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ABSTRACT: For biomolecules in solution, changes in configurational entropy
are thought to contribute substantially to the free energies of processes like
binding and conformational change. In principle, the configurational entropy can
be strongly affected by pairwise and higher-order correlations among conforma-
tional degrees of freedom. However, the literature offers mixed perspectives
regarding the contributions that changes in correlations make to changes in
configurational entropy for such processes. Here we take advantage of powerful
techniques for simulation and entropy analysis to carry out rigorous in silico
studies of correlation in binding and conformational changes. In particular, we
apply information-theoretic expansions of the configurational entropy to well-
sampled molecular dynamics simulations of a model host−guest system and the
protein bovine pancreatic trypsin inhibitor. The results bear on the interpretation
of NMR data, as they indicate that changes in correlation are important
determinants of entropy changes for biologically relevant processes and that
changes in correlation may either balance or reinforce changes in first-order entropy. The results also highlight the importance of
main-chain torsions as contributors to changes in protein configurational entropy. As simulation techniques grow in power, the
mathematical techniques used here will offer new opportunities to answer challenging questions about complex molecular
systems.

■ INTRODUCTION

When molecules bind in solution via noncovalent forces or
proteins shift between conformational states, the associated
changes in entropy can be substantial and are typically
commensurate with the corresponding changes in enthalpy
and free energy. As a consequence, the changes in entropy are
important determinants of the equilibrium constants for such
changes in state. The change in overall entropy can itself be
expressed as the sum of two parts:1,2 the change in the solvation
entropy, averaged over the conformational distribution of the
solute(s), and the change in the configurational entropy, which
is associated with the conformational fluctuations of the
solute(s). The configurational entropy depends on the overall
shape and width of the joint probability density function (PDF)
over the solute’s internal coordinates. Prior studies indicate that
changes in not only the solvent entropy but also the
configurational entropy can be substantial. For example, both
NMR and computational studies point to large changes in
configurational entropy when proteins bind other mole-
cules.1,3−10

The configurational entropy depends on the PDF of
individual conformational variables, such as bond torsions,
that is, on their first-order marginal PDFs; but it also depends
on the correlations among these variables. In particular, one

may write the full entropy as the sum of the first-order entropy
and an additional term due to correlation: Sfull = S1 + Sfull

corr.
Intuitively, greater correlation implies lower entropy because
correlation implies less freedom to explore configurational
space for a given set of marginal distributions. However, it is
not yet clear whether there are any physical patterns or rules as
to what types of molecular processes lead to net increases
versus decreases in correlation entropy or how large the
contributions from correlation are likely to be. Correlation
entropy is of particular interest in relation to changes in NMR
order parameters, such as when proteins change conformations
or bind other molecules. These changes are often interpreted,
at least semiquantitatively, in terms of changes in configura-
tional entropy.3,5,9−16 However, such NMR data are not
directly informative about changes in correlation. As a
consequence, it is of interest to consider the nature of
correlation contributions to the entropy changes of interest.
The identification and characterization of correlated motion is
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also of broader interest, as correlations may be indicative of
mechanistic couplings important in phenomena such as binding
and allostery,17−19 and knowledge of the nature and range of
correlations in proteins would contribute insight into the basic
mechanisms of protein motions and function.
The role of correlations as determinants of changes in

configurational entropy has been the topic of a number of
insightful contributions. It has been proposed, based on
empirical relationships among measured NMR order parame-
ters and binding entropies, that changes in correlation entropy
on binding vary linearly with changes in measures of the
entropy that neglect correlation.9,10,15 Encouraging results have
been obtained for relative binding entropies, ΔΔS, among
variants (e.g., mutants) of a given protein−protein system, and
it will be interesting to learn how well such approaches work for
the “absolute” entropy changes associated with binding or
major conformational changes. Another notable contribution
provides evidence, based on extensive molecular dynamics
(MD) simulations, that inter-residue side-chain correlations
lower the absolute configurational entropy by about 10−20%16

of the first-order rotameric entropy. However, it is still of
interest to probe the potential contributions from correlations
involving main-chain torsions, and, again, to examine large-scale
changes like binding and conformational shifts. Another
contribution has argued, based on molecular simulation data,
that changes in correlations do not contribute significantly to
the entropy changes associated with biomolecular functions20

