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In the field of information security, voice is one of the most important parts in biometrics. Especially, with the development of
voice communication through the Internet or telephone system, huge voice data resources are accessed. In speaker recognition,
voiceprint can be applied as the unique password for the user to prove his/her identity. However, speech with various emotions
can cause an unacceptably high error rate and aggravate the performance of speaker recognition system. This paper deals with
this problem by introducing a cost-sensitive learning technology to reweight the probability of test affective utterances in the pitch
envelop level, which can enhance the robustness in emotion-dependent speaker recognition effectively. Based on that technology,
a new architecture of recognition system as well as its components is proposed in this paper. The experiment conducted on the
Mandarin Affective Speech Corpus shows that an improvement of 8% identification rate over the traditional speaker recognition
is achieved.

1. Introduction

Biometric security systems are based on human exclusive and
unique characteristics, such as fingerprints, face, voice, iris,
and retina [1, 2]. These systems are used as an extra barrier to
prevent unauthorized access to protect data by recognizing
the users by their specific physiological or behavioral charac-
teristic. This method is more reliable than the conventional
method because it is based on “something one is” rather than
“something one knows/has.”

With improved research of vocal signals, people’s inter-
actions through internet and mobile devices, such as
phone banking, internet browsing, and secured information
retrieval by voice, are becoming popular in a very rapid way
[3]. There exists a need for greater security as these human-
machine interactions over telephone lines and internet. At the
same time, the powerful and ubiquitous handheld devices,
such as smart phones and handheld computers, may con-
tain a myriad of sensitive or personal information. All the
applications mentioned above put great demand on speaker
recognition based on modeling the speaker vocal tract char-
acteristics, providing secure access to financial information

(e.g., credit card information, bank account balance, etc.)
or other sensitive customer information (e.g., healthcare
records) [4]. Speaker verification provides an extra barrier
to prevent unauthorized access to protect data and enhances
the security offered by personal identification numbers or
user selected passwords. It allows for contactless activation
and mitigates the risks of stolen or lost keys, passwords, or
keycards.

Automatic speaker recognition can be grouped into the
following two classes: speaker verification and speaker iden-
tification. Speaker verification is the process to confirm the
claimof identity anddeclare the person to be true or imposter.
It is inclined to be used in security system using user specified
passcodes for secure user logins. Speaker identification is
the process to determine which one best matches the input
voice sample from a pool of speakers’ voices. Its main
application area is forensics and investigation, where there
is a need to determine the identifier of a person. According
to the type of spoken utterances, speaker recognition can
also be divided into three categories: text-independent, text-
dependent, and text-prompted. In text-independent systems,
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an arbitrary phrase is uttered to recognize the speaker. In text-
dependent systems, a fixed “voice password” is uttered. In
“text-prompted” systems, an instruction is given to ask the
speaker to utter a certain phrase.

Previous work on security-based speaker recognition
systems largely falls within the domain of dealing with
interspeaker variables, like channel and background noise.
However, intraspeaker variables, like emotion and health
state, can also cause an unacceptably high error rate, which
limits the commercial viability of speaker recognition systems
[5]. Driven by rapid ongoing advances in affective computing,
speaker recognition with affective speech (SRAS) is now
becoming a popular consideration of modern speaker recog-
nition research. In real life, we cannot expect the speaker to
be always in neutral or normal mood. Most of the speaker
recognition systems enroll the speaker model with neutral
speech. Such systems could distinguish speakers from the
others accurately when the speaker provides neutral speech
to identify. However, when the recognition step is faced with
emotional speech, like angry speech or delighted speech, the
systems suffer emotional state mismatch between training
and testing stage and the performance deteriorates. We
cannot afford to develop the speaker models in all possible
emotions for improving the performance, which degrades
the user-friendliness of the speaker recognition system. SRAS
becomes important because of the difficulty in acquiring large
number of affective speeches from the speakers.

