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Abstract

1.1. Background—The prevalence of cardiovascular disease is increased with human

immunodeficiency virus (HIV) infection, but the mechanism is unclear. We hypothesized that

HIV increases microvascular reactive oxygen species, thereby impairing endothelial function and

enhancing contractility.

1.2. Method—Subcutaneous microarterioles were isolated from gluteal skin biopsies in

premenopausal, African American, HIV positive women receiving effective anti-retroviral

therapy, but without cardiovascular risk factors except for increased body mass index (n=10) and

healthy matched controls (n=10). The arterioles were mounted on myographs, preconstricted and

relaxed with acetylcholine for: endothelium-dependent relaxation, endothelium-dependent

relaxation factor (nitric oxide synthase-dependent relaxation), endothelium-dependent

hyperpolarizing factor (potassium-channel dependent relaxation) and endothelium-independent

relaxation (nitroprusside). Contractions were tested to endothelium-dependent contracting factor

(acetylcholine contraction with blocked relaxation); phenylephrine, U-46,619 and endothelin-1.

Plasma L-arginine and asymmetric dimethylarginine were measured by high performance

capillary electrophoresis.

1.3. Results—The micro-arterioles from HIV positive women had significantly (% change in

tension; P<0.05) reduced acetylcholine relaxation (-51 ± 6 vs. -78 ± 3%), endothelium-dependent

relaxation factor (-28 ± 4 vs. -39 ± 3%), endothelium-dependent hyperpolarizing factor (-17 ± 4

vs. -37 ± 4%) and decreased nitric oxide activity (0.16 ± 0.03 vs. 0.70 ± 0.16 Δ unit) but

unchanged nitroprusside relaxation. They had significantly enhanced endothelium-dependent

contracting factor (+21 ± 6 vs. +7 ± 2%) and contractions to U-46,619 (+164 ± 10 vs. +117 ±

11%) and endothelin-1(+151 ± 12 vs. +97 ± 9%), but not to phenylephrine. There was enhanced

reactive oxygen species with acetylcholine (0.11 ± 0.02 vs. 0.05 ± 0.01 Δ unit; P<0.05) and
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endothelin-1 (0.31 ± 0.06 vs. 0.10 ± 0.02 Δ unit; P<0.05). Plasma L-arginine: assymetric dimethyl

arginine rates was reduced (173 ± 12 vs. 231 ± 6 μmol·μmol-1, P<0.05).

1.4. Conclusion—Premenopausal HIV positive womenhad microvascular oxidative stress with

severe endothelial dysfunction and reduced nitric oxide and arginine: assymetric dimethylarginine

ratio but enhanced endothelial, thromboxane and endothelin contractions. These microvascular

changes may herald later cardiovascular disease.
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3. Introduction

Highly active antiretroviral therapy (HAART) has prolonged the life of those infected with

the human immunodeficiency virus (HIV), but sadly, they suffer from an increased burden

of many diseases usually encountered in older subjects, such as myocardial infarction [1]

and stroke [2], accompanied by carotid artery remodeling and accelerated arteriosclerosis

[3]. These complications have been related both to HAART [4] and to HIV infection [3].

Small vessel disease contributes to renal glomerulopathy [5], microvascular dementia [6],

congestive cardiac heart failure (CHF) [7] and pulmonary hypertension [8], all of which are

commoner in HIV-infected individuals. Subjects with HIV infection have vascular

inflammation [9] and endothelial dysfunction as assessed indirectly from brachial artery

flow-mediated vasodilatation (FMD) [10]. This has been related in some [11], but not all

[10] studies, to HAART or to increased systemic markers of reactive oxygen species (ROS)

[12].

