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Simulation of Finnish Population History,
Guided by Empirical Genetic Data,
to Assess Power of Rare-Variant Tests in Finland

Sophie R. Wang,1,2,3 Vineeta Agarwala,2,4,5 Jason Flannick,2,6 Charleston W.K. Chiang,7

David Altshuler,2,3,6,8 GoT2D Consortium, and Joel N. Hirschhorn1,2,3,*

Finnish samples have been extensively utilized in studying single-gene disorders, where the founder effect has clearly aided in discovery,

and more recently in genome-wide association studies of complex traits, where the founder effect has had less obvious impacts. As the

field starts to explore rare variants’ contribution to polygenic traits, it is of great importance to characterize and confirm the Finnish

founder effect in sequencing data and to assess its implications for rare-variant association studies. Here, we employ forward simulation,

guided by empirical deep resequencing data, to model the genetic architecture of quantitative polygenic traits in both the general

European and the Finnish populations simultaneously. We demonstrate that power of rare-variant association tests is higher in the

Finnish population, especially when variants’ phenotypic effects are tightly coupled with fitness effects and therefore reflect a greater

contribution of rarer variants. SKAT-O, variable-threshold tests, and single-variant tests are more powerful than other rare-variant

methods in the Finnish population across a range of genetic models. We also compare the relative power and efficiency of exome array

genotyping to those of high-coverage exome sequencing. At a fixed cost, less expensive genotyping strategies have far greater power than

sequencing; in a fixed number of samples, however, genotyping arrays miss a substantial portion of genetic signals detected in

sequencing, even in the Finnish founder population. As genetic studies probe sequence variation at greater depth in more diverse pop-

ulations, our simulation approach provides a framework for evaluating various study designs for gene discovery.
Introduction

A founder effect can result either from a true founder event

(i.e., the establishment of a new population from a limited

pool of individuals) or from an extreme reduction in

population size (i.e., a bottleneck in size) followed by

relative genetic isolation from other populations. The

population of Finland is one of the best-studied genetic

isolates. The Finnish genetic architecture has been shaped

by a series of founder effects and a subsequent drift in

local subisolates. The initial founder effects are generally

associated with two colonization waves 4,000 and 2,000

years ago to southern and western Finland. More

recently, there was an internal migration movement in

the 15th–16th centuries from a small southeastern area to

themiddle, western, and finally northern and eastern parts

of the country.1

The Finnish population has been extensively utilized in

genetic studies. It is considered to be a relatively homo-

genous large founder population and hence potentially

well suited for genetic mapping. The evidence of a founder

effect includes enrichment of almost 40 rare recessive

diseases, longer regions of linkage disequilibrium (LD),

increased kinship coefficients between pairs of randomly

chosen individuals, and extended runs of homo-

zygosity.1–10 In part because of the founder effect, identifi-
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cation of the genes underlying the rare diseases enriched in

Finland has been remarkably successful.1 Finnish samples

have also contributed to many genome-wide association

studies (GWASs) of complex traits, but because common

(minor allele frequency [MAF] > 5%) variation is less influ-

enced by human population history, a founder effect

would be less likely to provide a specific advantage in

this setting.

Studies of polygenic traits and disorders are nowmoving

to a middle ground between GWAS genotyping methods

(thus far focused largely on common variation, typically

MAF > 5%) and sequencing-based methods that were

most successfully employed for identifying extremely

rare variants in single-gene disorders. This middle ground

is association studies of lower-frequency (MAF < 5%) vari-

ants, analyzed either individually or in aggregate (the

aggregate analysis has also been termed the rare-variant

association study11). As such, it is of great interest and

importance to confirm the Finnish founder effect in

sequencing data that include rarer variants and to assess

the implications of these rare-variant association studies.

As a result of the founding event and subsequent strong

genetic drift, some variants that are rare in the ancestral

population will have risen in frequency in a founder pop-

ulation, whereas others will have decreased or disappeared.