In sophisticated human-machine interaction, equipping
the computer with the affective computing ability so that
it can recognize the identity of the user is urgently needed
in many different applications [6]. In telecommunications,
the telephone-based speech recognition performance can be
enhanced with the SRAS systems. For example, in route
emergency call applications which service for high priority
emergency calls, the callers experience a panic and scary
scene. Their voice is not neutral any more. In the meanwhile,
SRAS can also facilitate the applications of call centre. In
many cases, the speaker gets disappointed, anxious, or angry
when they call to deal with after-sale services problems. SRAS
can identify and assess the speaker and help the call centre
quickly respond to the disputes as well as achieving the
customers’ satisfaction.

For such applications, it becomes necessary to take into
account the affective impact of speaker recognition so that
the speakers could be recognized even when there is only
affective speech provided for testing. The focus of this work
is to develop a robust intelligent human-machine interface,
which is more adaptive and responsive to a speaker’s identity
in emotional environments. In this paper, we further the
research work in [7] and apply cost-sensitive learning to opti-
mize the classification procedure and system performance.

This paper is organized as follows. In the next section,
we give a review to the related work. The emotional corpus
and emotional speech analysis are introduced in Section 3.
Section 4 is committed to cost-sensitive learning and its
application to speaker recognition. Section 5 discusses the
system architecture. The experiments comparison and result
discussion are presented in Section 6. We close with a
conclusion section.

2. Related Work

In the literature, there are a few studies that focus on speaker
recognition with affective speech. Structure training [8, 9] is
first proposed and noted as a promising approach to address
this problem.Themethod attempts to elicit differentmanners
of speaking during the enrollment and makes the system
become familiar with the variation likely to be encountered
in that person’s voice. Emotion-added modeling method [10]
also attempts to elicit different manners of speaking during
the enrollment.The goal of the systems is to learn not only the
true distribution of the speaker-dependent speech features
but also the influences of various emotions that corrupt this
distribution.

Most of such systems model the speakers with a variety
of affective speech and achieve great success. Dongdong and
Yingchun [11] construct the speaker models with clustered
affective speech.This approach aims at the maximum utiliza-
tion of the limited affective training speech data.Theprosodic
difference is exploited to cluster affective speech, and the
corresponding models are built with the clustered speech for
a given speaker.

Along the way, all these methods mentioned above ask
users to provide additional reading (emotional) speech in the
training stage, which would lead to the unfriendliness of the
system.

On the contrary, other researchers aim to promote the
SRAS performance with only neutral enrolled for training,
by means of adding artificial affective information to neutral
training speech or eliminating the affective information in
the emotional testing speech. Feature domain compensation
aims at adding emotional information to neutral acoustic
features prior to model training. One example is the rules
based feature modification method based on the statistics of
prosodic features [12, 13]. Specifically, the rules of prosodic
features modification of duration, pitch, and amplitude
parameters are derived from a small number of the content
matched source-target pairs. The speaker model is trained
with an aggregation of data with all kinds of the converted
affective speech and the neutral speech.

Krothapalli et al. [6] believe that performance of the
speaker identification system developed using neutral fea-
tures is better with transformed features compared to emo-
tional features. He proposes neural network based feature
transformation framework for mapping the time-aligned
syllable level features from any specific emotion to neutral.
Shahin investigates emotion identification when the database
is biased towards different emotions based on each of HMMs
[14] and SPHMMs [15, 16].

Besides, score domain compensation attempts to remove
model score scales and shifts caused by varying affective
conditions of speakers. An example of score domain com-
pensation techniques is E-Norm [17]. By investigating the
pitch distribution variation under different emotional states,
Li et al. [7] propose an improved pitch envelope based frame-
level score reweighted (PFLSR) algorithm to compensate the
affective effect in both speaker verification and identification
system.ThePFLSR aims to separate the frames that have large
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speaker-emotion variability from the ones that are slightly
affected by speakers’ moods.

