
Original article

BioC implementations in Go, Perl, Python

and Ruby

Wanli Liu1, Rezarta Islamaj Doğan1, Dongseop Kwon2,

Hernani Marques3, Fabio Rinaldi3, W. John Wilbur1 and

Donald C. Comeau1,*

1National Center for Biotechnology Information, National Library of Medicine, National Institutes of

Health, 8600 Rockville Pike, Bethesda, MD 20894, USA, 2Department of Computer Engineering, Myongji

University, Yongin, Republic of Korea and 3Institute of Computational Linguistics, University of Zurich,

Zurich 8050, Switzerland

*Corresponding author: Tel: 301 435 5887; Fax: 301 480 2290; Email: comeau@ncbi.nlm.nih.gov

Citation details: Liu,W., Islamaj Doğan,R., Kwon,D., et al. BioC implementations in Go, Perl, Python and Ruby. Database

(2014) Vol. 2014: article ID bau059; doi:10.1093/database/bau059

Received 31 January 2014; Revised 23 May 2014; Accepted 27 May 2014

Abstract

As part of a communitywide effort for evaluating text mining and information extraction

systems applied to the biomedical domain, BioC is focused on the goal of interoperabil-

ity, currently a major barrier to wide-scale adoption of text mining tools. BioC is a simple

XML format, specified by DTD, for exchanging data for biomedical natural language pro-

cessing. With initial implementations in Cþþ and Java, BioC provides libraries of code

for reading and writing BioC text documents and annotations. We extend BioC to Perl,

Python, Go and Ruby. We used SWIG to extend the Cþþ implementation for Perl and

one Python implementation. A second Python implementation and the Ruby implemen-

tation use native data structures and libraries. BioC is also implemented in the Google

language Go. BioC modules are functional in all of these languages, which can facilitate

text mining tasks. BioC implementations are freely available through the BioC site: http://

bioc.sourceforge.net.

Database URL: http://bioc.sourceforge.net/

Introduction

The BioCreative Workshops provide a forum for text min-

ing, computational linguistics and natural language pro-

cessing researchers to build, adapt and/or integrate

information extraction systems that address biologically

meaningful tasks and that provide results of practical

relevance. To ensure satisfactory community assessment

and method comparison, and to promote scientific pro-

gress, it is necessary to establish common standards and

shared criteria that enable comparison and integration of

different approaches. BioC (1) has been gaining momen-

tum as a solution to the interoperability challenge—an

Published by Oxford University Press 2014. This work is written by US Government employees and is in the public domain in the US. Page 1 of 9
(page number not for citation purposes)

Database, 2014, 1–9

doi: 10.1093/database/bau059

Original article

http://bioc.sourceforge.net
http://bioc.sourceforge.net
http://bioc.sourceforge.net/
In order
]
http://www.oxfordjournals.org/

interchange format for biomedical natural language pro-

cessing tools. Expressed in a simple XML format, specified

by DTD, text documents and related data annotations can

be shared easily between different text mining and infor-

mation extraction systems applied to the biomedical

domain. Moreover, all tools that communicate with this

shared format can potentially be combined as parts of

larger, more complicated systems.

Considering the variety of computational tools used by

the biomedical text mining community, successful inter-

operability requires uniform BioC support across various

programming language environments. The first releases of

BioC code (1) were implemented in Cþþ and Java, two

mainstream programming languages that provide a solid

foundation for defining BioC functionality. However,

scripting languages such as Perl, Python and Ruby have be-

come popular in the communities of bioinformatics and

natural language processing for their ease of use with rea-

sonable performance. For example, BioPerl (http://www.

bioperl.org) and Biopython (http://biopython.org/) are

widely adopted for the tasks of parsing BLAST output and

querying the GENBANK database (2, 3). For biomedical

natural language processing tasks, a variety of NLP pack-

ages [CPAN-NLP (http://cpan.org), NLTK (http://nltk.

org)] have been developed with Perl and Python. For Ruby,

BioRuby (4) and BioGems (5) are useful libraries for

bioinformatics and biomedical applications. Go (http://

golang.org/), a newly emerging language from Google, is

also receiving attention with biogo (https://code.google.

com/p/biogo/) targeted at computationally intensive

Bioinformatics tasks.