We reported that subdermal microvessel dissected from a gluteal skin biopsy from patients

with stage 1 chronic kidney disease (CKD), but without overt cardiovascular disease (CVD),

had severe microvascular endothelial dysfunction and impaired nitric oxide synthase (NOS)

activity [13]. These effects were not detected by brachial artery endothelial-dependent flow-

mediated dilation [14]. Thus, we have studied subcutaneous microvessels directly to

investigate the hypothesis that HIV infection in premenopausal women largely free of CVD

risk factors is accompanied by microvascular ROS, endothelial dysfunction and reduced

nitric oxide (NO) and enhanced contractility. We investigated: acetylcholine (ACh)-induced

endothelium-dependent relaxation (EDR); endothelium-dependent relaxation factor (EDRF;

nitric oxide synthase (NOS)-dependent relaxation) and endothelium-dependent

hyperpolarizing factor (EDHF; potassium-channel dependent relaxation) and endothelium

independent relaxation (EIR; sodium nitroprusside (SNP) relaxation) and related these to

microvascular NO generation and to the plasma ratio of L-arginine to asymmetric

dimethylarginine (ADMA) which is the NOS substrate and inhibitor respectively. We also

investigated the endothelium-dependent contracting factor (EDCF; contractions under

spontaneous tone with relaxation pathways inhibited [15].
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Patients with HIV have enhanced arterial and venous thromboembolic disease [2,16],

coagulation [18] and pulmonary hypertension [8] which have been related to thromboxane-

prostanoid receptor (TP-Rs) and/or endothelin 1 (ET-1) signaling [13,19-23]. ROS-

dependent activation of vascular TP-Rs contributes to vasculopathy, inflammation [24] and

atherosclerosis [25], but the roles of ET-1 and TP-R signaling in the vascular disease of

patients with HIV infection has not been explored. Therefore, we also studied microvascular

contractile responses to the stable TP-R agonist, U-46,619 and to ET-1 and compared these

to phenylephrine (PE) which does not cause prominent vascular oxidative stress [15,26].

4. Materials and Methods

4.1. Study population

Self-identified African American premenopausal women (n=10) enrolled in the

Metropolitan Washington Women's HIV Study Group (WHIS) who were free of CVD risk

factors except for increased body mass index (BMI) and had well-controlled HIV were the

test group. All received HAART and all had an HIV viral load<500 copies·ml-1 within 3

months. The control group (n=10) was selected from matched healthy African-American

premenopausal subjects participating in the WHIS. Exclusion criteria for both groups

included: prior stroke, myocardial infarction, kidney or liver disease, dementia,

hypertension, diabetes mellitus or endocrine disease, anemia, dyslipidemia, alcoholism or

current substance abuse, post-menopausal or ovariectomised state or receiving female sex

hormones, a smoker within the last 6 months, abnormal liver function tests, urinalysis or

serum creatinine, inability to comprehend the informed consent or requirement for treatment

other than HAART.

Subject was given a written consent as approved by the Georgetown University Institutional

Review Board. Their seated blood pressure (BP) was measured with an automated apparatus

after 15 minutes of rest with a mean of 3 readings. No subject had a BP ≥ 140/90 mmHg or a

serum creatinine ≥ 1.3 mg·ml-1 or an abnormal urinalysis (except for a trace of protein).

4.2. Preparation of small subcutaneous vessels

A subcutaneous gluteal fat biopsy (approximately 3 × 0.6 × 2 cm3) was placed without delay

in physiological saline solution (PSS) [27] at 4°C. Small arteries (200 to 250 μm in

diameter) were mounted in two isometric, four chamber Mulvany-Halpern small-vessel

myographs (Danish MyoTech, Aarhus, Denmark) [13].

4.3. Microvascular protocols

The resistance vessels were warmed to 37°C, equilibrated for 30 min, and the internal

circumference set to give a wall tension of 0.2 mN·mm-2 [15]. The myograph chambers

were bubbled with 5% CO2 and 21% O2 and maintain at pH of 7.4 [15,27]. Vessels were

contracted three times with norepinephrine (NE) (10-5 mol·l-1), followed by one exposure to

high-potassium (123 mmol·l-1) solution (KPSS) and finally a repeat exposure to KPSS

containing NE (10-5 mol·l-1, NAK). NAK provided the reference contraction [15].