Most of the existing speaker recognition systems fail
during affective speech due to emotional mismatch in the
training and testing environments. Considering both the
system friendliness and the algorithm complexity, a prob-
ability reweighted score domain compensation approach is
proposed. The idea of score normalization has been long
acknowledged to speaker verification at both utterance and
frame level [18, 19]. It is widely used for its simplification,
convenience, and excellent result. This work has furthered
the study in [7] and used the supervised learning method to
refine the final score.

3. Database and Speech Analysis

3.1. Database. The affective speech database evaluated in this
paper is Mandarin Affective Speech Corpus (MASC) [20],
which is distributed by the Linguistic Data Consortium. The
speech in the database spans five different emotion types,
which are neutral (unemotional), panic, anger, sadness, and
elation. All the reading material is phonetically balanced,
which covers all the phonemes in Chinese.

68 native speakers are elicited to utter 5 phrases and
20 sentences under five emotional states, as well as 2 extra
neutral paragraphs speech. Each phrase and sentence is
repeated for three times, respectively. Altogether the database
contains 5,100 phrases (e.g., 5 phrases ∗3 times ∗68 subjects
∗

5 emotional types), 20,400 utterances, and 136 paragraphs.
The detailed material is described as follows.

(i) Five phrases: they are “shi de (yes),” “bu shi (no),” and
three nouns as “ping guo (apple),” “huo che (train),”
and “wang qiu (tennis ball).” In Chinese, these words
contain many different basic vowels and consonants.

(ii) 20 sentences: these sentences include 12 semantically
neutral ones and 2 emotional ones for each type por-
traying the four emotional states. Different syntactical
types are also represented in the sentences, which
follow the material design of RUSLANA [21].

(iii) Two paragraphs: they are two readings selected from
a famous Chinese novel, stating a normal fact.

The MASC database is divided into three subsets: devel-
opment set, training set, and evaluation set.The development
set is composed of the speech from the first 18 people. The
training set contains 50 speakers, whose 2 paragraphs of
neutral speech are used to construct speaker models. The
evaluation set is the utterance parts in five types of emotions.
There are 50 such speakers, with 15000 authentic tests and
735000 imposter tests.

3.2. Speech Analysis. Referring to the affective speech, the
prosody is a medium of emotional expression [22]. Phonetic
research demonstrates that prosodic information involves
complex articulatory and cognitive controls in speech [23–
25]. Promising results of emotion classification have been
achieved with the analysis of prosodic feature [26–28].
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Figure 1: Example of segment boundaries estimation for the phrase
“shi de.”The vertical bars represent the segment boundaries from the
critical points of pitch contours.

Prosody feature refers to the variables (range, contour,
and jitter) of pitch, speaking rate, and intensity to convey
nonlexical linguistic and high-lever cues. Among these fea-
tures, pitch reveals the frequency at which the vocal folds
vibrate and relies greatly on broad classes of sounds [29].
Pitch is investigated in this paper to indicate the characters
of different emotion types.

The production of speech is the process of setting the
air in rapid vibration. Periodic air pulses passing through
vibrating vocal chords make voiced sounds, for example, “a”
and “i” while unvoiced sounds such as “s” and “sh” are created
by forcing air through a constriction in vocal tract, producing
turbulence that is more noise-like. In this case, the pitch of an
utterance is discontinuing. We can easily divide speech into
voiced and unvoiced regions by detecting the points where
the pitch contour appears or disappears. Figure 1 shows the
waveform, spectrum, and pitch of phrase “shi de.”The voiced
segment alternates with the unvoiced one. The boundaries of
voiced and unvoiced speech are represented by vertical dotted
bars.Thepitch contour of the voiced speech is defined as pitch
envelope here. The statistics and analysis of pitch parameters
take the pitch envelope as a unit, as it could indicate the
average level of the speaker’s voice frequency, which varies
greatly under different emotional states.

