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Abstract

Understanding the anatomical and functional architecture of the brain is essential for designing

neurally inspired intelligent systems. Theoretical and empirical studies suggest a role for

narrowband oscillations in shaping the functional architecture of the brain through their role in

coding and communication of information. Such oscillations are ubiquitous signals in the

electrical activity recorded from the brain. In the cortex, oscillations detected in the gamma range

(30–80 Hz) are modulated by behavioral states and sensory features in complex ways. How is this

regulation achieved? Although several underlying principles for the genesis of these oscillations

have been proposed, a unifying account for their regulation has remained elusive. In a network of

excitatory and inhibitory neurons operating in an inhibition-stabilized regime, we show that

strongly superlinear responses of inhibitory neurons facilitate bidirectional regulation of

oscillation frequency and power. In such a network, the balance of drives to the excitatory and

inhibitory populations determines how the power and frequency of oscillations are modulated. The

model accounts for the puzzling increase in their frequency with the salience of visual stimuli, and

a decrease with their size. Oscillations in our model grow stronger as the mean firing level is

reduced, accounting for the size dependence of visually evoked gamma rhythms, and suggesting a

role for oscillations in improving the signal-to-noise ratio (SNR) of signals in the brain.

Empirically testing such predictions is still challenging, and implementing the proposed coding

and communication strategies in neuromorphic systems could assist in our understanding of the

biological system.
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This paper describes mathematical models that explain how neuronal networks produce oscillations observed in the brain’s electrical
activity and discusses the hypothesis that these oscillations are potentially important for coding and routing of information.
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I. INTRODUCTION

Neuromorphic engineering aims to design intelligent systems that are inspired by the

nervous system, and can perform valuable functions such as vision, audition, motor control,

and decision making. More specifically, the field aims to understand the key aspects of the

anatomical and functional architecture of the brain that support functions such as

information representation, learning, memory storage, and retrieval in an adaptive and

redundant hardware. In order to implement solutions based on the biological system,

understanding the principles behind encoding and communication of information in the brain

is as important as understanding the physical connectivity motifs that it uses.

A neuron in the central nervous system communicates mainly through fast all-or-none

events called action potentials or spikes in its membrane electric potential. The earliest

theories of neural coding proposed firing rates or the number of spikes generated in a neuron

as the information code used to communicate with other neurons. More recent models of

learning, memory formation, and retrieval in the brain also propose information coding in

the relative firing times of the spikes in a neuronal population [1], [2]. Empirically observed

oscillations within populations of neurons, and synchronization between oscillating

populations have been suggested as signals used by the brain to encode and decode

information in relative spike times.

Since oscillatory brain activity is observed during many cognitive functions, it is

hypothesized to shape the functional architecture of the brain during cognitive processing. In

this paper, we propose a novel mechanism for regulating such oscillations and thereby their

functional role in an intelligent system such as the human brain. While excellent reviews of

the extensive empirical and theoretical literature exist elsewhere (e.g., [3]-[5]), we begin by

briefly summarizing the empirical evidence on oscillations during behavior and the related

theoretical ideas about their functional role.

II. OSCILLATIONS IN THE BRAIN: EXPERIMENTS

Empirical evidence in humans and other mammals shows that when the subject is

performing sensory processing and cognitive tasks, neural activity in the cerebral cortex is

accompanied by narrowband fluctuations in firing rates, local field potentials (LFPs), and

electroencephalograms (EEGs) (summarized in [6] and [7]). During slow wave sleep,

oscillations in delta (2–4 Hz) range are prominent [8]. In rodents, oscillations in the 4–7-Hz

or theta range accompany exploration and the formation as well as retrieval of a spatial map

of its environment [9]. Oscillations in the 30–80-Hz or gamma frequency range are

associated with arousal, working memory [10], and attention [11]. During cognitive tasks in

humans, sustained oscillations in the gamma range [12] are induced in the prefrontal cortex

[13], and their power increases in proportion to the task load [14]. During sensory

processing, gamma range power in LFPs recorded in the related sensory area of the cerebral

cortex is significantly enhanced following stimulus onset [Fig. 1(a)] [15], [16]. Abnormal

gamma oscillations are a hallmark of cognitive disorders such as schizophrenia [17], autism

[18], and language-learning impairments [19]; in the frontal cortices of infants, reduced

gamma range power predicts language and cognition deficits at five years of age [20].
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III. OSCILLATIONS IN THE BRAIN: THEORY

Theoretical work has proposed various functional roles for neural oscillations [3], [23]-[26],

both for coding and communication, some of which also find empirical evidence.