and thus proposed that entropic interpretations of NMR order
parameters may safely neglect any contributions from changes
in correlation; and a prior study of calmodulin,21 using quasi-
harmonic analysis, reached a similar conclusion. The role of
torsional correlations as determinants of binding entropy has
also been addressed through application of the mutual
information expansion (MIE)22,23 to multiple long MD
simulations of a protein−peptide system.24 Interestingly, this
analysis reported large entropic contributions from changes in
pairwise torsion−torsion correlations, including correlations
involving main-chain torsions and the six degrees of freedom
(DOF) specifying the location of the peptide relative to the
protein. These results would suggest that changes in torsional
correlations, including those of the main chain, cannot be safely
neglected. However, although this study provided a reasonably
clear accounting of the strongest pairwise correlations in a large
protein system, there were numerical problems for the many
weak pairwise correlations. In addition, the simulations lacked
the power to estimate third-order and higher correlation terms,
which are also of interest. In summary, despite significant prior
work, there are still important, unanswered questions regarding
the role of torsional correlations as determinants of changes in
configurational entropy.
Today, increasingly powerful techniques for both simulation

and entropy analysis allow comparatively rigorous in silico
studies of the configurational entropy changes associated with
binding and conformational changes. The present study takes
advantage of such techniques to revisit the important topic of
correlation entropy for two molecular cases. The first is the
experimentally studied association, in chloroform, of ethyl-
eneurea with a designed host molecule (Figure 1),25 whose
small size allows correlation terms of order greater than two to
be converged; the second is the 58-residue protein BPTI, where
an available millisecond-duration MD simulation26 allows
calculation of convincingly converged pairwise correlation
terms. This simulation of BPTI has been extensively studied

in a variety of post-analysis works that include investigation of
allostery,27 isomerization rates of disulfide bonds,28 NMR order
parameters,29 and entropy−enthalpy transduction.30 The
results presented here bear on the sign, magnitude, and
determinants of correlation contributions to entropy changes
and hence on the entropic interpretation of NMR order
parameter data.

■ METHODS

We studied the role of correlations as determinants of entropy
changes on binding and conformational change through
analysis of MD simulations. The contributions of pairwise
and higher-order correlations to the entropy were estimated by
applying the MIE and maximum information spanning tree
(MIST)31,32 methods to the simulation trajectories. These
approaches are suitable for the present purpose because they
express the total entropy as a sum of terms accounting for
successively higher-order correlations among the conforma-
tional variables. The following subsections detail the computa-
tional methods applied to both the host−guest and BPTI
systems.

Configurational Entropy of Host−Guest Binding.
Theoretical Framework. The configurational entropy S of a
molecule or supramolecular complex of Na atoms, at standard
concentration, is given by24,33

∫
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Here kB is Boltzmann’s constant, ρ(x ⃗) is the PDF of the
Cartesian coordinates x ⃗ = (x1,...,x3Na

) of the system, C° is a
standard concentration (usually taken as 1 mol/L = 6.022 ×
10−4 molecules/Å3), ρ̃(q ⃗) = ρ[x ⃗(q ⃗)]J(q ⃗) is the PDF of internal
coordinates q ⃗ = (q1,...,q3Na−6), J(q ⃗) is the Jacobian of the
transformation x ⃗→q ⃗, and ⟨·⟩ denotes an expectation value
(mean). The first term in the second line of eq 1 arises from the
overall translation and rotation of the system.
The change, ΔS, of the standard configurational entropy on

the binding of host A and guest B to form the complex AB is
then

Figure 1. Host−guest complex. Bold red bonds indicate the host
torsion angles for which the entropy was computed. Thin green lines
define one distance variable (dashed green, H to O), two angle
variables (N−H−O, H−O−C), and three torsional variables (central
bonds N−H, H−O, O−C), which together define the relative position
and orientation of the two molecules in their bound state. Dashed lines
indicate hydrogen bonds.
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where S̃X, the internal entropy of molecule X = A, B, AB, is
defined by

∫ ρ ρ̃ = − ⃗ ̃ ⃗ ̃ ⃗ + ⟨ ⃗ ⟩S k q q q J q/ d ( ) ln[ ( )] ln ( )X B X X X (3)

which is the entropy of the PDF ρ̃X(q ⃗) of the internal
coordinates of system X plus the term that arises from the
Jacobian JX(q ⃗) of the transformation x ⃗ → q ⃗ from Cartesian to
internal coordinates. Of the three translational−rotational
terms −kB ln(8π2/C°) associated with systems A, B, and AB,
only one survives in the change given in eq 2. Note that an
isothermal change in the configurational entropy S of a system,
defined as in eq 1, equals the change in the full (i.e., spatial plus
momentum) thermodynamic entropy of the system.33 (The
present notation differs from that of ref 33, where a tilde is used
to indicate the internal-coordinate entropy alone.)
The first term on the right-hand side of eq 3 may be

estimated by the MIE or MIST31,32 approaches based on the
Boltzmann sample of internal coordinates, q ⃗i, i = 1,...,Ns
afforded by a molecular simulation. The second term in eq 3
is estimated by a simple arithmetic mean,