Definition 1. Let 𝐽 = {𝑗
1
, 𝑗
2
, . . . , 𝑗

𝑇
} be a pitch sequence of

an utterance and let 𝑇 be the frame numbers. 𝑗
𝑖
= 0 for the

pitch of unvoiced segments and 𝑗
𝑖
> 0 for the pitch of voiced

segments. The pitch envelope is denoted by 𝐽
∗

= {𝑗
𝑖
| 𝑖 =

𝑛, 𝑛 + 1, . . . , 𝑚} and satisfies the following constraint:

(1) 𝑗
𝑖

̸= 0,

(2) 𝑗
𝑛−1

= 0, 𝑗
𝑚+1

= 0,

(3) 0 ≤ 𝑛 ≤ 𝑖 ≤ 𝑚 ≤ 𝑇.

The mean value of pitch envelope (PEM) can be calcu-
lated as

⇀
𝐽

∗

=
1

𝑛 − 𝑚 + 1

𝑛

∑

𝑖=𝑚

𝑗
𝑖
, (1)

where𝑚 and 𝑛 are the numbers of the start and the end frame
of a pitch envelope.

The pitch of a man’s voice falls under low pitch frequency
(60–250Hz), whereas woman’s voice is of the high pitch
type (120–500Hz). The distributions of PEM for male and
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Figure 2: The probability distribution of PEM for the male (a) and female speakers (b) under the five emotion states.

female are studied separately. Figure 2 shows the probability
distribution of PEM for all the sentences in MASC under the
five emotion states. In particular, Figure 2(a) is the probability
distribution of PEM with male’s speech, while Figure 2(a) is
the probability distribution of PEMwith female’s speech.The
whole pitch frequency from 0Hz to 500Hz is equally divided
into 100 scales with 5Hz width each. For example, the point
“100Hz” on the abscissa represents the scales from 95Hz to
100Hz. The value on the ordinate corresponding to 100Hz
represents the proportion of voiced speech whose PEM falls
in (95, 100) for each emotion. The point (120, 0.1074) means
that there is 10.74% of PEM that falls in (115, 120) scope.
Figure 2 demonstrates the probability distribution of PEM
over 5 emotion types that can be divided into two groups.
The neutral and sadness speech have similar distribution
with smaller mean and variance value. The PEM probability
distribution of anger, elation, and panic has larger mean
and variance value. In this case, we assume that the voiced
speech that has highPEMvalue is heavily affected by speaker’s
emotional mood. We partition the voiced speech into two
groups according to a threshold pitch value: (1) the class
that is highly different from neutral speech mainly includes
the pitch envelop of anger, elation, and panic; (2) the class
that is slightly different from neutral speech, mainly includes
the pitch envelop of neutral and sadness. Both the male and
female’s speech have similar distribution, except that all the
PEM of female are much higher than that of males’.

Thus, we can draw two kinds of important information.
First, the PEM selection parameters should be set differently
for male and female speakers as their dissimilarity distribu-
tion. Second, not all frames of the utterance are impacted
dramatically by affective speech. In the speaker recognition
task, the majority of frames of the test speech give the
maximum probability (rank 1 score) to the target speaker
(TS). In this case, the utterance could be correctly classified.
However, the target speaker could not get the rank 1 score
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Figure 3:The frame-level score rank’s probability density functions
for target speakers and nontarget speakers over 68 subjects in
MASC.