A. Oscillations Enable Phase Coding

Oscillations have been suggested to facilitate phase coding, whereby the magnitude of total

input to a neuron is converted to the position of its output spikes relative to the ongoing

oscillation [24], [25], [27]. In both the hippocampus and neocortex of the brain, empirical

data indicate that strongly excited neurons fire earlier in an oscillation cycle with a higher

probability than those excited less strongly [28]-[31]. In the hippocampus, a phenomenon

called phase precession has provided some of the best evidence for the functional role of

theta oscillations in phase coding: the phase of a cell firing relative to the ongoing theta

oscillations has been shown to advance systematically as the moving animal passes through

the cell’s preferred location in space [28]. This mechanism enhances spatial coding and

assists in the formation of assemblies of cells to represent movement trajectories.

B. Oscillations Synchronize Neural Assemblies

Oscillations in a neural ensemble synchronize the firing of participating neurons, which, in

turn, could subserve important coding and communication roles such as feature binding and

efficient communication.

1) Oscillatory Synchronization Facilitates Feature Binding—It has been

hypothesized that neuronal spikes become synchronous if they participate in the encoding of

related information [4]. This temporal binding has been suggested to underlie feature

binding at higher levels of the visual processing hierarchy. Experiments in the visual cortex

of multiple species show that adjacent neurons synchronize their action potentials in the

gamma band such that either individual neurons or the population exhibit oscillatory

behavior when optimally stimulated [15], [32]-[35].

2) Oscillatory Synchronization Enables Dynamic Routing of Information—
Oscillations could also facilitate dynamic coupling between brain areas [24], [25]:

Appropriate modulation of phase coupling between a pair of oscillating areas can enhance

the functional connectivity between the two. This is also termed as communication through

coherence. While this functional role for brain oscillations is not well established

empirically, recent studies provide some evidence. Simultaneous recording of neural activity

from two brain areas—frontal eye field (FEF) and visual area V4—shows that oscillatory

coupling between them is strengthened at gamma frequencies, when the subject is paying

attention [36]. It is thought that strong coupling with phase shifts comparable to the

communication delays between areas could ensure that spikes from one area arrive at the

peak phase of neuronal membrane potential in the target area to be maximally effective in

their influence. More recently, it has been hypothesized that neural oscillation-based

multiplexing mechanisms, similar to those used in telecommunication systems between a

receiver and multiple transmitters, implement selective neural communication [26].
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The proposed functions for brain oscillations are still under investigation [7], [37] as

establishing their causality requires manipulating the oscillations independent of the

stimulus or behavioral state. In a parallel effort, computational studies have explored models

for the neural mechanisms underlying the observed oscillations (summarized recently in

[7]). These models can provide insights into studying brain oscillations empirically, and

guide their implementation in artificial systems. These models could also be used to

theoretically explore ways in which oscillations can be regulated from within and outside the

neural population in which they emerge. Equally importantly, the gained insights could shed

further light on novel roles or interpretations of oscillatory brain states.

IV. MODELS OF NEURAL OSCILLATIONS

Empirical and theoretical studies have shown that oscillations in the cortex are mediated by

inhibitory neurons [22], [27], [38], [39]. Inhibitory neurons act to reduce the electrical

excitability of their target neurons, either by reducing the input resistance of their neuronal

membrane or by making their membrane voltage more negative. Gamma-range oscillations

in the cortex are thought to be mediated by inhibitory neurons that target the soma (cell

body) of the electrically compartmentalized pyramidal neurons [40], [41]. These oscillations

typically occur with irregular firing of single neurons, with each individual neuron skipping

multiple oscillation cycles [37], [42]. Such oscillations are hence thought to emerge not

through oscillatory spiking of individual neurons, but from the coordinated interaction of

neurons. These interactions can cause oscillations in a neuronal network in a couple of ways

that are broadly referred to as inhibitory neuron–network–gamma (ING) or pyramidal

neuron–inhibitory neuron–network–gamma (PING) [22] (Fig. 1). Empirical evidence from

gamma range oscillations in response to visual stimulation suggests that they are of the

PING type [37], [43], [44]. Oscillations within PING architecture depend on strong

excitatory–inhibitory feedback, but can emerge either due to communication delays (e.g.,

conduction delays along axons) [45] or due to positive feedback (recurrent excitation) [46].

Noisy versions of such models produce irregular firing of individual neurons and

oscillations with noisy phase [42], [45], [47]. Other models for how narrowband activity

emerges in the cortex suggest that the detected signal is the bandpass-filtered output of the

local cortical network whose input resembles broadband noise [48] or that the oscillations

result from quasi-cycles or population-level resonant oscillations caused by noise-induced

excursion of damped oscillations in a nonlinear network [47], [49].