∫ ∑ρ⟨ ⃗ ⟩ ≡ ⃗ ̃ ⃗ ⃗ ≈ ⃗
=

J q q q J q N J qln ( ) d ( ) ln[ ( )] 1/ ln[ ( )]
i

N

is 1
s

(4)

where the sum runs over the points qi⃗, i = 1,...,Ns of the same
sample.
Host−Guest Simulations and Entropy Calculations. Stiff

DOF do not contribute much to entropy changes, as their
PDFs change little on binding. Therefore, the present entropy
analysis focused on the soft variables; that is, the eight soft
torsions of the host and, for the bound complex, six additional
DOF specifying the relative position and orientation of the two
molecules that form the complex (Figure 1). The free guest has
no soft DOF and thus was treated as an “inert” participant in
the binding process so that, to a good approximation, the
change in internal entropy is given by

̃ − ̃ + ̃ ≈ ′̃ − ′̃S S S S S( )AB A B AB A (5)

Here S̃AB′ is the entropy, eq 3, of the complex computed based
on only the soft torsions of the bound host and the relative
position/orientation variables. S′A is the entropy, eq 3, of the
unbound host computed using soft torsions only. Thus, the
configurational entropy of a total of 14 internal coordinates had
to be estimated from the simulation of the bound complex and
compared with the corresponding estimate of the configura-
tional entropies of eight internal coordinates from the
simulation of the unbound host. We used the generalized
AMBER force field (GAFF)34 and AM1-BCC35,36 charges to
parametrize our systems. The software package AMBER 1237

with PMEMD GPU support38,39 was used to run the MD
simulations at constant temperature and pressure (NPT).
Production simulations ran for a duration of 5 μs for both the
unbound host and the bound complex, immersed in the solvent
chloroform, which was treated explicitly.40,41 The temperature
was maintained at 300 K by the Langevin thermostat with the
collision frequency scaling set to 1.0 ps−1, and the pressure was
set to 1 bar using the Berendsen barostat with a relaxation time
set to 2 ps. Snapshots were saved every 1 ps, resulting in five

million sample points per simulation. The time series of torsion
angles of interest were computed from the simulation data with
the program CPPTRAJ.42

Entropies were extracted from the torsional time series by
several methods. First, we applied the MIE, where instead of
computing the required marginal entropies by the histogram
method,23,24 we instead used the more powerful kth nearest
neighbor (NN) estimation of entropy;43−45 this combined
approach is termed the MIE-NN method.46 We also directly
applied the NN method to estimate the entropies of the full 8-
and 14-dimensional PDFs of the host and complex,
respectively, using extrapolations in time for multiple values
of k. The extrapolation for each value of k used the
phenomenological function form44 −TSt ≈ −TSt→∞ + ak/t

p,
where ak is fitted separately for each value of k but all values of
k shared the exponent p and asymptote −TSt→∞. Note,
however, that different values of p and −TSt→∞ were fitted for
the free host and bound complex. We use the difference of both
fit curves to estimate −TΔSt→∞. Finally, we also applied the
MIST approximation31,32 in combination with the NN method.
Like MIE, MIST is a systematic, dimension-reduction
approximation based on an information-theoretic expansion
of entropy. Unlike MIE, however, MIST approximations of
increasing order are guaranteed to furnish decreasing upper
bounds of the exact entropy.

Configurational Entropy of a Protein Conformational
Change. For the protein analysis, we limit attention to the
contributions of pairwise correlations, due to the computational
expense of converging higher-order correlation terms. Even the
pairwise contribution can be challenging to compute for a large
system, because the second-order mutual information con-
tributions, which appear in both the MIE and MIST, are greater
than or equal to zero. Thus, even if two torsions are entirely
uncorrelated, their mutual information will approach zero
asymptotically from above with increased sampling. For a
protein, the sum of many spurious positive correlation
contributions from the many torsion−torsion pairs can yield
a misleadingly large estimate of the overall pairwise
contribution to the entropy. Here we address this problem by
a combination of approaches.
First, to maximize convergence, we study a single, 1 ms

trajectory of BPTI in explicit solvent,26 which was generated on
the Anton supercomputer.47 This is much longer than the prior
study of torsion−torsion correlations in protein−peptide
binding,24 which processed 2 μs of simulation trajectories
generated by 200 independent 10 ns runs starting from the
same conformation. The BPTI simulation, which provided over
four million snapshots at 250 ps intervals, used the TIP4P-Ew
water model,48 and, for the protein, the AMBER ff99SB49 force
field with additional corrections to side-chain torsions of
isoleucines was used. The original study of this simulation
decomposed the trajectory into conformational clusters, or
states, based on a kinetic clustering approach.26 Subsequent
thermodynamic analysis30 indicated that Clusters 1 and 2 have
free energies that are equal to within ∼0.5 kcal/mol, but their
total entropies, including both the protein and the solvent
molecules, differ by ∼3.2 kcal/mol. Their configurational
entropies were estimated to differ by over 18 kcal/mol30

based on MIST analysis. This very large difference in
configurational entropy is accompanied by visibly larger
conformational fluctuations for Cluster 2 versus Cluster 1.
Here we expand on the prior thermodynamic analysis30 by
examining the role of torsional correlations as determinants of