from all the test frames. In particular when the mood state
of speakers shifts from neutral to affective, the vocal and
prosody features are also changed. Some test frames give their
confidence to a nontarget speaker (NTS) mistakenly because
of themismatch of emotions between the speakermodels and
the test utterances. With the number of frames that assign
the maximum probability to the NTS becoming enormous,
the score of the NTS could be comparable or even higher
than that of the TS. Figure 3 shows the frame-level score
rank’s probability density functions for target speakers and
nontarget speakers. The number on the abscissa represents
the rank of score for each frame. For instance, the point
(1, 0.149) in the red curve of target speaker means 14.9% of
frames give the rank 1 score to the target speaker.
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The reason why the test utterance is misclassified is not
due to a nontarget speaker doing well but rather to a true
speaker’s model doing poorly. It is assumed that most frames
still give the maximum likelihood to the target model, as they
are not easily changed with the slight expressive corruption,
while part of the frames that have large variations in 𝐹

0
may

be affected by the emotion state change of speakers, and we
define these frames as bad frames in this paper. To overcome
themistaken decisions induced by bad frames, we strengthen
the roles of the good frames by giving them weight to exhibit
their importance based on cost-sensitive learning.

Combined with the analysis of pitch, we divided the
frames into two parts according to the variation of the 𝐹

0

value. The voiced part with high PEM that is heavily affected
by the expressive speech (HA) is taken as bad frames. On the
contrary, the voiced part that is slightly affected (SA) together
with the unvoiced is considered as good frames.

4. Cost-Sensitive Speaker Recognition

4.1. Definition of Cost-Sensitive Learning. Cost-sensitive clas-
sification is based on a set of weights defining the expected
cost when an object is misclassified. First, we give the
definition for cost-sensitive classification problem.

Let 𝑥 ∈ R𝑛 be a feature vector, let {1, 2, . . . , 𝑁} be the label
set of𝑁 classes, and let 𝐶 be a𝑁∗𝑁 cost matrix with entries
𝑐
𝑖,𝑗
. 𝑐
𝑖,𝑗
are the cost of misclassifying an example of class 𝑖 to

class 𝑗; both 𝑖 and 𝑗 belong to {1, 2, . . . , 𝑁}. 𝑐
𝑖,𝑗

> 0 if 𝑖 ̸= 𝑗 and
𝑐
𝑖,𝑗

= 0 if 𝑖 = 𝑗:

𝐶 =

[
[
[

[

0 𝑐
1,2

. . . 𝑐
1,𝑁

𝑐
2,1

0 . . . 𝑐
2,𝑁

. . . 𝑐
𝑖,𝑗

0 . . .

𝑐
𝑁,1

. . . 𝑐
𝑁,𝑁−1

0

]
]
]

]

. (2)

Here, 𝑐
𝑖,𝑖

= 0 is the correct classification.The expectation cost
of class 𝑖 can be computed by

𝑐
𝑗
=

𝑁

∑

𝑖=1

𝑐
𝑖,𝑗
. (3)

The cost-sensitive learning can be defined as follows.

Definition 2. Let 𝑃(𝑋 | 𝑌) be the unknown joint distribution
of𝑋 and 𝑌. Let 𝐹 be a set of mappings from𝑋 to 𝑌. The cost-
sensitive learning procedure is to select a mapping 𝑓 (𝑓 ∈ 𝐹),
to minimize the risk functional 𝑅(𝑓), defined as

𝑅 (𝑓) = 𝐸
𝑃(𝑋|𝑌)

𝑐
𝑦,𝑓(𝑥)

= ∫[

𝑁

∑

𝑦=1

𝑐
𝑦,𝑓(𝑥)

𝑃 (𝑦 | 𝑋)]𝑝 (𝑥) 𝑑𝑥.

(4)

It is easy to recognize that when given 𝑐
𝑖,𝑗

= 1 if 𝑖 ̸= 𝑗, (4)
reduces to the standard classification.