V. REGULATION OF GAMMA OSCILLATIONS

Many of the computational models of oscillations have a frequency range of oscillations that

is constrained by biophysical “constants” such as conductance delays or the decay of

inhibitory postsynaptic currents (IPSCs) [38], [45], [50]. Others offer dynamic regulation of

the peak oscillation frequency with the intensity of input to the network: stronger the input,

faster the oscillations. Empirical observations suggest that brain oscillations are dynamic in

their frequency as well as amplitude: They can be modulated by brain states, stimulus

properties, or attention.
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A. Oscillations Reflect the Balance of Excitation and Inhibition in the Network

LFP oscillations in the gamma range have been proposed to reflect the strength of synchrony

in neuronal populations, and find empirical support in several cortical areas [51], [52]. In the

primary visual cortex (V1), the attentive states as well as several stimulus properties regulate

the mean firing rates and oscillations in a highly correlated manner. The peak frequency of

these oscillations increases with contrast which also increases the mean firing rates [37], but

decreases with the stimulus size which decreases the mean firing rates [44]. When the

contrast of visual stimulus is varied in space, the peak gamma frequency correspondingly

varies between nearby cortical sites (about 400 μm apart) [37]. When the contrast is slowly

varied in time, the peak frequency rapidly changes to match the contrast [37]. Spatial

attention, which increases the mean firing rates in the local cortical network, increases the

peak frequency of gamma [37], while reducing their power [43]. Since mean firing rates

reflect the balance of excitation and inhibition experienced by the local network, the

empirical data from V1 suggest that both the power and frequency of gamma range

oscillations reflect this balance.

B. Regulation of Oscillations in an Inhibition-Stabilized Network

Local networks of excitatory (E) and inhibitory (I) neurons in the cortex are thought to

operate in an inhibition-stabilized network (ISN) regime [53], which is characterized by

strong self-excitation within the E population stabilized by feedback inhibition from the I

population. This regime explains the paradoxical withdrawal of local inhibition during the

phenomenon of surround suppression in V1 neurons [54]. We have recently proposed a

mechanism for the regulation of oscillations in an inhibition-stabilized E–I network that

captures the changes in gamma as observed in V1 [55]. In a PING network of stochastically

firing neurons with strong excitatory–inhibitory feedback and recurrent excitation, our

model demonstrates oscillations whose power and frequency reflect the balance of input to

the local excitatory and inhibitory neurons (Fig. 2). Such networks can exhibit narrowband

oscillations that are noisy versions of the underlying deterministic limit cycle phenomenon

in a firing rate model [47]. Nonlinear bifurcation analysis of limit cycle phenomenon in the

firing rate model suggests several regimes of their amplitude/power regulation [56], [57]. In

the following sections, we use a combination of approximate analysis and confirmatory

simulations of a firing rate model to propose a novel constraint on the model that allows it to

operate in a regime that captures the empirical observations for both power and frequency

regulation. The constraint allows it to regulate limit cycle oscillations by balancing the input

to the excitatory and inhibitory neurons, suggesting that it underlies the observations in our

stochastic model.

C. Firing Rate Model

The simplified firing rate model

(1)
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(2)

describes the coevolution of excitatory (rE) firing (rI) population rates in time as a function

of external input (iE and iI) to both E and I populations. (iE and iI) indicate the rate at which

the populations approach their steady-state firing rates. GE and GI are response functions:

they map the firing rates of the two neural populations as a function of their net inputs [46],

[54]. The steady-state firing rate of each population is determined by the weighted sum of

individual activities and the external input. Weights WEE, WEI, WIE, and WII are positive

numbers representing strength of connections between E–E, E–I, and I–I populations,

respectively. For example, WEE represents the product of the average number of recurrent

excitatory contacts per cell and the average postsynaptic current arising from one

presynaptic action potential. The steady-state network behavior is determined by the

intersection of the drE/dt = 0 and drI/dt = 0 curves in the rErI-plane [red and blue curves in

Fig. 3(a), third panel].

D. Oscillations in the Firing Rate Model of an ISN

When sufficient stimulation pushes the ISN out of a stable equilibrium, it can result in stable

oscillations in the E and I firing rates [46]. Previous theoretical work has shown that in a

network of spiking neurons such oscillations are present purely at a population level, and

can be weak or absent at the level of a single neuron [45]-[47]. It has been previously

observed that the frequency of these limit cycle oscillations is regulated by stimulus

intensity in a monotonic fashion: it increases with increasing input to the excitatory

population [46]. Analytical treatment also suggests model regimes in which either increasing

or decreasing input to the inhibitory population increases the power in oscillations [57], [58].

However, it is not known if and how the model network can operate in a regime where the

power, frequency, and mean firing rate regulation match empirical observations as seen in

V1. To analyze these properties, we used the simplified rate model [46], [53], [59] described

in (1) and (2).