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp411588b | J. Phys. Chem. B 2014, 118, 6447−64556449



the large difference in configurational entropy between Clusters
1 and 2.
In addition to using a much longer simulation, we employ

MIST instead of MIE, as the former requires postprocessing
many fewer torsion−torsion pairs. This not only saves
computer time but also, relative to the MIE, reduces the
error from summing many small, potentially spurious pairwise
contributions from large numbers of torsion−torsion pairs, as
previously discussed. We also address the problem of residual
pairwise contributions by repeating the calculations with a
cyclic permutation technique that removes spurious entropic
contributions due to inadequate sampling, as previously
detailed.30 Although the NN method allows well-converged
entropy estimates to be obtained with less simulation data, we
used the histogram method for this study because it allows the
nearly 400 000 mutual information pairs to be processed
considerably more quickly. The subtraction of spurious
correlation from each MIST pair removes numeric bias50 of
the entropy estimate from the histogram method for a given
cluster. Because the spurious correlation estimates are
computed using the same number of frames as the original
mutual information estimate for a given pair, any sample bias
for a given cluster is removed before computing the difference
in entropies between clusters that have different frame counts.
The full bond-angle-torsion coordinate system of BPTI

comprises 889 torsion angles. Treating each of these torsions
separately can lead to trivial high-order correlations;23 we
eliminated these by redefining the torsion angles (Φj) of all of
the torsions that share the same rotatable bond as phase angles
(ϕj) of a single, representative torsion angle (Φi):

51

ϕ = Φ − Φj j i (6)

For BPTI, 500 of the torsion angles are treated as phase angles
in this manner. It should be noted that in our prior analysis of
this simulation30 we accounted only for those phase angles that
had three of the four torsion atoms in common with a master
torsion angle. We now also include any torsion that shares the
two atoms that form the central rotable bond. We also found
very rare rotations of the NH2 moieties within the guanidinium
group of the arginine residues. The rotations are now corrected
to account for their symmetry. These procedural changes
caused the MIST-889c entropy estimate to slightly change from
−TΔS = −18.9 to −18.1 kcal/mol (Table 2).
We also determined whether restricting the set of torsions

included in the entropy calculations to only those most
perturbed by the conformational change affects the entropy
results. We quantified the degree to which a torsion angle’s
PDF changes between Clusters 1 and 2 by computing the
Jensen−Shannon divergence metric (JSDM)52,53 between the
two PDFs. If P is the PDF of a torsion for Cluster 1 and Q is its
PDF for Cluster 2, the JSD metric is given by
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where S() is the Shannon entropy of the PDF in the argument.
The JSDM is zero when the two PDFs are identical and attains
a maximum value of 0.83 when the two PDFs are completely
nonoverlapping; we considered a torsional PDF to be
significantly perturbed if its JSDM between Clusters 1 and 2
was greater than 0.083. Note that, unlike the widely known
Kullback−Leibler divergence,54 the JSDM has the merit of
being unaffected by the ordering of the two PDFs. Computing
the JSDM between two PDFs of the same torsion angle
involves only 1-D PDFs, so we obtained it from a
straightforward histogram method.

■ RESULTS

Configurational Entropy of Host−Guest Binding.
When the host and guest are both free in solution, they both
rotate freely relative to each other, and, for a standard
concentration of 1 M, each effectively occupies its own volume
of ∼1660 Å3.2,55,56 After they have bound to form a
noncovalent complex, their relative rotation and translation is
markedly constrained, and this reduction in rotational and
translational freedom in itself contributes a loss in configura-
tional entropy. Whether the net change in configurational
entropy is unfavorable then depends on how the rest of the
system responds to the binding event. For this small host−
guest system, the overall change in configurational entropy is
found to remain unfavorable, as −TΔSfull = 8.43 kcal/mol
(Table 1). (Note that this entropy change, as well as the others
in this section, includes the −kB ln(8π2/C°) term in eq 2.) Most
of this overall entropy change is manifested in the first-order
entropy contribution, −TΔS1 = 6.03 kcal/mol, which by
definition neglects all correlation contributions. However,
increased correlation clearly plays a role, given the 2.4 kcal/
mol difference between the full entropy, which accounts for
correlations, and the first-order entropy, which does not. Thus,
we find that binding induces increased correlations, which
further oppose binding. This pattern is opposite to a prior
computational result, indicating that proteins with lower first-
order side-chain entropies tend to have partly balancing
decreases in side-chain correlations.16