4.2. Speaker Recognition Task. In the speaker recognition
task, given a group of 𝑁 known speakers model Λ =

{𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑁
} and a sample of test speech with 𝑇 frames,

the likelihood of 𝑋 that belongs to the 𝑖th speaker can be
written as 𝑃(𝑋 | 𝜆

𝑖
) according to Bayes’ rule. In the case that

frames in the utterance are independent, 𝑃(𝑋 | 𝜆
𝑖
) could be

expressed as

𝑃 (𝑋 | 𝜆
𝑖
) =

𝑇

∏

𝑡=1

𝑝 (𝑥
𝑡
| 𝜆
𝑖
) . (5)

Obviously, there are relations between frames and frames,
and the 𝑃(𝑋 | 𝜆

𝑖
) can be rewritten as

𝑃 (𝑋 | 𝜆
𝑖
) =

𝑇

∏

𝑡=1

𝑓 (𝑝 (𝑥
𝑡
| 𝜆
𝑖
)) . (6)

Equation (5) is a special case of (6) when 𝑓(𝑥) = 𝑥.
In the process of computing the test utterance on the

speaker model, the score is always mapped to the log domain
for calculation facilitation as follows:

score (𝑋 | 𝜆
𝑖
) = log𝑝 (𝑋 | 𝜆

𝑖
)

= log
𝑇

∏

𝑡=1

𝑓 (𝑝 (𝑥
𝑡
| 𝜆
𝑖
))

=

𝑇

∑

𝑡=1

𝑓 (log𝑝 (𝑥
𝑡
| 𝜆
𝑖
)) .

(7)

According to the frame selection conducted in Section 3,
the frames in the SA part and unvoiced part are reweighed
to strengthen their confidence to the maximum likelihood
model. Thus, for a special speaker 𝑖, the utterance level score
of a 𝑇 frame speech sequence is defined as

score (𝑋 | 𝜆
𝑖
) =

𝑇
1

∑

𝑡=1

𝑓 (log𝑝 (𝑥
𝑡
| 𝜆
𝑖
)) +

𝑇
2

∑

𝑡=1

log𝑝 (𝑥
𝑡
| 𝜆
𝑖
) ,

(8)

where 𝑇
1
is the number of frames in SA and unvoiced part,

𝑇
2
is the number of frames in HA part, respectively, and 𝑇 =

𝑇
1
+ 𝑇
2
.

Given the frame vector 𝑥
𝑡
in the SA part and the speaker

𝑖, the cost-sensitive function can be assumed as

𝑓 (log𝑝 (𝑥
𝑡
| 𝜆
𝑖
)) =

𝑁

∑

𝑦=1

𝑐
𝑦,𝑖

∗ log𝑝 (𝑥
𝑡
| 𝜆
𝑖
) . (9)

Note that cost matrix 𝐶 only needs to be computed once
when function 𝐿 is defined.

It is obvious that the reweight function should meet the
rule that the frame score and the cost matrix 𝐿 are in direct
ratio.

4.3. Cost-Sensitive Parameters Learning. To deal with the
class-dependent cost-sensitive learning problem, the data
space expansion technique is adapted [30, 31]. Each example
is expanded to𝑁 examples of different classes.The weights of
𝑁 examples are decided based on the loss of the correspond-
ingmisclassifications.When a test utterance is comparedwith
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a certain speaker model, the sum loss of its expanded 𝑁

examples is in proportion to the loss of classifying it to that
speaker model. The details of the expansion technique are
given as follows.

Assume that in a speaker classification task, sample 𝑋 is
assigned to speaker model 𝑌 by classifier 𝑓(𝑋). 𝐶

𝑦
is positive

as well as being not less than the largest misclassification loss
in order to keep weights of expanded examples positive. The
loss of 𝑓(𝑋) on the example (𝑋, 𝑌) is defined as

𝑐
𝑦,𝑓(𝑥)

=

𝑁

∑

𝑖=1

𝑐
𝑦,𝑖

−

𝑁

∑

𝑖=1

𝑐
𝑦,𝑖

𝐼 (𝑓 (𝑥) ̸= 𝑖)