Result 1 Increased Input to I Population Can Reduce Oscillations Frequency
and Increase Their Power—Simulations of the ISN model with sigmoid response

function (Appendix A) showed that there was an input regime in which increasing input to

the I population not only reduced the mean E and I firing rates as expected, but also caused

stable oscillations [Fig. 3(a)]. Characteristic of an ISN [53], [54], the mean local E and I

population firing rates covaried when we independently modulated the input to each

population [Fig. 3(b)]. The input to the E population increased the mean firing rates of both

populations, while the input to the I population decreased it. There was a subspace of inputs

over which the network showed sustained oscillations [Fig. 3(c)]. The oscillation power as

well as frequency varied with the inputs in a nonmonotonic fashion over the entire subspace.

The oscillations in the rate model exhibited a behavioral regime in the input subspace in

which increasing the input to the I population not only reduced the mean firing rate, but both

increased the power and decreased the frequency of network oscillations.
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Result 2 An I Population With Superlinear Response Function Causes
Oscillations With Lower Frequency and Higher Power—To investigate why an

increased input to the I population caused slower and stronger oscillations in only part of the

input subspace that caused oscillations, we revisited the characteristics of the expected

bifurcation in the nonlinear network model when input to the I population was increased

(Appendix B).

a) Modulation of oscillation power by the input to the I population: Our analysis

predicted that the power in the oscillations depended on the shapes, and hence the slopes, of

both the E and I response functions (Appendix B3). The predicted relationship between

oscillation power and the estimated slopes of the response functions showed good

correspondence with the simulation data [Fig. 3(d)]. The qualitative prediction for power

varied roughly with the ratio SlopeE: SlopeI of the response functions of the two

populations. We investigated the relative shapes of E and I response functions for which the

ratio would increase with increased input to the inhibitory population (Appendixes B1 and

B2), revealing two alternate criteria:

1. a highly superlinear I response function and a sublinear, linear, or weakly

superlinear E response function;

2. a highly sublinear E response function and a superlinear, linear, or weakly

sublinear I response function.

When the network oscillated in a range where the response curves satisfied one of the above

criteria, increasing input to the I population would cause more powerful oscillations per our

qualitative prediction. Analyzing the data from model simulations with sigmoid response

functions confirmed that the subspace of the inputs where the first criterion was satisfied

coincided with the region where the phenomenon was observed (Fig. 4).

b) Modulation of oscillation frequency by the input to the I population: Our analysis

predicted that the frequency of oscillations also depended on the shapes of both the E and I

response functions, but in a more complex way (Appendix B4). The predicted slope-based

estimate of frequency was approximate but in close qualitative agreement with the

simulations in the rate model [Fig. 3(d)]. The predicted frequency varied roughly with the

product SlopeE × SlopeI of the two populations. We investigated the relative shapes of E and

I response functions for which the product would decrease with increased input to I

population (Appendixes B1 and B2), revealing three alternate criteria:

1. a superlinear response function for both E and I populations;

2. a highly superlinear response function for the E population and a weakly nonlinear

response function for the I population;

3. a highly superlinear response function for the I population and a weakly nonlinear

response function for the E population.

When the network oscillated in a range where response functions satisfied one of the above

criteria, increasing input to the I population would cause lower frequency oscillations per

our qualitative prediction. Analyzing the data from model simulations with sigmoid
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response functions confirmed that the subspace of the inputs where the third criterion was

satisfied coincided with the region where the phenomenon was observed (Fig. 4).

Combining the independent qualitative criteria on response function slopes for the power

and frequency modulation of interest, our analysis predicted that when an oscillating ISN

was constrained to operate with strongly superlinear I response function and a weakly

nonlinear E response function, the oscillations power would increase and frequency decrease

with increased input to the I population. To illustrate this with the simplest scenario, we

simulated the nonlinear rate model with piecewise and bounded power-law I response

function and linear E response function (Appendix A). The simulation data confirmed the

predictions from the analysis of the linearized system over a large portion of the input range

in which the network showed oscillations [Fig. 5(b)].

Result 3—Increased Input to the E Population Increases the Frequency but
Decreases the Power in Oscillations—Properties of ISN predicted that independently

increasing the input to the excitatory population would increase both E and I firing rates

(Appendix B1). Constrained by the relative E/I response function shapes developed in

Result 2, the analysis (Appendixes B3 and B4) predicted that independently increasing input

to the excitatory population would decrease the power of network oscillations and increase

their frequency. Simulations in the nonlinear firing rate model confirmed the predictions

[Fig. 5(b)].

Result 4—The Balance of Input to Both E and I Populations Determines the
Frequency and Power of Oscillations—The analysis for the ISN with strongly

superlinear inhibition predicted the following outcomes for the co-modulation of the two

drives (Appendices B1–B4).