Therefore, it is important to make BioC functionality

easily accessible for applications that have been developed

with these languages to take advantage of the aforemen-

tioned tools. With the support of BioC modules, both ex-

istent and future applications will be able to conveniently

extract information from BioC files, process the informa-

tion and write the output in BioC format. This facilitates

efficient code reuse and uniform data sharing.

To efficiently deliver behavior identical to Cþþ in a

wide range of programming languages, we use the interface

generator SWIG (http://www.swig.org) to extend the Cþþ
BioC implementation to Perl and Python. The Perl BioC

extension is thus far the only option to support BioC in

Perl. By supporting full BioC functionality faithfully, the

integration of the Cþþ BioC implementation and target

languages enables fast and flexible prototyping while rely-

ing on the low-level Cþþ code to duplicate the behavior of

Cþþ applications. Directly implementing BioC in other

programming languages is another solution. Although

careful testing is required, complete compatibility can

be easily achieved. It enables BioC users to seamlessly

integrate BioC modules with their data processing. This is

the approach taken in our Go and Ruby implementations

and a second Python version.

In this article, we introduce the effort of our team to en-

able BioC users to take advantage of BioC utilities in Perl

and Python based on SWIG with some examples explained

in detail, and share the experience of developing native im-

plementations of BioC functionality in Python, Ruby and

the Go language.

BioC Application Architecture

To reach high interoperability and reusability in NLP and

text processing tasks, BioC is designed as a simple work-

flow based on an XML format (1). The BioC workflow

uses two connector modules for XML input/output, as

shown in Figure 1. In a typical BioC application, an ‘Input

Connector’ is created to gain access to XML input from a

file or network stream. This input is converted to data

encapsulated in BioC data classes through an XML parser.

The BioC data classes then provide various methods to re-

trieve data for the data processing stage, which allows the

functionality of an application. Modify methods of BioC

data classes can be used to update BioC data objects, or

new data objects can be created. Finally, the output con-

nector writes the new or updated data in BioC format.

This design separates the data processing stage and the

Input/Output connectors, which enables the data process-

ing stage to focus on processing biomedical data, without

concern for the format of the Input/Output files. The flex-

ible architecture also allows input stage, data processing

stage and output stage to be decoupled as needed.

SWIG: a BioC C11 Wrapper for Perl and
Python

A BioC C11 SWIG interface

SWIG is a software development tool that we use to con-

nect the core BioC library written in Cþþ with a variety of

high-level programming languages in which BioC users

may develop various applications. SWIG is able to support

>20 programming languages (Lisp, Octave, R, C#, Lua,

etc.), including Python and Perl. Our experience with

SWIG indicates that SWIG works well with the BioC core

Cþþ implementation by providing quick development and

deployment for BioC users with the supported languages.

SWIG streamlines the process of building a target lan-

guage module from the Cþþ code base, as shown in

Figure 2. Specifically, if we take Python as example target

language, the BioC Cþþ header files (BioC.hpp,

BioC_libxml.hpp, BioC_util.hpp) are processed by SWIG,

Database, Vol. 2014, Article ID bau059 Page 2 of 9

employed
[
]
which
,
http://www.bioperl.org
http://www.bioperl.org
http://biopython.org/
[
]
(
http://cpan.org
http://nltk.org
http://nltk.org
)
[
]
[
]
http://golang.org/
http://golang.org/
-
https://code.google.com/p/biogo/
https://code.google.com/p/biogo/
which
,
employ
http://www.swig.org
While
p
pe
,
[
]
y
,
employ
more than

which extracts the declarations in these header files to cre-

ate wrapper codes in both the target language Python

(BioC_full.py) and Cþþ (BioC_full_wrap.cpp), as guided

by BioC_full.i, an interface file created manually. The

wrapper code in the target language defines proxy classes

for the underlying Cþþ classes, as well as a variety of cus-

tomizations to suit the specific target language features.