These alterations in allele frequency could potentially
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increase power of rare-variant tests in two ways. First, some

rare and potentially deleterious variants could rise to

higher frequencies, out of proportion to what might be

expected given their deleterious effects. Second, there is

greater homogeneity of rare variation in a founder popula-

tion and thus fewer background rare variants at any indi-

vidual locus. As an example, a protective mutation for

Alzheimer disease (MIM 104300) was discovered in part

because it has a much higher frequency in the Scandina-

vian populations (~0.4%) than in the general European

population (<0.01%).12

Exome sequencing studies are emerging as a popular

approach for identifying rare coding variants associated

with complex traits, whereas a cheaper alternative

approach is to use array-based genotyping of a defined

set of coding variants. The human genetics community

has aggregated an extensive list of putative functional

coding variants from the exome sequences of >12,000

individuals for array-based genotyping platforms (e.g.,

the Illumina Infinium HumanExome BeadChip and the

Affymetrix Axiom Exome Array Plate; see Exome Chip

Design in the Web Resources for a description of SNP

content and selection strategies). Although these arrays

do not provide a complete catalog of all coding variants,

the set of variants selected for array design is estimated to

include >97% of the nonsynonymous variants that would

be detected in any individual genome through exome

sequencing. In theory, the coverage would be even higher

for a founder population, which has fewer rare variants

than a nonfounder population.

To increase power to detect effects of rare variants, espe-

cially those that are too infrequent to be individually

tested for association, many groups have devised tests

that combine evidence across multiple variants.13 These

tests have become a standard approach for analyzing rare

variants and include burden tests14–16 and other types of

tests that aggregate evidence across sets of variants.17,18

The relative power of such tests to detect association is

strongly influenced by underlying genetic architecture.

Specifically, the proportion of causal variants among all

variants analyzed and the distribution of effect sizes and

allele frequencies of causal variants all affect test perfor-

mance. Different statistical tests also have different sets

of parameters, the values of which can have a large effect

on the power of the tests.

Different diseases and phenotypes most likely have

different architectures.19 To try to evaluate how different

sample selections (founder versus nonfounder popula-

tions), analytical methods (single-variant tests versus

gene-based tests), and study designs (exome sequencing

versus exome array genotyping) perform with different

genetic architectures, we have developed a population-

genetics framework to assess the impact of the Finnish

population history on genetic studies of rarer variation.

Our approach has four basic stages: (1) confirming and

characterizing the Finnish founder effect in sequence

data, (2) developing a simultaneous simulation of
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sequence variation in the non-Finnish European (NFE)

population and the Finnish population to closely approx-

imate the sequence data, (3) specifying a range of models

of genetic architectures to generate simulated phenotypic

data, and (4) comparing operating characteristics of

different gene-based tests and single-variant tests on

phenotype, genotype, and sequence data from simulated

founder and nonfounder populations.

With this framework in place, we address the following

questions: (1) Under what types of genetic architecture(s)

is it more powerful to use a founder population such as

Finland? (2) Under different genetic models, what are the

optimal association tests for rare variants in a founder

population? (3) How does power compare between using

exome sequencing data and using exome chip data, partic-

ularly in a founder population? Our results show that

power to detect genetic signals—by both single-variant

and gene-based tests—is higher in samples from the

Finnish founder population than in equivalently sized

NFE samples, especially when the phenotypic effects of

variants are tightly coupled with effects on fitness. SKAT-O,

VT (variable-threshold) tests, and single-variant tests have

the highest mean power in a founder population across

simulated data sets. At a fixed cost, genotyping strategies

have far greater power than sequencing; in a fixed number

of samples, however, genotyping arrays miss a substantial

portion of causal variation detected in sequencing.
Material and Methods

Empirical Exome Sequencing Data
We used whole-exome sequenced samples from the Genetics of

Type 2 Diabetes (GoT2D) Project. In total, 2,850 European type

2 diabetes case and control subjects from four cohorts (Diabetes

Genetics Initiative [DGI], Finland-United States Investigation of

NIDDMGenetics [FUSION], GoT2D-UK, and Kooperative Gesund-

heitsforschung in der Region Augsburg [KORA]) were whole-

exome sequenced at ~403. Exome target capture was performed

with the Agilent SureSelect Human All Exon hybrid selection kit,

and sequence was obtained on a HiSeq machine. Reads were

mapped to the human reference genome (hg19, UCSC Genome

Browser) with the Burrows-Wheeler Aligner20 and processed

with the Genome Analysis Toolkit (GATK) for recalibrating base-

quality scores and performing local realignment around known

insertions and deletions (indels).21 SNPs and small indels were

called with the UnifiedGenotyper module of GATK and filtered

for removal of SNPs with annotations indicative of technical arti-

facts (such as strand bias, low variant call quality, or homopolymer

runs).21 We kept samples from GoT2D-UK and KORA as the NFE

population and samples from FUSION (Table S1, available online)