Much of the change in entropy can be attributed to changes
in the relative rotational and translational DOF of the host and
guest: application of the MIE-NN method to these six key
variables in the bound state yields estimates for −TΔSRT of 5.0,
5.9, and 6.1 kcal/mol, relative to the unbound state, at the first,
second and third orders of the MIE, respectively. It should be
noted, however, that alternative systems of internal coordinates
could give different results for these quantities.2

Table 1. Changes in Configurational Entropy Due to Host-Guest Binding, −TΔSm, Computed at Various Orders m = 1, 2, and 3
of the MIST and MIE Expansions and at Full Order, −TΔSfull, by Extrapolation of NN Results to Infinite Simulation Time (See
Figure 2)a

method −TΔS1 −TΔS2 −TΔS2corr −TΔS3 −TΔS3corr −TΔSfull −TΔSfullcorr

MIE-NN 6.03 8.39 2.37 8.57 2.55
MIST-NN 6.03 7.39 1.37 7.90 1.88
k-NN 8.43 2.40

aCorrelation contributions at each reported order are also reported: −TΔSmcorr = −TΔSm + TΔS1, and −TΔSfullcorr = −TΔSfull + TΔS1. All values are in
kilocalories per mole.
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The roles of pairwise and third-order correlations may be
examined within both the MIE and MIST expansions (Table
1). Interestingly, the MIE at both second and third order agrees
well with the estimate of the full-order entropy, indicating that,
for this method, the pairwise correlations account for the bulk
of the total correlations. However, it should be noted that there
is no guarantee that higher order terms, if computable, would
continue smoothly toward the full-order result. The MIST
approach proceeds more gradually toward the full-order
estimate and, at third order, already captures most of the
correlation present in the full-order estimate.
The correlation contribution identified here is considerably

larger than that previously reported for thermal perturbations of
a series of dipeptides (<0.1 kcal/mol) and the much larger villin
headpiece protein (<0.4 kcal/mol).20 The present result
corresponds to 0.17 kcal/mol change in correlation entropy
per soft DOF of the complex (14 variables) or 0.30 kcal/mol
per soft dihedral angle (8 dihedrals). These values may be
compared with prior results for the binding of a 9-residue
peptide to the 145-residue protein TSG101,24 where changes in
second-order correlation on binding led to an entropy penalty
of ∼0.3 kcal/mol per residue of the protein−peptide system.
Assuming an average of four soft dihedrals per residue, the
correlation entropic penalty is ∼0.075 kcal/mol per soft
dihedral, which is less than the present host−guest result.
This smaller value probably reflects, at least in part, the fact that
the protein has many DOF that are not closely coupled with
the binding site.
The present results are well-converged. Thus, the MIE

results for orders one, two, and three remained constant to
within 0.1 kcal/mol over the simulation time interval 4 to 5 μs,
and the MIST results at the third order were numerically even
more stable than the corresponding third-order MIE results. It
is worth noting that we also attempted to compute −TΔSm at
orders m ≥ 4, but convergence was not favorable, and
extrapolation was not attempted, as the estimates obtained at
different values of k differed from each other to a much greater
extent than those in the full-dimensional k-NN estimates. It
appears that these numerical problems stem in part from the
much greater number of mathematical clusters of variables that
must be analyzed for larger values of the order m (m > 3).
Configurational Entropy of a Conformational Change

in BPTI. A prior 1 ms simulation of the 58-residue protein
BPTI, using explicit water, yielded several different conforma-
tional clusters.26 Subsequent thermodynamic analysis of the
simulation results indicated that the total entropy of the
protein−water system changes by about −TΔS = −3.0 kcal/
mol on transitioning from the more crystal-structure like
Cluster 1 to the more flexible Cluster 2.30 Interestingly, the
change in configurational entropy for this conformational shift
is much larger: the second-order MIST estimates range from
−15.1 to −18.1 kcal/mol (Table 2), depending on methodo-
logical details discussed later. Because the total entropy can be
expressed as the configurational entropy plus an appropriately
defined solvation entropy,1 one may conclude that the strongly
favorable increase in configurational entropy on going from
Cluster 1 to Cluster 2 is largely canceled by an opposing
decrease in solvent entropy. The estimated change in
configurational entropy on going from Cluster 1 to Cluster 2
greatly exceeds that computed for the host−guest system
(previously described). This is perhaps not surprising given the
much larger size of the protein system; on the other hand, a