1. Higher frequency lower power oscillations accompanied by increased output firing

rates: The oscillations would be faster and less powerful when the co-modulation of

inputs increased the output firing rate for both populations.

2. Lower frequency higher power oscillations accompanied by decreased output firing

rates: The oscillations would be slower and more powerful when the co-modulation

of inputs suppressed the firing rates of both populations.

In addition, the analysis predicted that the changes in population firing rates (and, hence, the

response slopes) were not limited to covariation. When both inputs were changed, firing

rates of E and I populations could vary in different directions, and by different amounts,

depending on the balance of change of the inputs to the two populations [Appendix B1, Fig.

3(c)]. Thus, the qualitative predictions for power and frequency changes not only depended

on the absolute strength of the individual inputs, but also the effectiveness of their balance in

changing the response slope of the two populations; a sufficient change in the slope was

necessary for causing change in the power or frequency of oscillations. For differential

sensitivity of power and frequency to the balance of the inputs, our analysis predicted two

more scenarios:

3) power-only modulation of oscillations;
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4) frequency-only modulation of oscillations.

Simulations in the nonlinear rate model demonstrated all four scenarios, including the

frequency-only and power-only changes in network oscillations [Fig. 5(c)]. When we

estimated the slope of I response function from the simulation data during frequency-only

and power-only modulation, we confirmed that the co-modulation was not along the most

effective direction for changing the slope of I response function. In summary, when the

inputs to the E and I populations were co-modulated, the direction of change (increase/

decrease) of their balance as well as the change in their absolute strengths determined their

overall effect on the oscillations in the network.

VI. DISCUSSION

In the brain, electrical activity that is triggered by sensory processing, cognitive tasks, and

changes in internal states shows narrowband oscillations in spike rates, LFPs, and EEGs.

Extensive theoretical work and some empirical evidence suggest a functional role for such

oscillations in coding and routing of information in the brain. Oscillations in the cortex are

modulated both by internal states and external sensory stimuli. Although interactions

between populations of excitatory and inhibitory neurons underlie these oscillations, how

they are dynamically regulated is not well understood. In this study, we investigated a

simplified and well-known model E–I network that parsimoniously captures the paradoxical

behavior of gamma range oscillations observed in recent recordings from visual cortical

neurons [37], [44], and is based on the connectivity regime of the local cortical network

[53], [54]. Powerful oscillations emerge when inputs to the E and I populations result in a

reduction of local activity. Oscillations grow faster when the inputs to the E and I

populations result in an increase of local activity. Our analyses and simulations show that

the inhibitory population constrained to operate with a strongly superlinear response curve is

crucial to this demonstrated behavior. The deduced constrains find support in the empirically

determined response characteristics of the excitatory (E) and inhibitory (I) neural

populations involved in these oscillations.

A. Empirical Support for the Constraint on Response Nonlinearity

Our model predicts that the inhibitory neurons involved in the gamma-generating E–I

network operate in the superlinear portion of their response characteristics, consistent with

measurements of cortical neurons operating in the superlinear range of their rate versus

membrane potential (F − Vm) [60], characteristics under stimulus-driven conditions [61].

When constrained by the experimental observations on gamma oscillations, the model also

predicts that such inhibitory neurons operate in a strongly superlinear (compared to the

excitatory population) portion of their response characteristics. A basis for this difference

may lie in the higher firing rates and lower adaptation of fast-spiking inhibitory neurons

[62], which are thought to be crucial to gamma range oscillations in the cortex [40], [41].

Additionally, recent empirical data from cerebral cortex have reported evidence for a

stronger superlinearity of inhibitory neurons than excitatory neurons [63]. Even in the

absence of such evidence, our qualitative analysis shows that relative strength of

connections within and between populations can differentially constrain the operating range

of each population during network oscillations (Appendix B4). Other nonlinear mechanisms
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that we have not considered here and merit further consideration, such as synaptic

facilitation/depression, could also come into play in shaping the response functions of the

two populations. The response functions in our model are the response of a neuronal

population to a linearly increasing input; the actual transformation of the input quantity such

as stimulus properties or focus of attention into synaptic currents can be nonlinear and

provide yet another mechanism to differentiate the response properties of the excitatory and

inhibitory populations.