as the Finnish population for our analyses. We excluded SNPs

with any missing data in any individual, SNPs with Hardy-Wein-

berg equilibrium p< 10�5, and all nonautosomal SNPs.We carried

out multidimensional scaling to identify population outliers

(Figure S1). We filtered out relatives for whom the estimated

genome-wide identity-by-descent (IBD) proportion to alleles

shared was >0.10. We also excluded individuals with an

inbreeding coefficient > 0.05 or < �0.05. We estimated IBD
erican Journal of Human Genetics 94, 710–720, May 1, 2014 711



Figure 1. The Final Demographic Model for Simulating NFEs
and Finns Simultaneously
The NFEs were modeled as long-term (45,000 generations) con-
stant size (N ¼ 8,100) followed by a bottleneck (N ¼ 2,000) and
then by exponential growth (1.5% growth per generation). To
model the Finns, we tested three general classes of models, of
which only one (class 3 in Table S2) approximated the empirical
observations. In this model, after the initial founding event (100
generations ago, N ¼ 1,000), the Finns went through a slow
growth phase (0.5%–5% growth per generation) and then a
more recent fast growth phase (8%–30% growth per generation);
there was gene flow from the NFEs to the Finns.
sharing by using PLINK’s ‘‘–genome’’ option22 and estimated

inbreeding coefficients by using PLINK’s ‘‘–het’’ option. All ana-

lyses were carried out on an LD-pruned set of SNPs obtained

with the PLINK option ‘‘–indep,’’ which recursively removes

SNPs within a sliding window. The parameters for –indep are as

follows: window size in SNPs¼ 50, n¼ 5 SNPs to shift the window

at each step, and variance-inflation-factor threshold ¼ 1.8. The

final data set included 843 Finnish samples and 820 NFE samples.

Ethics Statement
For the GoT2D study, attendance was voluntary, and each partic-

ipant provided written informed consent, including for informa-

tion on genetic analyses. Local institutional review boards

approved the study protocols.

Simulation of Exome Sequencing Data
Exome sequencing data were simulated with ForSim, a tool for

forward evolutionary simulation.23 The average gene coding

length was set to 1,500 bp. We used a mutation rate per site of

2 3 10�8,24–26 as well as a uniform locus-wide recombination

rate of 2 Mb/cM as previously reported.27 We modeled the distri-

bution of selection coefficients for de novo missense mutations

by a gamma distribution28 (as in previous reports,28,29 we assumed

that ~20% of missense sites are neutrally evolving).

For modeling the NFEs, we used a conventional four-parameter

model of the history of the European population with long-term

constant size followed by a bottleneck and then by an exponential

expansion (Figure 1).30 The four parameters used were (1) long-

term ancestral effective population size, (2) bottleneck population

size, (3) duration of exponential growth in generations, and (4)

recent effective population size. We adapted parameters from a

recent simulation that generated representative sequence data

for European populations.27 (See Figure 1 for final parameter

values.)
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We modeled the Finns as a founder population established by

a small number of NFEs. The founding event was followed by a

slow growth phase and a more recent fast growth phase (Figure 1).

We filtered the demographic-history parameters by comparing

them to empirical exome sequencing data. P(data j model) was

calculated and used for model fitting (see Appendix A for further

discussion). We tested two other models, neither of which agreed

with the empirical observations, as well as our current model

(Table S2).
Simulation of Exome Chip Data
Exome chip data were generated on the basis of simulated exome

sequencing data. The process resembled that of the actual exome

chip design (see Web Resources for a description of SNP content

and selection strategies). Approximately 12,000 simulated exomes

across 16 cohorts were pooled together. The cohorts were matched

by ancestry and sample size with the real cohorts (except that non-

European samples were substituted with NFE samples). Only

missense variants observed three or more times in at least two

data sets were selected. Approximately 90% of the selected SNPs

passed the design and were used for the simulated chip. For simu-

lating the exome chip without contribution of Finnish samples, all

procedures were the same except that Finnish samples were re-

placed with an equal number of NFE samples.
Simulation of Phenotypic Variation
We simulated a quantitative trait (QT) with a target size of 1,000

genes and heritability of 80%. For efficiency, we modeled the

heritability as completely explained by coding variants and a large

target size of 1,000 genes; power scales with total heritability, with

the fraction of heritability explained by coding variation, and

inversely with target size. We modeled additive genetic effects

and environmental effects. We did not consider nonadditive

effects (dominant, recessive, epistatic, or gene-environment inter-

actions) in our simulations. We used the joint allele frequency

spectrum of both the Finns and the NFEs when calculating herita-

bility. We scaled the effect sizes so as to cap heritability at 80%.