change in conformational state might be expected to produce a
smaller entropy change than a binding event.
It is of interest to break down the estimated change in

configurational entropy between Clusters 1 and 2 into its first
order and pairwise correlation contributions. At first order, the
increase in torsional entropy on going from Cluster 1 to Cluster
2 is found to be about −21.1 kcal/mol (Table 2), while, as
previously noted, accounting for pairwise correlations reduces
this change to −15.1 to −18.1 kcal/mol. Thus, although the
first-order entropy becomes much more favorable, a concurrent
increase in pairwise torsional correlations effectively cancels out
3−6 kcal/mol of the first-order entropy difference. This
cancelation of 15−30% of the first-order entropy by changes
in correlation is in striking agreement with a prior simulation
study of protein side-chain entropy, previously mentioned.16

However, it is opposite in sense to what we observe for the
host−guest system, above: there, changes in correlation
reinforce, rather than balance, the first-order change in
configurational entropy of binding.
We tested the robustness of the present entropy estimates by

two substantial variations in the method results. First, we
corrected the estimate of each pairwise mutual information
used in the MIST calculations for possible spurious correlation
due to inadequate sampling by subtracting out pairwise
entropies computed with a permuted, and hence entirely
decorrelated, trajectory.30 As shown in Table 2, results with
(MIST-889) and without (MIST-889c) this correction for
possible spurious correlations due to inadequate convergence
differ by only a few kilocalories per mole We also recalculated
both the first- and second-order entropies using only the 157
torsions with greatest JSDMs between Clusters 1 and 2. As
shown in Figure 3, the torsions with the largest JSDM values,
that is, the ones whose PDFs differ most between Clusters 1
and 2, reside in the two loops toward the top of the protein in
this representation. This is not surprising because increased
motion of these loops is a hallmark of Cluster 2, as illustrated in
Figure 1 of a prior study of this simulation.30 The use of only
157 torsions dramatically reduces the total number of mutual
information pairs (12 246 versus 394 716) that need to be
calculated prior to computing the MIST estimate of the
configurational entropy. Even with such a large reduction in the
total number of torsions, the results are all within 2 kcal/mol of
those based on all 889 torsions, for both the uncorrected
(MIST-157) and permutation-corrected (MIST-157c) esti-
mates. The robustness of the overall results to these
methodological variations supports their validity.

Table 2. Changes in Configurational Entropy when BPTI
Switches from Conformational Cluster 1 to Cluster 2,
Reported As −TΔS, in Kilocalories Per Molea

method −TΔS1 −TΔS2 −TΔS2corr

MIST-889 −21.1 −15.1 6.0
MIST-889c −21.1 −18.1 3.0
MIST-157 −20.7 −15.4 5.4
MIST-157c −20.7 −16.2 4.5

aThe first set of results is computed by applying the MIST approach to
all 889 protein torsions, without (MIST-889) and with (MIST-889c) a
correction for possible incomplete sampling, based on cyclic
permutations of the trajectory. The second set results from applying
MIST to only the 157 torsions whose PDFs change most between the
two clusters, based on their JSDM values. Again, results are presented
without (MIST-157) and with (MIST-157c) the permutation
correction. Column headers and units are as in Table 1.
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It is also of interest to determine which parts of the protein
contribute most to the MIST entropy estimates. As a first level
of analysis, we decomposed the change in first-order configura-
tional entropy into main-chain and side-chain contributions and
the change in correlation entropy into main-chain/main-chain,
main-chain/side-chain, and side-chain/side-chain contributions.
As shown in Table 3, the main-chain contribution to the first-

order change is twice the side-chain contribution, and main-
chain/main-chain torsion pairs similarly provide the largest
contribution to the change in correlation entropy, especially
after the permutation corrections are applied. These results
suggest that changes in main-chain torsions play a predominant
role in determining changes in configurational entropy, at least
in the present system, so that a focus on side-chain
contributions16,21 may be unduly limiting.
Figure 4 furthermore visualizes the changes in correlation

throughout the protein structure. The middle panel, which
displays the changes in pairwise mutual information for all
torsional pairs, shows clear diagonal patterning, which indicates
correlation contributions from torsions that are near each other
in protein sequence and hence in space. It also shows large
patches corresponding to the two loops highlighted in the left-
hand panel. As shown in the graph along the top of the heat
map, these loops are also subject to large changes in first-order
entropy. The strong off-diagonal patches associated with loop−
loop correlations mean that correlation contributions are strong
for torsions that are near each other in space yet not in
sequence. Torsion 154 is χ1 of Tyr10 and has an intense stripe
in the side-chain and side-chain/main-chain sections of the heat
map, indicating strong correlations with many other torsions.
Torsions 170 and 264, which are χ2 and χ3 of the disulfide
bridge between the two loops (Cys14-Cys38), also have
particularly intense stripes in the heat map. The right-hand
panel of Figure 4 is the same as the middle one, except that it
only marks those torsion pairs included in the MIST estimate
of the pairwise entropy. Thus, MIST selects only highly
correlated pairs within each conformational cluster, and it is
interesting to see that this procedure focuses attention even
more on the diagonals. Thus, torsions that are near neighbors
in sequence contribute the most to the computed entropy
difference.
The estimated change in pairwise correlation entropy of