=

𝑁

∑

𝑖=1

𝑐
𝑦,𝑖

−

𝑁

∑

𝑖=1

𝑐
𝑦,𝑖

𝐼 (𝑓 (𝑥) ̸= 𝑖) + (𝐾 − 1) 𝑐
𝑦
− (𝐾 − 1) 𝑐

𝑦

=

𝑁

∑

𝑖=1

(𝑐
𝑦
− 𝑐
𝑦,𝑖

) 𝐼 (𝑓 (𝑥) ̸= 𝑖) −

𝑁

∑

𝑖∈{1,...,𝑁}\𝑦

(𝑐
𝑦
− 𝑐
𝑦,𝑖

) ,

(10)

where 𝐼(𝑥) is a step function with value 1 if the condition in
the parenthesis is true and 0 otherwise.

The expanded examples (𝑋
𝑛

, 𝑌
𝑛

) with weights 𝑤
𝑦,𝑛

are
defined as

𝑋
𝑛

= 𝑋, 𝑌
𝑛

= 𝑛, 𝑤
𝑦,𝑛

= (𝑐
𝑦
− 𝑐
𝑦,𝑛

) . (11)

Substituting (11) into (10), we can get

𝑐
𝑦,𝑓(𝑥)

=

𝑁

∑

𝑖=1

𝑤
𝑦,𝑖

𝐼 (𝑓 (𝑥) ̸= 𝑖) − 𝜑 (𝑦) , (12)

where 𝜑(𝑦) = ∑
𝑁

𝑖∈{1,...,𝑁}\𝑦
𝑤
𝑦,𝑖
.

The loss of𝑓(𝑥) on the example (𝑋, 𝑌) could be computed
by a weighted loss of 𝑓(𝑥) on expanded examples minus
a variable irrelevant to 𝑓(𝑥). The weights can modify the
distribution on (𝑋, 𝑌) and produce a new one as well. In other
words, cost-sensitive learning can be reduced to the standard
classification [30].

5. System Architecture

Our previous work presented a pitch envelope based frame-
level score reweighted speaker recognition framework [7].
The main contribution of this work is to introduce the cost-
sensitive learning to reweigh the score. The testing process of
the proposed speaker recognition system relies on 3modules:
gender identification, PEMbased pitch envelop selection, and
frame-level probability reweighed.

The purpose of the gender identification is to set different
PEM threshold for male speakers and female speakers. This
process is taken before frame selection. Given an utterance,
the Mel frequency cepstral coefficients (MFCC) feature is
extracted and testedwith bothmale and femaleGMMmodels
to produce the likelihood scores.The utterance is classified to
the gender that has higher likelihood score. Corresponding

frame selection thresholds are set and adopted based on the
result of gender identification.

In the process of the PEM based pitch envelop selection,
the variation of pitch distribution under different emotional
states is analyzed and compared with PEM threshold. The
voiced envelop frameswhosemean pitch value is smaller than
threshold and the unvoiced part are chosen for reweighting.

The score reweight step aims to strengthen the confidence
of the selected speech segments and optimize the final
accumulated frame scores over the whole test utterance.

6. Experiment and Discussion

6.1. Experiment Settings. The evaluation task conducted in
the experiments is text-independent and closed-set speaker
recognition. The front end processing of speech single is as
follows. A 13-dimensionalMel frequency cepstral coefficients
(MFCC) vector is extracted from the preemphasized speech
signal every 16ms using a 32ms Hamming window. A
simulated triangular filter bank on the DFT spectrum is used
to compute theMel cepstral vector. Delta-cepstral coefficients
are then computed and appended to the 13-dimensional
cepstral vector, producing a 26-dimensional feature vector.
The speaker classification, the GMM, consists of 32 mixture
components. In the gender identification, two 1024 mixture
GMMs, male and female model, are built with MAP method
using the speech from the development subset.The statistical
𝐹
0
thresholds of PEM for the female andmale speakers are set

as 289Hz and 189Hz, respectively.