More specifically, variance explained by a variant was calculated

as 2 3 MAF 3 (1 � MAF) 3 p2, where p is the phenotypic effect.

We summed this up over all variants and adjusted effect sizes of

all variants by a uniform factor to cap heritability (additive genetic

variance) at 80%.

We assume that neutral missense variants have no effect on

phenotype. To assign effect sizes of causal variants (nonneutral

missense variants), we implemented a range of possible mappings

between a variant’s selection coefficient (s)—we modeled the

distribution of selection coefficients for de novo missense muta-

tions by a gamma distribution, so s is known for every variant in

our simulated data—and its effect on phenotype (p). We modeled

these mappings as p ¼ st 3 (1 þ ε) as suggested by Eyre-Walker

et al.31 Here, t is the degree of coupling between p and s, and ε is

a normally distributed random-noise parameter. In the case of

common diseases of postreproductive onset, the role of natural

selection on causal variants is not yet clear. Therefore, we tested

a range of scenarios: M1 (t ¼ 0), M2 (t ¼ 0.5), M3 (t ¼ 1), and

M4 (t randomly chosen with equal probability among 0, 0.5,

and 1 for each effect gene).

To determing the direction of effect of causal variants on a QT,

we further assumed that, in each trait-affecting gene, 0%–20% of

the causal variants influence the QT in the opposite direction

from the remaining causal variants. This assumption is based on
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Figure 2. Empirically Observed Allele Frequency Spectra in 500
Finns and 500 NFEs
Means and SDs of proportions were calculated on the basis of 100
rounds of sampling. There was an excess of common variants in
the Finns for both synonymous (A) and missense (B) variants.
two different arguments: (1) the vast majority of de novo amino

acid substitutions with a measurable effect reduce protein activity,

and gain-of-function alterations are much less frequent and are

restricted to specific residues or domains; and (2) some genes,

such as APOB (MIM 107730) and PCSK9 (MIM 607786),18,32

clearly illustrate a mixture of variants that affect QTs in both

directions.

Association Tests and Power Analysis
We conducted five different gene-based tests on simulated data.

We performed four burden tests—VT,14 T1 (fixed-threshold test

with a 1% threshold), T5 (fixed-threshold test with a 5%

threshold), and MB (Madsen and Browning)16—by running

SCORE-Seq (see Web Resources for details). In these tests, the

mutation information is aggregated across multiple variant sites

of a gene through a weighted linear combination and then related

to the phenotype of interest through appropriate regression

models. The weights can be constant (T1, T5, and VT tests) or

dependent on allele frequencies (MB test). The allele frequency

threshold can be fixed (T1, T5, and MB tests) or variable (VT

test). We also performed the unified optimal test SKAT-O by using

default weights.33 SKAT-O is a data-adaptive test that includes

both burden tests and the sequence kernel association test

(SKAT)17 as special cases. We carried out single-variant tests by

using PLINK’s ‘‘–linear’’ option.We limited our analysis to variants

with a MAF < 5%.

The exome-wide significance threshold for gene-based tests was

set to a ¼ 2.53 10�6 (after Bonferroni correction assuming 20,000

genes in the exome). Power was defined as the number of effect

genes reaching genome-wide significance divided by the target

size (1,000). The exome-wide significance threshold for single-

variant tests was 0.05 divided by the number of variants tested

(which varied with sample size, excluding singletons and double-

tons). The power of the single-variant test was defined as the

number of effect genes harboring genome-wide-significant vari-

ant(s) divided by 1,000.
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Results

Assessing the Finnish Founder Effect

We analyzed whole-exome sequence data of NFE and

Finnish samples from the GoT2D Project (see Material

and Methods). If the Finnish population did indeed go

through a founding event in the past, there are a number

of direct predictions for the allele frequency spectra and

the sharing of variants between the Finns and the NFEs.