B. Implications of the Analysis

1. Connectivity Regimes Can Achieve Functional Specialization: When gamma

power in our constrained model increases with increasing input to the inhibitory

population, consistent with experimental evidence [40], it is also accompanied by

suppression of the local E/I firing rates. This is supported by visual cortical data

showing that when a strong gamma signal is recorded at a site, it co-occurs with

reduction of multiunit firing rates [44], and that the reduction applies to both

excitatory and inhibitory populations [54]. The model thus predicts that cortical

inhibitory neurons that have strong reciprocal connections with local excitatory

neurons in an ISN-type overall connectivity participate in stimulus-induced

gamma. Thus, firing rates of inhibitory neurons responsible for gamma oscillations

would co-vary with the excitatory activity. On the other hand, the firing rates of

inhibitory neurons not responsible for gamma generation would anti-vary with the

excitatory activity in the network. Given the recent empirical characterization of

the properties of different types of inhibitory neurons [64] in the cortex, this

suggests that although many inhibitory neurons have essentially similar local action

at a neuronal membrane, the cortical architecture ensures functional specialization

of inhibitory neurons at the network level.

2. Oscillations May Improve Signal-to-Noise Ratio (SNR): Empirical evidence in the

cortex [16], [44], [65] and our modeling shows that strong gamma co-occurs with

reduced firing rates [55]. Reduced firing rates of neurons can degrade the SNR for

their downstream neurons. However, the signal degradation experienced by a

downstream neuron pooling from neurons with reduced firing rates could be

compensated for by improved spike synchrony (as a population). Although this is

theoretically possible and there is some empirical evidence [51], it is not known if

this strategy is indeed exploited for reliable communication by the neural

machinery.

3. The Regulation Mechanism Is Not Specific to Gamma Range Oscillations: In

addition to the regulatory mechanism we propose here, the frequency of

oscillations in the model also depends on the connection strengths in the network

[(12) and (13)]. Changes in the strengths of inhibitory feedback (E-to-I and I-to-E)

are predicted to shift the range of narrowband oscillations in the model accordingly.

Thus, although the regulatory mechanism discussed here primarily explains

empirical data on gamma range oscillations, it is applicable to oscillations in any

other frequency band with a similar underlying oscillatory mechanism: an ISN–

PING.
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C. Relation to Other Computational Models of Oscillations

1. Regulation of Oscillation Frequency: The regulatory mechanism discussed here

demonstrates a richer modulatory effect of external inputs than previously shown in

other models of network oscillations [5]. For example, models involving I

population or ING-type oscillations predict an increase in frequency [38], [50]

when the input to I neurons is increased. In our model, increasing the input to the

inhibitory neuronal population may increase or decrease or not change the

frequency of oscillations, depending on how the input to the E population is co-

modulated.

2. Role of I–I Coupling in an E–I Model: Although strong I–I coupling is essential for

oscillations in ING models [45], [50], it has been generally understood to be

inconsequential for oscillations in the PING models [45], [46], [66]. Our analysis,

when constrained by experimental data, reveals a novel role for I–I coupling in the

E–I models of gamma: without sufficient I–I coupling, the network can oscillate

and undergo frequency modulation, but is not predicted to demonstrate the

modulation of power with changing input to the neuronal populations (Appendix

B1).

3. Alternate Mechanisms: In a network of stochastically spiking neurons, oscillations

can emerge as quasi-cycles with varying amplitude and phase [47]. Bandpass

filtering of broadband noise is an alternate model for such oscillations [48], and

frequency and power modulation in these models has been used to propose an

alternate interpretation of data in the visual cortex [67]. In the broader context of

brain oscillations, any one model would most probably explain a subset of the

empirical data on brain oscillations. The local architecture, types of neurons, and

their biophysical properties vary widely in different brain areas, potentially

necessitating other alternate mechanisms to capture the genesis as well as

regulation of these oscillations.

VII. CONCLUSION

Oscillations in the electrical activity of the brain have been recorded for close to a century,

and the last few decades have seen extensive theoretical exploration of how they might

influence cognitive function during behavior. We have recently proposed a regulatory

mechanism for such oscillations in a spiking network model that captures their observed

modulation in empirical data. Here, we explored the probable underlying mechanism in a

simplified model of interactions between excitatory and inhibitory neural populations. In the

past, empirical challenges in independently and precisely manipulating brain oscillations

have hampered progress in testing theoretical ideas. However, the recent technical advances

will hopefully allow some of these ideas to be tested in alert brains. Nonetheless, the related

theoretical ideas and models could inspire novel coding and communication strategies in

engineered systems.
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APPENDIX A

RESPONSE FUNCTIONS OF NEURONAL POPULATIONS

The response function for each subpopulation (GE and GI) represents the proportions of E/I

cells firing for a given level of input activity x. The different response functions used for the

simulations were sigmoidal:

piecewise power law:

piecewise linear:

(3)

In (3), τE/I is the threshold level of net input below which the value of the response function

is 0. The slopes mE/I reflect the different rates at which E and I population response changes

as a function of the input.