Contractions were maintained for 3 min before rinsing with PSS.
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4.4. EDR, EDRF, EIR and EDCF responses

Two vessels were preconstricted with 10-5 mol l-1 NE and relaxed with acetylcholine (ACh:

10-8 to 10-4mol l-1, EDR) or sodium nitroprusside (SNP: 10-8 to 10-3 mol l-1, EIR). The

EDRF response was the relaxation to ACh in PSS (vehicle) minus the same response with

10-5 mol l-1L-NG-nitroarginine methyl ester (L-NAME) to inhibit NOS. The EDHF response

was the relaxation to ACh in L-NAME pre-treated vessels minus the response after blockade

of calcium activated potassium channels with 10-6mol l-1 apamin (AP) plus 10-5 mol l-1

charybdotoxin (CTX 10-5 mol l-1 [15]. This combination reduced relaxations to 10-4mol l-1

ACh to 2 ± 6% which was similar to endothelium removed (3 ± 4%). EDCF responses were

taken as the contractions to ACh of vessels under spontaneous tone incubated with L-

NAME, AP and CTX to block vasodilator pathways.

4.5. Contraction to PE, U-46,619 and ET-1

Two vessels were contracted with graded concentrations of phenylephrine (PE, 10-8 to

10-5mol), U-46,619 (10-12 to 10-6mol) or endothelin-1 (ET-1, 10-10 to 10-7mol).

4.6. Time control studies

NE contractions were similar at the beginning (85 ± 4%) and end (78 ± 4%) of the

experiments and ACh relaxation were unchanged during incubation in PSS for 30, 60 and

120 min [27] and remained stable over 10 hours (before: 75 ± 3 vs. after 10 hours: 70 ± 5%;

NS)

4.7. Vascular NO and ROS

The assessment of NO activity of microvessels was the same as previously described.

Vessels were by preloaded with 5 × 10-6 mol l-1 of 4-amino-5-methoxyamino-2′,7′-

difluorofluorescein diacetate (DAF-FM DA; Invitrogen, Carlsbad, CA) and10-3 mol l-1 of L-

arginine [28].

For ROS activity, vessels were preloaded with 4-(9-acridinecarbonylamino)-2,2,6,6-

tetramethylpiperidin- 1-oxyl free radical (TEMPO-9-AC; 10-5 mol l-1, Invitrogen, Carlsbad,

CA) [29,30]. One set was prepared for EDCF studies and stimulated with 10-4 mol·l-1 ACh

and another set with 10-7 mol·l-1 ET-1. Excitation was set at 360 nm and emission was

isolated at 460 nm. Incubation with PEG superoxide dismutase (125 units ml-1) prevented

92% of the fluorescence to ACh in vessels from Ang II-infused rats [30].

4.8. Plasma L-arginine, ADMA and symmetric dimethylarginine (SDMA)

These were measured by Beckman Coulter PACE/MDQ High Performance Capillary

Electrophoresis (Fullerton, CA) with Laser Induced Fluorescence Detection (HPCE-LIF) in

plasma as previously described [31]. The intra- and inter-assay coefficient of variations was

3.8% and 4.6% for ADMA, 4.2% and 5.2% for SDMA, and 6% and 6.5% for arginine.

4.9. Statistical analysis

Data are presented as mean ± SEM. Cumulative dose-response experiments were analyzed

by nonlinear regression (curve fit) and differences assessed by two-way, repeated-measures
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ANOVA followed, if appropriate, with Bonferroni post hoc t-tests for multiple comparisons.

A probability value<0.05 was considered statistically significant.

5. Result

The two groups were well matched (Table 1). The CD4 count of patients with HIV averaged

448 ± 40 cell·ml-3. They had been receiving HAART for ≈10 years. Three HIV positive

participants had hypertension, which was fully controlled with a single medication that was

withheld 14 days before. No subject had blood pressure (BP)>140/90 mmHg on the day of

study or more than trace proteinuria and none had an abnormal serum creatinine

concentration. The subjects in both groups were free of other cardiovascular risk factor,

except for increased body mass index (BMI).

A representative tracing of tension developed by gluteal subdermal microvessels from a

control and an HIV-infected patient is shown in Figure 1. NE increased the tension in both

vessels. ACh induced a relaxation at 10-7 mol·l-1 in the control vessel and at 10-6 mol l-1 in

the vessel from the HIV-infected subject that also had a diminished maximum relaxation.