about 3−6 kcal/mol corresponds to about 0.05 to 0.10 kcal/
mol/residue for this protein of 58 residues. This may be
compared with the value of ∼0.3 kcal/mol/residue computed
for the TSG101-peptide binding system (above).24 It seems
reasonable that the binding reaction of the TSG101 system
might lead to a larger perturbation per residue than the
conformational change studied here. Inadequate sampling can
cause the correlation entropy to be overestimated, and the net
simulation time of 2 μs for TSG101 is much less than the 1 ms
of time available for BPTI, so convergence could also play a
role in the observed difference. Finally, it is worth noting that
BPTI’s three disulfide bridges may dampen its total configura-
tional flexibility relative to TSG-101, which lacks such structural
constraints.

■ DISCUSSION
The results presented here bear on several aspects of the
contributions of torsional correlations to changes in configura-
tional entropy. A central result is that well-converged
simulations clearly show nontrivial contributions to configura-
tional entropy changes from changes in correlations, for both
binding and conformational change events. For the host−guest
system, the correlation contributions amount to about 40% of
the first-order entropy, and they act in the same sense as the
first-order contribution; that is, they further reduce the
configurational entropy of binding. For the conformational
change of BPTI, the correlation contribution of 3−6 kcal/mol
represents 15−30% of the first-order entropy but now acting in

Figure 2. Convergence of the full-dimensional entropy change,
−TΔSfull, for host−guest binding, estimated by the k nearest-neighbor
method, as a function of simulation time t. Each data point is the delta
entropy estimate between the host and complex for a given value of t
and k, and each line is the difference in the host and complex
phenomenological fit functions for a given value of k, where the fits for
the host and were allowed to approach their own asymptotic values as
t→∞. The fitted values of the exponent p are 0.365 and 0.221, for the
host and complex, respectively. The gray horizontal dashed line at
−TΔSfull = 8.43 kcal/mol indicates delta in asymptotic values for the
host and complex.

Figure 3. BPTI, from two viewpoints, with torsions colored based on
their Jensen−Shannon divergence metric (JSDM) between Clusters 1
and 2. Dark blue represents the minimum possible divergence of 0.00,
and red represents the maximum observed value of 0.75.

Table 3. Decomposition of the Configurational Entropy
Change, −TΔS (kcal/mol), between BPTI’s Conformational
Clusters 1 and 2 into First Order (Main-Chain (M), Side-
Chain (S)) and Correlation (Main-Chain Main-Chain
(MM), Main-Chain Side-Chain (MS), and Side-Chain Side-
Chain (SS)) Contributions

method M S MM MS SS

MIST-889 14.0 7.1 3.6 0.9 1.5
MIST-889c 14.0 7.1 2.4 0.6 −0.2
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the opposite sense; that is, correlation acts opposite to the first-
order term.
The conclusion that correlation contributes significantly to

configurational entropy differences is consistent with a prior
quasiharmonic study using Cartesian coordinates7 and with
MIE23,24 studies using bond-angle-torsion coordinates. It is also
consistent with a recent study that applied MIST to side-chain
rotameric states across a series of different proteins.16 However,
it appears less consistent with a prior simulation study of
peptides and a small protein, which indicated relatively small
contributions from changes in correlation.20 We conjecture that
the apparent inconsistency stems largely from the different
nature of the cases studied. In the prior study, changes in
configurational entropy were computed for five dipeptides in
solution, when T was changed from 270 to 380 K, but perhaps
these small molecules were largely unstructured and uncorre-
lated at both temperatures. For villin headpiece, the prior study
considered only a 20 K temperature change, which may have
been too small to produce much change in overall motion.
Moreover, the villin headpiece simulations at 300 K were
terminated at 70 ns because the protein structure was beginning
to change significantly after 75 ns in two of the runs. Perhaps
continuing the run, so as to include the impending conforma-
tional change, would have altered the findings. Finally, for the
villin study, the small magnitude of the correlation contribu-
tions observed may result in part from the study’s neglect of
inter-residue correlations.20 Interestingly, another prior study,
of calmodulin,21 which also suggested that changes in
correlation entropy are small, likewise studied a temperature
change (295 to 346 K), rather than focusing explicitly on a
conformational change or binding event. In summary, the
current body of evidence seems consistent with a view that
clear-cut conformational changes and binding events tend to be
associated with quantitatively important entropic contributions
from changes in correlation. This conclusion suggests that one

