var(ζij) = O(b3). In either the sparse or the dense case, E(νi | ni) =
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E(νij) is non-random. Thus, var(νi) = E{var(νi | ni)} = var(νij)E(1/ni) and

. Write . Then

(22)

Similarly, In = nb3 f (x) ρ(x) + o(nb3) + Op{√(nb3τn)}. Thus,

(23)

Dense case: Under given conditions, δn = op(n−1/2) and

. For distinct j, r, s, k, by the argument in (7),

E(ξijξirξisξik) = O(b4),

. Thus,

. By the Lyapunov central limit theorem,

.

Sparse case: In (5), ξ1, … , ξn are independent and identically distributed. The result follows

from δn = op{(nb)−1/2} and var(ξi) = E{var(ξi | ni)} ≈ bτψK f(x){γ(x, x) + σ2(x)}.

Proof of Theorem 2. By Theorem 1, it suffices to show  for dense data

or  for sparse data. For convenience, write Kij = K{(Xij − x)/b}. Let

(24)

where ξi is defined in (6) and . By Theorem 3.1 in Li &

Hsing (2010), |μ̂(z) − μ(z)| = Op(ℓn) uniformly for z in the neighborhood of x, where ℓn = b2

+ (n/ log n)−1/2 for dense data or ℓn = b2 + (nb/ log n)−1/2 for sparse data. Then

. Using , where ξij is defined in (6), we obtain
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Here we have used . By

, E(Jn) = O(nb). Thus, . By (24)

and the independence of ξ1, … , ξn,

From the proof of Theorem 1,  for dense data or

 for sparse data. By (22), Hn = {1 + op(1)}nbf(x).

Thus, it remains to show χn = o(nb2) for dense data or χn = o(nb) for sparse data. In the

dense case, by the proof of Theorem 1, , and

consequently χn = O{√ nb2 + nb3 + b √ (n log n)} = o(nb2). In the sparse case, by the proof

of the dense case in Theorem 1,

, and thus χn =

O{√ (nb) + nb3 + √ (nb log n)} = o(nb).

Proof of Theorem 3. Recall ssparse(x) and sdense(x) in Theorem 1. Let Γn = nbf(x)/Λn, Λn = √

(nb)f(x)ssparse(x) for sparse data or Λn = b √ nf(x)sdense(x) for dense data. Suppose we can

show the weak convergence

(25)

For convenience, we write  and suppress the argument x. By (25)

and the continuous mapping theorem, (μ̂
n − μ − b2ρ)ℒ2{t(μ̂

⌊nt⌋ − μ̂
n)} → B1/ℒ2(Bt − tB1). By

|n−1⌊nt⌋ − t| ≤ n−1 for t ∈ [c, 1], ℒ2{t(μ̂
⌊nt⌋ − μ̂

n)} is asymptotically equivalent to

ℒ2{n−1⌊nt⌋(μ̂
⌊nt⌋ −μn̂)} = Vn(x), where Vn(x) is defined in Tn(x). This completes the proof.
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It remains to show (25). Recall νi and ζi in (20)–(21). As in (3) and (5),

By Kolmogorov’s maximal inequality for independent random variables,

Thus, similar to (22), H⌊nt⌋ = [1 + Op{b2 + (nb/τn)−1/2}]⌊nt⌋bf(x) uniformly in c ≤ t ≤ 1.

Applying the same argument to (23) gives  uniformly, where δn

is defined in (23). Thus it suffices to show {Wn(t)/Λn}c≤t≤1 → {Bt}c≤t≤1. The finite-

dimensional convergence follows from the same argument in Theorem 1 and the Cramér–

Wold device. It remains to prove the tightness. Let c ≤ t < t′ ≤ 1. By independence,

By the argument in the proof of Theorem 1, in the dense case, ,

and thus Δn(t, t′) = O{|t − t′|/n + |t − t′|2}; in the sparse case, , and

thus Δn(t, t′) = O{|t − t′|/(nb) + |t − t′|2}. This proves the tightness.
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