The group studies of relaxation responses are shown in Figure 2 and Table 2. All relaxation

responses to ACh (EDR, EDRF and EDHF) were reduced significantly in subjects with HIV

but the EIR to SNP was unchanged.

The EDCF contractions to ACh (Figure 3) and the contractions toU-49,619 and ET-1

(Figure 4 and Table 2) were enhanced in patients with HIV, but the response to PE was

unchanged.

The DAF-FM-DA fluorescence (NO activity) with ACh was reduced by >3 fold (P<0.001)

in vessels from HIV-infected women (Figure 5A), whereas the ACh- and ET-1-induced

increases in tempo-9-AC fluorescence (ROS activity) were enhanced by >2 fold (P<0.01)

(Figure 5B and 5C).

The plasma levels of L-arginine, ADMA and SDMA were not different between groups but

the L-arginine: ADMA ratio was reduced in women with HIV (Table 3).

6. Discussion

This is the first direct assessment of microvascular ROS, endothelial function and NO and

TP-R and ET-1 contractility in patients with HIV. The main new findings are that these

microvessels had reduced ACh-induced endothelium-dependent relaxation (EDR, EDRF and

EDHF responses) and plasma arginine: ADMA concentration. The defects in relaxation

were endothelium-dependent as the response to the direct acting SNP was not perturbed and

the NO activity was reduced. There was also enhanced EDCF responses and enhanced

contractions to U-46,619 and to ET-1 and enhanced ROS generation with the EDCF and the

ET-1 contraction. The enhanced contractions were selective since those to PE were

preserved.

All patients were premenopausal, African American women without renal, hepatic, or overt

cardiovascular disease except for increased BMI. The infection was well controlled with
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HAART over 10 years. The two groups were well matched for many factors influencing

endothelial function including age, high blood pressure, cholesterol, BMI, blood glucose and

serum creatinine. Thus, the abnormal endothelial functioned was not likely related to

confounding conditions.

Microvascular ROS and endothelial dysfunction are associated with hypertension [26], but

the prevalence of hypertension in HIV has been reported to be reduced [18], unchanged [32]

or increased [33]. The absence of hypertension in our subjects, despite endothelial

dysfunction, microvascular ROS and enhanced contractility, may relate to depletion of

specific CD subsets of T-cells since these patients, although in remission, had diminished

CD4 T lymphocyte counts which prevents the development of hypertension in experimental

animals [34].

HIV leads to systemic oxidative stress from three sources: HIV infection, shed HIV-related

proteins, and HAART [12]. Indirect, brachial artery endothelial-dependent flow-mediated

dilation studies concluded that patients with HIV had impaired [10] or intact [35] endothelial

function associated with protease inhibitors [11], or independent of HAART [10]. However,

conduit artery function [14] does not predict microvascular dysfunction consistently [13,36].

HAART [37] and HIV-1 proteins [12] both caused endothelial dysfunction and oxidative

stress in cells or animals. Thus, the enhanced microvascular ROS and endothelial

dysfunction in the patients were likely the outcome of prolonged HIV infection and

circulating HIV proteins [12], complicated by vascular inflammation and HAART [11].

We confirmed that plasma arginine: ADMA was reduced in HIV-infected patients but our

relatively small study did not detect the very modest increase in plasma ADMA reported

previously [38]. This reduced arginine: ADMA ratio might impair NOS activity by reducing

the substrate: inhibitor ratio, uncoupling NOS to generate O2
·-, or enhancing endothelial

uptake of ADMA [39] and might therefore have contributed to the enhanced microvascular

ROS and reduced NO in these vessels. ROS increased ADMA in the vessels of angiotensin

II-infused rats without changing plasma levels because of impaired cellular ADMA export

[30]. Arginase is increased by inflammation [40]. Thus, the normal plasma ADMA and the

decreased plasma arginine: ADMA of the HIV-infected subject are consistent with

microvascular ROS and inflammation.