The original BioC source code files (BioC.cpp,

BioC_libxml.cpp, BioC_util.cpp) are also compiled by a

Cþþ compiler to generate object files, in the same way as

building a pure Cþþ application. These BioC object files

are linked with the object file (BioC_full_wrap.o) compiled

from Cþþ wrapper code to create the BioC module for the

target language (BioC_full.so).

Figure 1. BioC workflow diagram.

Figure 2. Building BioC modules with SWIG (for Python).

Page 3 of 9 Database, Vol. 2014, Article ID bau059

In the target language programming environment, the

wrapper code (BioC_full.py) provides the interface to BioC

functionalities in the target language, while the BioC mod-

ule (BioC_full.so) performs these functionalities. To facili-

tate seamless data flow across different programming

languages, proxy class objects wrapping Cþþ BioC classes

are initialized in the target language, and data are read

from BioC files and deposited into Cþþ BioC class data

structures. The application in the target language obtains

access to the same data stored in the Cþþ BioC data struc-

tures via methods of BioC classes defined in the wrapper

code (BioC_full.py) to process the data, as shown in

Figure 3. Because the BioC core Cþþ implementation is

based on libxml2 (http://xmlsoft.org/), all SWIG extension

modules share the same XML interface with BioC

files. BioC users can build SWIG extensions for their

desired target language on their systems equipped with

libxml2 (please refer to Readme.txt in BioC SWIG

package).

Using SWIG BioC in Perl and Python

To illustrate the key points of using a BioC module in target

languages, we use Perl code as an example (Figure 4).

Based on BioC Cþþ version 1.0 (http://sourceforge.net/

projects/bioc/files/BioC_C%2B%2B_1.0.tar.gz/download),

SWIG version 2.0.4 (http://sourceforge.net/projects/swig/

files/swig/swig-2.0.4/) produces BioC_Perl.so and

BioC_Perl.pm. BioC_Perl.pm contains the Perl proxy

classes for the BioC Cþþ classes, and BioC_Perl.so pro-

vides the executable implementation of BioC classes.

After importing the Perl BioC module, we are ready to

initialize BioC wrapper objects. The Connector_libxml

class object ($xml) enables opening an XML file and

reading the contained data into a Collection class object

($collection). Because libxml functionalities are

encapsulated inside the BioC module, the Perl application

can focus on processing BioC data. Then we can iterate

through the BioC file by visiting each document ($dcm)

within the collection, each passage ($psg) within each

document and each annotation ($ann) and relation

($rel) within each passage. While iterating through the

XML file, the data members defined in BioC classes (e.g.

{id} of Document class) can also be accessed directly or

through methods via Perl wrapper objects. In addition to

reading the whole XML file into ($collection) before

processing, BioC also provides a read_next (docu-

ment) method for one-document-at-a-time access.

In addition to the data read into the BioC class data

structure from BioC files, new data can be added to the

BioC classes. One such example is the {infons} data

structure in a number of BioC classes, which is a Cþþ
std::map container template mapping a key string to a

value string. The mapped value string can be retrieved via

the get() method of the {infons} data structure with

ELEMENT KEY string [and updated via the set()

method].

After data are extracted from XML format and then

processed by Perl code, the original collection class object

can be modified in a fashion similar to reading BioC data

classes. The updated collection class object can be saved in

XML format, ready to be accessed by another BioC appli-

cation. The Perl BioC module has been successfully used

by the NatLAb abbreviation system (6) to make it BioC

compatible (7).