When comparing Finnish and NFE samples of the same

size (n ¼ 500), we found that the allele frequency spectra

were shifted toward higher frequencies in the Finns

(Figure 2). The proportion of singleton variants was

much lower in the Finns than in the NFEs (28% versus

46%, respectively, for synonymous variants; 39% versus

57%, respectively, for missense variants), whereas the

opposite was true for common (MAF > 5%) variants

(31% versus 22%, respectively, for synonymous variants;

19% versus 12%, respectively, for missense variants).

Furthermore, singleton variants in a population of Finns

(n ¼ 250) had a higher likelihood of being seen again in

another population of Finns (n ¼ 250) than did singleton

variants in a population NFEs of being seen again in

another population of NFEs (34% versus 23%, respectively,

for synonymous singleton variants, 30% versus 20%,

respectively, for missense singleton variants; Figure S2).

We also observed that SNPs found in both samples tended

to have higher frequencies in the Finns (paired t test p

value < 0.01; Table S3). Compared to the NFEs, the Finns

had a lower level of heterozygosity (on average, there

were 0.6% fewer heterozygous sites per individual in the

Finns, t test p value < 0.01) and reduced genetic diversity

(Watterson’s estimate adjusted by sequence length was

6.14 3 10�4 for the Finns and 1.01 3 10�3 for the NFEs).

All of these results strongly confirm the presence of a

founder effect in Finland.

Simulation of Coding-Sequence Variation in

Hundreds of Thousands of Samples

To enable a controlled characterization of the performance

of different sample selections, analytical methods, and

study designs under a range of scenarios, we used the for-

ward-simulation package ForSim23 to generate coding-

sequence data for the NFEs and the Finns simultaneously.

This way, we could simulate evolution of complex traits

over time in large samples and know the truth (i.e., fitness

effects) about all variants. To model the NFEs, we used the

conventional four-parameter model30 and adapted param-

eters from a recent simulation that generated representa-

tive sequence data for European populations (Figure 1).27

We further modeled the Finns as a founder population

established by a small number of NFEs. We refined our

demographic parameters for the Finnish model by

comparing to exome sequencing data from the GoT2D

project (see Material and Methods). In our final model,

the initial founding event was followed by a slow growth

phase and then a more recent fast growth phase with
erican Journal of Human Genetics 94, 710–720, May 1, 2014 713



Figure 3. Agreement of Empirical Allele Frequency Spectra with
the Modeled Spectra
Sample sizes were 843 for the Finns and 820 for the NFEs. Synon-
ymous variants (A) and missense variants (B) are shown. Means
and SDs of proportions were calculated on the basis of 100 rounds
of sampling, and 1,000 genes were sampled for each round.
gene flow from the NFEs to the Finns (Figure 1). Figure 3

shows that our final demographic model reproduces the

observed allele frequency spectra well. We also analyzed

the missense/synonymous ratio (Figure S3) and allele

sharing between the Finns and the NFEs (Figure S4); these

metrics are also similar between the observed and simu-

lated data.

Specification of a Range of Disease Models

Protein-coding variation will only partially explain the

phenotypic variation of any polygenic trait. However, to

focus on the role of coding variation (because it is more

likely to be enriched with functionally significant alleles),

we simulated a heritable QT (h2 ¼ 80%) for which aggre-

gated coding variation in each of 1,000 genes explains,

on average, 0.1% of total heritability. We assumed that

selectively neutral missense variants are background

variants with no effects on the trait, whereas selectively

nonneutral missense variants are the causal variants. We

generated four different disease models by varying the

degree of coupling (t) between a causal variant’s pheno-

typic effect and the strength of purifying selection against

that variant.31 Broadly, M1 (t ¼ 0) is characterized by rare

and common alleles that have similar effects on pheno-

type, M2 (t ¼ 0.5) produces a modest correlation between

variant frequency and effect size, andM3 (t¼ 1) results in a
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sharp inverse correlation. M4 (t randomly chosen among

0, 0.5, and 1 for each effect gene) might represent a more

realistic scenario, given that different genes are likely to

have different pleiotropic effects and are therefore exposed

to different strengths of purifying selection. As expected,

we observed that as t increased, more phenotypic variance

was explained by rare variants (Figure S5A).