Markers of ROS [26,41], the level of thromboxane metabolites [42,43], and ET-1 [42,44]

and expression of TP-R s [45] all are associated with risk factors for chronic renal disease,

CVD and vasculopathy. EDCF is generated by ET-1 which stimulates thromboxane A2(T ×

A2) biosynthesis [46] whereas activation of TP-Rs releases ET-1 [47] and generates ROS

[48,49]. In turn, ROS are required for microvascular EDCF responses mediated by TP-R

[30,50], can enhance responses to TP and ET receptor stimulation [15] and can stabilize TP-

Rs in active form [51]. Thus, increases in vascular ROS in HIV may initiate positive

feedback interactions that may underlie the enhanced EDCF, TP-R and ET-1responses.

Further studies will be required to evaluate these possibilities.

This study has some limitations. First, the sample size is small, but was sufficient to

demonstrate statistically robust conclusion. Second, the source of microvascular ROS was
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not identified. The vessels were fresh vessels dissected from a gluteal biopsy and study of

both vascular function and the ROS source would require more blood vessels than were

available from a single biopsy. Third, while defective microvascular NO can account for the

defective EDRF response, NO does not mediate EDHF response, whose cause was not

identified. Fourth, all the women with HIV were treated with HAART which can contribute

to endothelial ROS and endothelial dysfunction [12,37]. Few HIV-infected subjects decline

HAART, and those that do often have many complications. Thus, the selection of an

appropriate untreated control group will be difficult.

In conclusion, this is the first direct demonstration of severe microvascular oxidative stress,

endothelial dysfunction and NO deficiency coupled with enhanced endothelium-dependent

contractions and contractions to thromboxane and ET-1 in HIV positive subjects without

overt CVD risk factors except for increased BMI.

6.1. Perspective

HIV increases thromboembolism [12,16] and pulmonary hypertension [8] both of which are

related to TP-R signaling [21,22]. ET-1 can cause pulmonary hypertension [19] which is

treated by ET receptor blockade [20]. ET-1 is released by ROS or hypoxia from pulmonary

endothelial cells [23] and by HAART from blood vessels [52]. Therefore, the increased

responsiveness to ET-1 and activation of TP-Rs likely derives from oxidative stress and

could contribute to the development of an EDCF and to the increased risk for

thromboembolism and pulmonary hypertension in HIV.

CVD likely originates with small-vessel disease [42] which underlies CHF, microvascular

dementia, and proteinuric chronic kidney disease and the subsequent development of large

vessel diseases that also are prevalent in patients with HIV. Correction of oxidative stress

reduced vascular ADMA [30]. Our findings suggest potential therapeutic roles for TP-R or

ET-R antagonists for prevention of pulmonary hypertension, thromboembolism, CVD and

microvascular diseases in HIV-infected subjects. This could not be obtained by aspirin

[42,53]. Two current studies suggest this to be urgent. First, in the caliber of the small retinal

vessels of HIV infected subjects predicted mortality independent of HAART but no

mechanism was identified [54]. Second, prophylactic antiretroviral administration to normal

subjects with high risk behavior was recommended for HIV prophylaxis [55]. Since

increasing numbers of normal subjects may be exposed to prophylactic antiretroviral therapy

for prolonged periods, it is important to develop preventative strategies.
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Figure 1.
Drawings from myograph tracings of tension in a subcutaneous resistance arteriole from

normal subjects (control; solid circles) and a subject infected with HIV (open circles).

Norepinephrine (NE) was added to the bath before testing with acetylcholine.
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Figure 2.
Mean ± SEM values for acetylcholine- or sodium nitroprusside-induced relaxations of

subcutaneous vessels from control (broken lines and open circles) or HIV infected

(continuous lines and solids circles) women preconstricted with norepinephrine (10-5

mol·l-1). Panel A endothelium dependent relaxation (EDR). Panel B endothelium

independent relaxation to sodium nitroprusside (EIR). Panel C endothelium dependent

relaxation factor responses (EDRF) in vessels incubated with L-NG-nitroarginine methyl

ester (10-5 mol·l-1); Panel D endothelium dependent hyperpolarizating factor responses

(EDHF) in vessels incubated with L-NAME (10-5 mol·l-1) plus apamin (AP, 10-6 mol·l-1)

and charybotoxin (CTX, 10-5 mol·l-1). P values refer to ANOVA with repeated measures.