Figure 5 shows Python code executing the same task as

Perl code. Compared with Perl, BioC data classes interface

with native Python structures more naturally, which im-

proves convenience and ease of development. Unlike in

Perl, the Cþþ std::map container is treated as a Python

dict object, and a mapped string can be accessed as

dict[key]. The example code demonstrates several

ways to loop over BioC data. Users should note that some

BioC class methods may work differently from correspond-

ing Python methods. For example, the get() method of

the dict object should be protected by a preceding key

Figure 3. Access Cþþ BioC class through target language proxy class wrapper interface.

Database, Vol. 2014, Article ID bau059 Page 4 of 9

Sinc
http://xmlsoft.org/
http://sourceforge.net/projects/bioc/files/BioC_C%2B%2B_1.0.tar.gz/download
http://sourceforge.net/projects/bioc/files/BioC_C%2B%2B_1.0.tar.gz/download
http://sourceforge.net/projects/swig/files/swig/swig-2.0.4/
http://sourceforge.net/projects/swig/files/swig/swig-2.0.4/
Sinc
and
,
,
prior to
(
)
is
]
[
]
to

in dict expression in the BioC Python module, whereas

the get() method in the Python dict object can return

the default value for a missing key.

Normally BioC core Cþþ library users read and update

BioC data using a reference, which operates directly on the

BioC class data structure. BioC modules in Python and Perl,

in addition to operating on BioC data directly with a refer-

ence, also support read-only access to BioC data by impli-

citly creating a separate copy of BioC data, as shown in

Figure 5. BioC module users can choose the appropriate ac-

cess mechanism based on the nature of their applications.

For example, in an application that modifies BioC data, a

better practice may be to create new data objects with

updated or new data when memory capacity permits.

Python: a Native Python Implementation of
BioC (PyBioC)

For some BioC users, a native BioC library is preferred

when complete compatibility is required in the application.

The ability to extend native BioC classes within one lan-

guage context also allows BioC users to add more func-

tionality to original BioC classes through inheritance. The

Ontogene team developed the PyBioC library to recreate

the functionality of the already available libraries in

Cþþ/Java. However, Python conventions are adhered to

where suitable. For example, getter or setter methods are

avoided for internal variables of the classes provided in

PyBioC. Basically the library consists of a set of classes rep-

resenting the minimalistic data model proposed by the

BioC community. Two specific classes (BioCReader and

BioCWriter) are available to read in data provided in valid

BioC format and to write from PyBioC objects to valid

BioC format. Validity is ensured by following the BioC

DTD publicly available.

The library is available on a public github repository

(https://github.com/2mh/PyBioC), where example pro-

grams can be found. These programs read in and write to

BioC format and can tokenize and stem a given BioC input

file using the Natural Language Toolkit (NLTK) library

(http://nltk.org/). As an example application, we also pro-

vide the integration of a standard word stemmer in PyBioC

(https://github.com/2mh/PyBioC/blob/master/src/stemmer.

py). These programs were tested using Python 2.7.6.

Figure 6 shows Python code using PyBioC to execute the

same task as in the SWIG BioC section.

Figure 4. Perl code accessing BioC data (tested with Perl 5.8.8).

Page 5 of 9 Database, Vol. 2014, Article ID bau059

il
which
https://github.com/2
.
http://nltk.org/
https://github.com/2 mh/PyBioC/blob/master/src/stemmer.py
https://github.com/2 mh/PyBioC/blob/master/src/stemmer.py

PyBioC enables the biomedical text mining commu-

nity to work with BioC documents using a native imple-

mentation of the BioC library in the Python programming

language. PyBioC is available as open-source under the

simplified BSD license. We welcome further contributions

and additions to this work. This Python implementation of

the BioC core is available at https://github.com/2mh/

PyBioC/tree/master/src/bioc.