Alterations in Allele Frequency in the Founder

Population

With simulated data, we demonstrated alterations in allele

frequency in the founder population, which could poten-

tially increase the power of rare-variant tests. First, there

was greater homogeneity of rare variation at any individual

locus in a founder population. The Finns had on average

2.53 fewer rare (MAF < 5%) variants per gene than did

the NFEs (mean 20.0 5 4.5 versus 52.3 5 7.4, respec-

tively). This reduction in rare variants was seen for both

variants we simulated as causal and those simulated as

neutral, background variants (Figure S6). As seen in

Figure S7, the cumulative allele frequency of causal

variants and background variants per gene was similar

between the Finns and the NFEs, meaning that there

were fewer rare variants in the Finns, but they were each

on average more common than variants in NFEs.

Second, there was increased frequency of causal variants

(thus variance explained per gene) at some genes. We

observed that the distribution of the variance explained

per gene was wider in the Finns than in the NFEs (Figure 4).

At one end of the distribution (the left tails of the graphs

in Figure 4), the increased frequency of some individual

causal variants led to a greater variance explained for

some genes in the Finns (this was more obvious with a

larger t); at the other end of the distribution, so many

causal variants were lost in Finland that other genes had

lower variance explained in the Finns. As a result, some

genes were detectable in smaller sample sizes in the Finns

than in the NFEs, whereas it was more difficult to detect

the effects of rare variation in some other genes, given

that too many causal variants had been lost because of

the founder effect.

Founder Population versus Nonfounder Population in

Exome Sequencing Studies

With simulated genotype and phenotype data, we

compared the power of using 30,000 NFEs and the power

of using 30,000 Finns in exome sequencing studies under

different disease models. We implemented five gene-based

tests (SKAT-O and the T1, T5, MB, and VT tests) and single-

variant tests. Because we are interested in the role of lower-

frequency variants, we ran all tests on variants with a MAF

< 5%. In the context of exome sequencing studies, the

significance threshold for calculating power was set to

a ¼ 2.5 3 10�6 (after Bonferroni correction assuming

20,000 genes in the exome).

As seen in Figure 5, as t increased, so did the relative in-

crease in power from using Finns in comparison to using
014



Figure 4. Distribution of Variance
Explained per Gene
Distribution of variance explained per
gene by variants with a MAF < 5% under
four different disease models in either
30,000 Finns or 30,000 NFEs.
(A) M1 (t ¼ 0).
(B) M2 (t ¼ 0.5).
(C) M3 (t ¼ 1).
(D) M4 (t randomly sampled from 0, 0.5,
and 1 for each effect gene).
NFEs (compare panels A, B, and C). Under M4, the biggest

power gain in the Finns was seen among genes for which

the t value was 1 (Figure S8). As the value of t increased,

the phenotypic impacts of rare variants increased

(Figure S5). Therefore, it is more powerful to use a founder

population in models where rare variation plays a more

prominent role. These results are consistent with the effect

of a founder event on allele frequencies—founder effects

have a greater impact on rare variants than on common

variants.

Understanding the Excess of Power in the Founder

Population

To understand why there was an excess of power in the

founder population across different disease models, we

considered genes detected in one population only. We

observed that genes detected only in the Finns tended to

have greater variance explained per gene in the Finns

than in the NFEs (Figure S9), whereas the opposite was

true for genes detected in the NFEs only (Figure S10). For

genes detected in the Finns only, the cumulative allele

frequency for background variants was similar between

the Finns and the NFEs, but the cumulative allele fre-

quency for causal variants was shifted upward in the Finns

(Figure S11). For genes detected in the NFEs only, the oppo-

site was true (Figure S12).

As shown above, the overall rise in frequency of causal

variants and thus the greater variance explained for some

genes could drive the power excess in the Finns. We

next tested whether reduced heterogeneity could also
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contribute to the power difference.

We selected a set of genes for which

the variance explained was closely

matched between the NFEs and the

Finns (Figure S13). As shown in

Figure S14, the accumulated allele fre-

quencies of causal variants and back-

ground variants were similar between

the two populations as well. The

power gain in the Finns was retained

under M3 (Figure S15), suggesting

that reduced genetic heterogeneity

alone could increase power when

variance explained at a gene stays

the same in the founder population.
This effect was clearer when the t value was 1, given that

rare variants play a more prominent role.