cannot confidently overlook the potential importance of
correlation in the entropic interpretation of NMR order
parameter studies, at least for proteins undergoing well-defined
binding events or conformational changes.
Recently, however, it has been suggested, based on empirical

and simulation data, that the entropy contribution of
correlation is roughly proportional to the first-order entropy,
ΔSfullcorr ≈ −0.17ΔS1, so that a total entropy change may be
estimated as ΔSfull ≈ 0.83ΔS1.

16 Such a regularity would clearly
be useful, given that computing or measuring correlations is
difficult. It also can make intuitive sense, as the entropy of a set
of correlated DOF may require a larger correlation correction if
they become more flexible, at least up to a point, and, indeed,
the present results for BPTI fit the pattern rather well.
However, the host−guest binding results do not fit the pattern.
Here the change in correlation entropy has the same sign as the
change in the first-order entropy, such that ΔSfullcorr ≈ −1.4ΔS1.
In respect of the sign of the relationship, this result agrees with
a prior simulation study of peptide binding by the protein
TSG101.24 It is perhaps worth noting that although greater
correlation necessarily decreases entropy, relative to the first-
order entropy, the change in correlation in the course of some
process may work in either direction. One may speculate, based
on the available data, that binding, in particular, tends to
generate decreases in both first-order and correlation entropy,
but only further study could establish this point. What one may
conclude at this point is that the change in correlation entropy
can, in general, either reinforce or compensate the change in
first-order entropy. As a consequence, entropy changes derived
from changes in NMR order parameters cannot be reliably
assumed to represent either upper or lower limits of the total
entropy change.
The present methodology also affords a detailed look at the

specific torsions and torsional correlations that determine the
computed entropy changes in BPTI. We find that the estimated

Figure 4. Structural analysis of the changes in pairwise correlation between Clusters 1 and 2 for torsions throughout BPTI. Left: cartoon
representation of BPTI with structural features having large correlation annotated by the torsion number (superscripted) and residue number (bold).
Loop 1 (purple) and loop 2 (orange) are connected by the central disulfide bridge (Cys14-Cys38) and show strong intra- and interloop correlation.
Center: Mutual information heat map for all torsion pairs pertaining to the 332 nonphase side-chain and main-chain ϕ/ψ torsions. The first 116
torsions correspond to main-chain torsions starting at residue 1, and the following 216 are side-chain torsions, again starting at residue 1. Main-chain
torsions of loop 1 start at torsion 16 (residue 8) and end at torsion 34 (residue 17). Main-chain torsions of loop 2 start at torsion 69, residue 34 and
end at torsion 86, residue 43. The disulfide bridges are side-chain torsions 264, 313, and 330. Side-chain torsion 154 (Tyr10) shows a noticeable
correlation fingerprint. (Right) The corresponding MIST solution for the same set of torsions. The mutual information and entropy values represent
Cluster 2 minus Cluster 1 deltas and are reported in units of S/kB. Furthermore, each delta in pairwise mutual information had the average delta in
pairwise spurious mutual information (0.0057), as determined by the previous permutation analysis subtracted from its value to minimize numerical
bias.
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entropy difference between Clusters 1 and 2 of BPTI is
associated largely, though not exclusively, with changes in the
conformational distributions of main-chain torsions. This holds
not only at first but also at second order, where changes in
pairwise torsional correlations contribute. Thus, entropy
estimates that neglect main-chain contributions, including
main-chain correlations, risk incurring substantial errors. It is
also of interest that the most significant pairwise correlations
involve torsions that are close to each other in space, either
because they are sequence neighbors or because they are
brought together by the 3-D fold of the protein. It will be
interesting to learn whether longer-ranged correlations are
important for more complex and flexible proteins than BPTI,
which is small and is cross-linked by three disulfide bridges.
An innovative methodological aspect of this study is that it

has presented the first application of the MIE-NN and MIST-
NN methods to a binding problem, albeit a simple one, and the
first MD-based estimation of the change in configurational
entropy on binding at full dimensionality. Such methods can
have broader applicability to larger systems as well, especially
when coupled to the use of information theoretic methods, like
the Jensen−Shannon divergence approach used here, to select
the most relevant DOF and subsequently drastically reduce the
combinatorics associated with MIE and MIST calculations.
Given advancing computer power, exemplified by the milli-
second protein simulation of BPTI, quantitative investigation of
correlations at higher than second order in a system as large as
BPTI may soon become computationally feasible.
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