Go: A Go Implementation of BioC (go_bioc)

Go is a new language from Google developed by Ken

Thompson and Rob Pike, who are known for UNIX, C

and Plan 9. Its features include the convenience of type in-

ference and goroutines for concurrency. As their Web page

(http://golang.org/doc/) says, ‘It’s a fast, statically typed,

compiled language that feels like a dynamically typed,

interpreted language’.

In Go, XML data can be marshaled and unmarshaled

simply by using struct tags. One limitation is that there is

no direct way to exchange information between XML and

a map, as used to implement infons in other languages.

So Go BioC objects hold both an Infons map and an

InfonStructs slice. The XML data are marshaled and

unmarshaled out of and in to the InfonStructs slice. The

data are moved into or out of the Infons map after reading

or before writing. This is a small inefficiency because the

amount of infon data are small. Reading or writing a BioC

collection document at a time does require lower-level

interaction with the XML parser for the collection itself.

The individual documents can still be written and read

with the direct marshal and unmarshal functions. So far

we are pleased with the language and expect to continue

our experiments.

An example of Go code executing the same task as in

the SWIG BioC section is shown in Figure 7. An important

thing to notice about the Go sample code is the option to

iterate over the data or an index to the data. Although iter-

ating over the data can lead to slightly simpler code, it

implies a copy of the data. Especially in the presence of

parallel processing, this might be an advantage. However,

in many cases, accessing the data via an index will be more

efficient.

Ruby: A Ruby implementation of BioC
(simple_bioc)

Ruby is a general-purpose programming language (http://

www.ruby-lang.org), which has been developed with a

focus on simplicity and productivity, similar to Perl and

Figure 5. Python code accessing BioC data (tested with Python 2.5.1).

Database, Vol. 2014, Article ID bau059 Page 6 of 9

p
,
https://github.com/2 mh/PyBioC/tree/master/src/bioc.
https://github.com/2 mh/PyBioC/tree/master/src/bioc.
a
,
http://golang.org/doc/
``
'
''
quite
is
is
is
a
While
But
a
Implementation
,
http://www.ruby-lang.org
http://www.ruby-lang.org

Figure 6. PyBioC code accessing BioC data.

Figure 7. Go code accessing BioC data (tested with Go 1.1.2).

Page 7 of 9 Database, Vol. 2014, Article ID bau059

Python. Ruby has received attention in recent years because

of Ruby on Rails (http://rubyonrails.org/) for the rapid de-

velopment process for modern Web sites. Ruby is also useful

for fast prototyping or verifying new ideas because it pro-

vides a simple approach to software development, and there

are many free libraries available in various domains. As

mentioned above, BioRuby (4) and BioGems (5) are useful

libraries for bioinformatics and biomedical applications.

As a Ruby BioC library, the main goal of the simple_

bioc library is to provide a simple and easy way to parse

and build the BioC format in Ruby. The simple_bioc li-

brary is publicly available from http://rubygems.org/gems/

simple_bioc and it can be installed by one command: gem

install simple_bioc. Parsing and/or building a BioC docu-

ment can also be performed by a single line of program

code. The source code is available from https://github.com/

dongseop/simple_bioc under the MIT license, which allows

BioC users to modify or embed simple_bioc in their Ruby

applications. The documentation (http://rubydoc.info/

gems/simple_bioc/0.0.3/frames) includes a usage guide,

sample code and a full API reference.

The main modules of simple_bioc were originally imple-

mented for handling BioC documents in BioQRator (8), a

web-based interactive biomedical literature curating system.

Simple_bioc has been factored out so that it can be released

as an open-source contribution to the BioC and Ruby com-

munities. The reader new to Ruby will note the unique ap-

proach to iteration Ruby offers. Although not the traditional

approach of many common languages, Ruby offers a num-

ber of flexible iteration methods. As with many scripting

languages, Ruby values are references, so no unnecessary

copying occurs. Figure 8 shows how BioC works in Ruby.