Relative Power of Different Association Tests for Rare

Variants in a Founder Population

Among the five gene-based tests we conducted, SKAT-O

and the VT test performed best across a range of models

in both the Finns and the NFEs (Figures 5 and S16), given

that SKAT-O allows different variants to have different

directions and magnitude of effects and the VT test

decreases background noise by selecting an optimal fre-

quency threshold. The single-variant test performed

reasonably well under different disease models, and it

was particularly powerful when t was large, especially

when used in a founder population (Figures 5 and S16).

As t increased, the effect sizes of rare causal mutations

tended to increase, making it more powerful to test these

variants individually. For a founder population like the

Finns, as we have shown earlier, the allele frequency

spectra are shifted away from the rarest variants, which

gives extra power in testing rare variants individually.

Of note, LD was not taken into account in either the

single-variant or the gene-based tests. For gene-based tests,

LD was generally not addressed, at least for discovery of

gene-wide association signals. For single-variant tests, we

operated under the assumption that the causal variants

are directly assessed. Incorporating LD might have further

increased the power of single-variant analyses if one or

more very rare variants were tagged by a single more com-

mon variant.
n Genetics 94, 710–720, May 1, 2014 715



Figure 5. Power of Exome Sequencing Studies in 30,000 Finns
versus 30,000 NFEs
We simulated a QT (h2 ¼ 80%) for which aggregated coding vari-
ation in 1,000 genes explains the total heritability. We generated
models M1–M4 by varying the degree of coupling (t) between a
causal variant’s phenotypic effect and the strength of purifying se-
lection against that variant. We compared SKAT-O, the VT test,
and single-variant tests (singleVar). For each model, means and
SDs of power were calculated on the basis of 20 simulated data sets.
(A) M1 (t ¼ 0).
(B) M2 (t ¼ 0.5).
(C) M3 (t ¼ 1).
(D) M4 (t randomly sampled from 0, 0.5, and 1 for each effect
gene).

Figure 6. Power of Exome Chip Study versus Exome Sequencing
Study in the Finns
The comparison was done under M4 with SKAT-O. Because
different genes are likely to have different pleiotropic effects
and are therefore exposed to different strengths of purifying se-
lection, M4 was generated to represent a potentially more realistic
scenario. The top two lines show power comparison at a fixed
sample size; the bottom two lines show power comparison at a
fixed cost (and thus only one-tenth of the samples were
sequenced). For both exome chip and exome sequencing studies,
means and SDs of power were calculated on the basis of 20 simu-
lated data sets.
Exome Chip Studies versus Exome Sequencing Studies

Exome chip genotyping, despite being a much cheaper

technology than exome sequencing, has not been rigor-

ously assessed in terms of cost efficiency. Here, we used

our simulation framework to try to address this question.

We first confirmed that our simulations reproduced the

expected differences in observed allele frequency spectra

between exome chip and exome sequence data (compare

Figures S17 and 3B). We then compared the cost efficiency

of exome chip studies and exome sequencing studies un-

der different disease models in the Finnish founder popu-

lation. The cost of exome chip per sample was assumed to

be about one-tenth of that of exome sequencing. Figure 6

shows that under M4, the power of SKAT-O was far greater

in exome chip studies than in exome sequencing studies

at a fixed cost (middle versus bottom line); in a fixed num-

ber of samples, however, genotyping arrays missed a sub-

stantial portion of causal variation detected in sequencing

(top versus middle line). We also compared the two study

designs in a nonfounder population (Figure S18) under

M1–M3 (Figures S19 and S20), as well as by using different

rare-variant association tests (Figure S19), and observed

similar results. Despite substantial cost efficiency, the

exome chip was underpowered to detect the contribu-
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tions of certain genes simply because not enough causal

variants in these genes were covered by the chip. This

became more apparent as t increased (Figure S20), because

the allele frequency spectrum of causal variants shifted

downward, and the exome chip captured fewer casual var-

iants (Figure S21).