6.2. The Baseline System with Neutral Models. The aim of the
first experiment is to capture the fluctuation in the system
performance with various affective speeches. The speaker
models are built with paragraph part on neutral speech, and
the test utterances are in anger, elation, panic, sadness, and
neutral, respectively. Figure 4 gives the verification results
with the five types of affective speech tested independently
with neutral speaker models. The verification performance
will decline greatly when the system is involved with affective
utterances for testing. It is clear that the consistence affective
state of the training and testing utterances is important. The
verification performance for speech in anger, elation, and
panic drops more sharply than that in sadness. It is reported
that the speakers would have a much higher arousal level
mood when they are in the emotion of anger, elation, and
panic than that of sadness [32]. This is one of the possible
reasons that the EER of test speech in sadness state goes down
to 26.1%, while the EER of test speech in other three affective
states have a sharper drop.

6.3. Experiment Results and Discussions. The identification
rates (IR) of the standard accumulated approach and the
CSSR on emotional speech of anger, elation, neutral, panic,
and sadness are shown in Table 1. The enhancement of IR for
speech in anger, elation, and panic achieves 11.94%, 13.53%,
and 9.84%, respectively, which is significantly greater than
that achieved for speech in sadness and neutral. A possible
reason is that when speakers are in the emotion of anger,
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Table 1: Comparison of system performance under different types
of affective speech (%).

Method Baseline CSSR
Anger 21.80 33.74
Elation 22.70 36.23
Neutral 94.40 95.63
Panic 26.30 36.14
Sadness 51.13 54.67
Total 43.27 51.28

False-alarm probability (%)

M
iss

 p
ro

ba
bi

lit
y 

(%
)

0.1 0.2 0.5 1 2 5 10 20 40

Anger: EER = 45.50%
Elation: EER = 46.08%
Neutral: EER = 16.52%

Panic: EER = 44.21%
Sadness: EER = 26.10%

40

20

1

2

5

10

0.5

0.2

0.1

Figure 4: DET curves for the traditional speaker models trained
with neutral speech only.

elation, and panic, they would have a much higher arousal
level mood which makes more speech envelops with high
PEM. In other words, the speech in anger, elation, and panic
has a much greater number of the bad frames. Once the
confidence of good frames are strengthened for the speech,
the identification rates of speaker recognition are easily
promoted.

We also apply the proposed method to speaker verifi-
cation task and compare it with other score normalization
methods, as shown in Figure 5. The performance measured
by the detection error tradeoff function (DET) as well as
equal error rate (EER).The EER is calculated as the operating
point on the DET curve where the false-alarm and missed-
detection rates are equal. Figure 5 shows the promise of the
new approach. Evaluation results clearly show that CSSR
technique outperforms the standard accumulated approach,
T-norm, and ENORM methods for speaker verification on
affective speech.
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M
iss

 p
ro

ba
bi

lit
y 

(%
)

0.1 0.2 0.5 1 2 5 10 20 40

40

20

1

2

5

10

0.5

0.2

0.1

Standard: EER = 33.00%
ENORM: EER = 23.01%
T-norm: EER = 22.49%

PFRLS: EER = 20.96%
CSSR: EER = 19.12%

Figure 5: DET curves for the baseline, T-norm, ENORM, PFLSR,
and CSSR based speaker verification system.

7. Conclusion and Discussion

In this paper, we introduce cost-sensitive learning to speaker
recognition system with emotional speech. Based on an
emotion robustness framework, cost-sensitive parameters are
used to refine the probability of the slightly affected envelops
and to strengthen the confidence of the target speakers.
Promising results are achieved in both speaker identifica-
tion and speaker verification system. In future work, more
effective algorithms of the frame selection and clustering
recognition method [33] may be suggested to be employed
in this system. On the other hand, the emotional parameters
associatedwith specific speakers can also be considered as the
characteristics in the recognition of their speeches [34].
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