Conclusions

We describe the extension of BioC beyond Cþþ and Java

programming languages, enabling convenient handling of

BioC documents in other languages. SWIG allows the ori-

ginal behavior of Cþþ BioC classes to be available in

scripting language contexts by reusing the same Cþþ
source code. Currently, different languages have different

features and capabilities, which are exposed to varying

extents by SWIG (http://www.swig.org/Doc2.0/). For ex-

ample, Python is demonstrated to offer a much richer inter-

action with the Cþþ data structures than is available in

Perl. However, we believe the current BioC extensions

built with SWIG will satisfy most demands of the biomed-

ical text mining community.

A native BioC implementation provides more natural

interaction and integration with the language. Native im-

plementations of BioC in Go, Python and Ruby are pre-

sented. As expected these fit in well with other language

features and behave more as expected by developers in

each language. This article demonstrates that BioC can be

realistically extended to any language, which is supported

by SWIG or an XML parser. These BioC implementations

are freely available through the BioC Web site (http://bioc.

sourceforge.net).

Funding

The research at NCBI was supported by the Intramural Research

Program of the National Institutes of Health, National Library of

Medicine. The OntoGene group at the University of Zurich is par-

tially supported by the Swiss National Science Foundation (grants

100014-118396/1 and 105315-130558/1). D.K. was supported by

Figure 8. Ruby code accessing BioC data (tested with Ruby 2.0.0).

Database, Vol. 2014, Article ID bau059 Page 8 of 9

http://rubyonrails.org/
sinc
[
]
[
]
http://rubygems.org/gems/simple_bioc
http://rubygems.org/gems/simple_bioc
be
https://github.com/dongseop/simple_bioc
https://github.com/dongseop/simple_bioc
http://rubydoc.info/gems/simple_bioc/0.0.3/frames
http://rubydoc.info/gems/simple_bioc/0.0.3/frames
,
[
]
While
very
http://www.swig.org/Doc2.0/
,
p
pe
http://bioc.sourceforge.net
http://bioc.sourceforge.net
ongseop
won

the Basic Science Research Program through the National Research

Foundation of Korea (NRF) funded by the Ministry of Education

(2012R1A1A2044389 and 2011-0022437).

Conflict of interest. None declared.

References

1. Comeau,D.C., Islamaj Doğan,R., Ciccarese,P., et al. (2013) BioC:

a minimalist approach to interoperability for biomedical text pro-

cessing. Database (Oxford), 2013, bat064.

2. Stajich,J.E., Block,D., Boulez,K., et al. (2002) The Bioperl toolkit:

Perl modules for the life sciences. Genome Res., 12, 1611–1618.

3. Cock,P.J., Antao,T., Chang,J.T., et al. (2009) Biopython: freely

available Python tools for computational molecular biology and

bioinformatics. Bioinformatics, 25, 1422–1423.

4. Goto,N., Prins,P., Nakao,M., et al. (2010) BioRuby: bioinfor-

matics software for the Ruby programming language.

Bioinformatics, 26, 2617–2619.

5. Bonnal,R.J., Aerts,J., Githinji,G., et al. (2012) Biogem: an effect-

ive tool based approach for scaling up open source software devel-

opment in bioinformatics. Bioinformatics, 28, 1035–1037.

6. Yeganova,L., Comeau,D.C. and Wilbur,W.J. (2011) Machine

learning with naturally labeled data for identifying abbreviation

definitions. BMC Bioinformatics, 12 (Suppl. 3), S6.

7. Islamaj Dogan,R., Comeau,D.C., Yeganova,L., et al. (2014)

Finding abbreviations in biomedical literature: three BioC-com-

patible modules and four BioC formatted corpora. Database, doi:

10.1093/database/bau044.

8. Kwon,D. Kim,S. Shin,S.Y. and Wilbur,W.J. (2013) BioQRator: a

web-based interactive biomedical literature curating system. In:

Fourth BioCreative Challenge Workshop, pp. 241–246.

Page 9 of 9 Database, Vol. 2014, Article ID bau059