APPENDIX B

LIMIT CYCLE OSCILLATIONS IN A TWO-POPULATION NETWORK MODEL

By examining eigenvalues of the linearized system and using other analytical criteria,

previous works have explored the parameter conditions under which such a network can

exhibit nonlinear phenomena such as hysteresis and stable limit cycles [46]. They predict

that when the network is in the ISN regime, it can exhibit stable oscillations over a range of

inputs (iE and iI). For sigmoid response functions, such as the logistic function shown in (3),

transition of the model network from stable nonoscillatory behavior to stable limit cycle

oscillations has been mapped previously [56]-[58]. Here, we restate the basic results and

derive approximate analytical functions showing the dependence of stable limit cycle

frequency and power on response function shapes and hence the inputs.
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The Jacobian or the linearization matrix of the model network [described by (1) and (2)] in

the ISN regime is given by [53], [56]

(4)

where

The eigenvalues of the Jacobian J are the solution λ to the following equation, known as the

characteristic equation:

(5)

Solving (4) and (5) gives the eigenvalues λ of the ISN in terms of the network parameters

[53] as described in

where

(6)

When the ISN is operating in the positive slope region of E and I nullclines [drE/dt = 0 and

drI/dt = 0 curves in Fig. 3(a)], and WEE is sufficiently large, the real part of eigenvalues [see

(6)] can transition from negative to positive values in an input-dependent fashion. This

happens when the response functions GE and GI are nonlinear, and, hence, their slopes (sE

and sI) vary with the inputs (iE and iI). It can be shown that by meeting additional criteria

[56], [68], the network can transition to stable oscillations [56], [58]. This transition can

occur in more than one way depending on how the two inputs are varied. A transition,

known as supercritical Andronov–Hopf bifurcation, occurs when the dynamics of the model

network change from a stable equilibrium to stable oscillations via a pair of purely

imaginary eigenvalues as described in

(7)

The strength of the network inputs at which the transition occurs (σ = 0) known point. is as a

the bifurcation For network with fixed connectivity, the bifurcation is determined by the

slope of the response function at a given level of input [(6) and (7)]. The change in the slope
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of response function with input depends on how E and I firing rates vary with the network

inputs.

1) Modulation of E and I Activity by the Network Input

The steady-state activity of the E and I population in our rate model in the ISN regime can

be described as a function of the input to the two populations [53]

where

(8)

Equation (8) indicates that, when the inputs to the two population are co-modulated, the

extent of modulation of E and I population activity is determined by the balance of inputs.

The criteria in (8) for modulation of the E and I activities can be restated as follows:

(9)

2) Modulation of the Slopes of Response Functions by the Network Input

In the ISN regime, input to the E population facilitates/increases both the E and I firing

rates, and input to the I population suppresses/decreases both firing rates [see (8)]. If the

response function G is nonlinear, then the slope will vary independently with the inputs to

the two populations in the following way: superlinear portion of GE/I:

sublinear portion of GE/I:

(10)

3) Power of Oscillations

When a nonlinear system such as the firing rate E–I model goes from steady-state activity to

small amplitude oscillations through supercritical Andronov–Hopf bifurcation, it can be

shown that the amplitude of oscillations depends on σ in (6) and a scaling term a that

depends on the system parameters [68]
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or

(11)

Since the power of an oscillating signal is proportional to the square of its amplitude, our

analysis in the firing rate model predicted that the power in the population oscillations

depended approximately on σ [see (6)] and hence the slopes of the response functions

(12)

4) Frequency of Oscillations

The frequency of the oscillations that emerge via the set of conditions we explore here [see

(7)] is accurately given by ω [see (6)] at the threshold level of input (iE or iI) or the

bifurcation point [68]. For other levels of network input, the expression is corrected with an

amplitude-dependent term [68]. Thus, the oscillation frequency (cycles per second) in our

firing rate model was approximately given by

(13)

APPENDIX C

SIMULATION OF THE TWO-POPULATION MODEL

Simulation Parameters

Table 1 shows the parameter values used for generating the simulation data. Given the

values of time constants, the connection weights were chosen such that the frequency of

oscillations in the model was in the gamma range.

Simulation Environment

The network was simulated using Matlab 2012a (The MathWorks, Natick, MA, USA).