Comparing HIV and control subjects at a single dose: *P<0.05, **P<0.01.
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Figure 3.
Mean ± SEM values for endothelium dependent contraction factor responses (EDCF) from

controls (broken lines and open circles) or HIV infected (continuous lines and solid circles)

women in vessels under spontaneous tone incubated with L-NAME plus apamin

+charybotoxin. P values refer to ANOVA with repeated measures. Comparison of HIV and

controls at a single dose: *P<0.05; **P<0.01.
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Figure 4.
Mean ± SEM values for vascular contractions to phenylephrine (PE), U-46,619 or

endothelin-1(ET-1) from controls (broken lines and open circles) or HIV infected

(continuous lines and solid circles) women. P values refer to ANOVA with repeated

measures. Comparison of HIV and controls at a single dose: *P<0.05; **P<0.01.
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Figure 5.
Mean ± SEM values for 10-5 mol·l-1 acetylcholine-induced NO activity (Panel A, DAF-FM

fluorescence) and 10-4 mol·l-1 ACh induced ROS activity in the present of L-NAME plus

apamin and CTX (Panel B, Tempo-9-AC fluorescence) and ROS activity with 10-7 mol·l-1

endothelin-1 (Panel C) of subcutaneous vessels from controls (open boxes) and HIV

infected (closed boxes) women. Compared to control: *P<0.05.
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Table 1

Clinical characteristics of study groups (mean ± SEM).

Parameter Controls (n=10) HIV (n=10) P value

Age (years) 37 ± 2 41 ± 1 NS

Body Mass Index (kg·m-2) 36 ± 4 40 ± 3 NS

Duration of HIV (years) 10 ± 1

Duration of HAART (years) 11 ± 1

CD4+ count (cell·ml-3) 1254 ± 50 448 ± 40 <0.001

Viral load (copies·ml-1) 328 ± 15

Systolic BP (mmHg) 117 ± 3 106 ± 3 NS

Diastolic BP (mmHg) 77 ± 2 65 ± 2.3 NS

Plasma BUN (mg·dl-1) 12 ± 1 11 ± 1 NS

Plasma creatinine (mg·dl-1) 0.80 ± 0.02 0.75 ± 0.01 NS

Total cholesterol (mg·dl-1) 179 ± 6 173 ± 11 NS

HDL cholesterol (mg·dl-1) 47 ± 2 51 ± 5 NS

LDL cholesterol (mg·dl-1) 109 ± 6 98 ± 9 NS

Triglyceride (mg·dl-1) 117 ± 34 124 ± 18 NS

Plasma glucose (mg·dl-1) 81 ± 2 90 ± 4 NS
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Table 2
Maximum changes in vascular tension

Variable Controls (%) HIV (%) P value

EDR -78 ± 3 -51 ± 6 <0.01

EDRF -39 ± 3 -28 ± 4 <0.05

EDHF -37 ± 4 -17 ± 4 <0.01

EIR -88 ± 4 -87 ± 3 NS

EDCF +7 ± 2 +21 ± 6 <0.01

PE +88 ± 6 +102 ± 7 NS

U-46,619 +117 ± 11 +164 ± 10 <0.01

ET-1 +97 ± 9 +151 ± 12 <0.01

Mean ± SEM values. Data were obtained from experiments described in Figures 2-4.
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Table 3

Plasma levels of L-arginine, ADMA and SDMA (mean ± SEM values).

Variable Controls HIV P value

L-arginine (μmol l-1) 101 ± 7 85 ± 6 NS

ADMA (μmol l-1) 0.44 ± 0.02 0.48 ± 0.02 NS

SDMA (μmol l-1) 0.57 ± 0.05 0.46 ± 0.02 NS

L-arginine: ADMA (μmol·μmol-1)89 ± 7119 ± 5† 231 ± 6 178 ± 12 <0.05
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