Power Spectrum

Power spectral density of the average activity signal was estimated nonparametrically by

calculating the discrete-time Fourier transform of the signal.
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APPENDIX D

THEORETICAL ESTIMATION OF OSCILLATION POWER AND FREQUENCY

The estimate of mean firing rates was obtained by averaging over 200 ms of the simulation

data. For sigmoid response function, the slope of response functions, as plotted in Fig. 4,

was calculated from the mean rates using the relationship in

(14)

The estimate of slope along with the connection weights in the network was used to

calculate the theoretical estimate of eigenvalues [see (6)] as well as the trends for frequency

and power as per (19) and (13) [Fig. 1(b)]. For the choice of power law response function

[see (3)], the slope of I response function, as plotted in Fig. 3(d), was estimated from the

mean rates using the relation in

(15)
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Fig. 1.
Oscillations are detected as narrowband increase in the power spectrum of electrical activity

in the brain. (a) Power spectral density of LFPs recorded with a penetration electrode from

the visual cortex of a macaque in response to visual stimulation (green). Dashed black curve

shows the power spectrum of LFP recorded before visual stimulation. The trace and

schematic in the inset shows 1 s of LFP time series (green) in response to visual stimulation.

Data adapted from [21]. (b) and (c) Alternative models for local network mechanisms of

oscillations [22]. (b) A schematic for inhibitory (I) neuronal network model for oscillations,

also known as ING. (c) A schematic for excitatory (E)-inhibitory (I) neuronal network

model for oscillations.
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Fig. 2.
Regulation of narrowband oscillations with the balance of inputs to the excitatory (E) and

inhibitory (I) neurons. (a) Schematic of the E–I network model with 800 E and 200 I

neurons. Panel on the right shows spike times for a fixed level of constant input to the E and

I neurons for 200 ms. Dots in each row represent spike times in one neuron, both E (red

dots) and I (blue dots). The overlaid trace (green) shows fluctuations in mean spikes/second

of the population calculated in 5-ms bins. (b) Power spectral density estimate of 1-s duration

of spikes per second shown in (a). Dashed lines mark the peak power and peak frequency of

the narrowband increase in power. (c) Normalized peak power and peak frequency plotted

as a function of the ratio of inputs to the I and E populations. (d) Normalized peak power

and peak frequency plotted as a function of mean spikes per second of the population. Data

adapted from [52].
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Fig. 3.
Regulation of limit cycle oscillations as a function of inputs to the E and I populations. (a)

Simulation of the model described by (1) and (2) as an ISN with sigmoid E and I response

functions. iE and iI are the external excitation to the two populations. Traces in the middle

show time evolution of E firing rate for a fixed level of iE and two different levels of iI (low:

black trace; high: green trace). Panel on the far right illustrates coevolution of E and I firing

rates in a phase plot. Red and blue curves are the E and I nullclines, respectively. (b)

Simulation results for E and I firing rates as a function of the two external inputs. (c)

Simulation results for power and frequency of oscillations as a function of the external

inputs. (d) Predicted trends for the variation of power and frequency of oscillations with

external inputs (see Appendix B). The white contour in panels (b), (c), and (d) bounds the

approximate analytical prediction (σ = 0 and ω2 > 0 from Appendix B) for oscillatory region

(i.e., power > 0). The area bound by dashed white line marks the subregion where the

analysis predicts the oscillation power to increase and frequency to decrease with increasing

iI.
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Fig. 4.
Inhibitory neuronal (I) population with a strong superlinearity facilitates regulation of

oscillations similar to empirical observations. (a) Schematic on the top depicts the shape of

E response function and its slope at different levels of input. Estimated response function

slopes (middle panel) and superlinearity (bottom panel) of E population as a function of

inputs to the E and I populations. The superlinearity measure was computed as second

derivative of the response function. Solid white contour in the panels bounds the

approximate analytical prediction for oscillatory region (i.e., power > 0). The area bound by

dashed white line marks the subregions where oscillation power increased and frequency

decreased with increasing iI, as described for Fig. 3. (b) Same as in (a), but for inhibitory

population.
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Fig. 5.
Simulations in the rate model. (a) Response functions used for the E and I populations. (b)

Power and frequency of oscillations with independent modulation of input to the I

population (left panels) and the E population (right panels). The numbers next to the curves

show the fixed levels of iE (left panel) and iI (right panel) at which the simulations were

performed. (c) Contour plots of variation of peak power (green) and peak frequency

(orange) as a function of input to the E and I populations. The figure shows most of the

region where the network shows stable oscillations and both E and I populations have

nonzero firing rates. (d) Estimated slope of the I response function for the range of external

inputs shown in (c). The direction guide (bidirectional arrows) indicates the directions for

most (black) to least (white) effective directions of input co-modulation for changing the
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slope of I response function. Overlaid on top are example iso-power (green circles) and iso-

frequency (orange squares) modulation of network oscillations from (c).
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Table 1

Canonical Model Parameters

WEE WIE WEI WII τE(ms) τI(ms)

16 20 26 I 20 10

mE mI θ E θ I Response function (G)

1 1 5 20 Sigmoid

.25 1 Linear (E)

.005 12 Power-law (I)
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