Because Finnish samples contributed to exome chip

design, we went on to assess how much their inclusion

would affect the power of the exome chip in Finns, i.e.,

how the exome chip would perform in a non-Finnish

founder population. To address this question, we simu-

lated a different exome chip with no contribution of

Finnish samples (replaced with an equal number of NFE

samples). As expected, the power for rare-variant associa-

tion in Finns decreased when Finns were not used in the

SNP-discovery process of the exome chip. The power

decrease was minimal at a low sample size, reaching a dif-

ference of approximately 2% when 30,000 samples were

used (Figure S22; the power dropped from ~10% to ~8%

when Finns were not used). This suggests that the current

exome chip would perform slightly less well in a non-

Finnish founder population. However, the exome chip

is still a far more cost-efficient strategy for such popula-

tions than exome sequencing, the power of which is

negligible at a comparable cost (bottom line in Figure 6).

If it is desirable to avoid the marginal loss of power in

non-Finnish founder populations of interest, one could

perform exome sequencing by using a representative pop-

ulation sample first and supplement the exome chip with

the newly discovered variants to ensure that rare variation
014



in that founder population is directly represented on

the chip.
Discussion

By using forward simulations based on empirical deep rese-

quencing data, we have shown that (1) founder popula-

tions can provide additional power, especially when the

phenotypic effects of variants are tightly coupled with

effects on fitness; (2) in a founder population, the single-

variant test, SKAT-O, and the VT test perform best under

different disease models, and the single-variant test is

particularly powerful when the phenotypic effects of vari-

ants are tightly coupled with effects on fitness; and (3)

exome chip genotyping is currently much more cost effi-

cient than exome sequencing but misses a substantial

portion of causal variation in a sequencing study of the

same sample size. We also suggest that more than 10,000

samples will most likely be required for reaching nonnegli-

gible statistical power to identify associations with low-

frequency variation (under the assumption of a per-gene

contribution of ~0.1% of heritability). This is consistent

with recent independent estimates of required sample

sizes.11,34 We are almost certainly underestimating the

required sample size, given that we modeled a highly

heritable trait for which all heritability is explained by

coding variants in 1,000 genes, whereas the average contri-

bution of coding variation to heritability is most likely

typically lower than 0.1% per gene.

The changes in allele frequency and decreased allelic

diversity in founder populations caused by the bottleneck

event(s) and drift can aid in the detection of rare-variant

associations. We have shown through our simulation

that the power gain in the founder population is from

both increased frequency of causal variants (thus variance

explained per gene) at some genes and reduced genetic

heterogeneity. Founder populations typically also demon-

strate a higher degree of cultural and environmental

homogeneity (not modeled here), which could further

increase the strength of the genetic signals. However, there

are also limitations with using founder populations. First,

the population size might not be large enough to allow

for the collection of sufficiently large numbers of cases.

Second, rare variants might be recent in origin and hence

specific to a single founder population; these are the vari-

ants that are potentially the least replicable, although

this concern is less relevant for gene-based ‘‘burden’’-type

tests where variants are aggregated. Of note, the variants

might be unique to founder populations, but the finding

of genes is relevant to all populations. Third, a higher

rate of direct and cryptic relatedness in some founder

populations could confound baseline assumptions of in-

dependence among genotypes and phenotypes, and

accounting for this sample structure could require more

specialized approaches. Fourth, there might not be enough

power to detect some genes in the founder population as a
The Am
result of the loss of causal variants (Figure 4). Nevertheless,

the increased power, particularly for single-variant tests,

suggests that exome chip and/or exome sequencing in all

available samples from founder populations would be an

efficient use of resources. Different founder populations

will happen to be better powered for different genes (in

each population, certain genes will gain power, whereas

others will lose power, but the genes that gain power will

vary across populations). Thus, a potentially attractive

strategy for rare-variant studies is to employ a diverse panel

of well-powered founder populations.

We evaluated a variety of statistical tests that were

developed under different assumptions about genetic

architecture. We have shown that these tests are indeed

sensitive to different disease models. SKAT-O and the VT

test outperformed the other gene-based tests across a range

of different genetic architectures. It is also worth noting

that single-variant tests performed as well as or better

than SKAT-O and the VT test, particularly in founder

populations with decreased allelic diversity. This raises as

one possible strategy the use of single-variant tests as a

screen in founder populations and then follow-up with

candidate-gene sequencing.

We have shown that exome chip genotyping studies

are currently much more cost efficient than exome

sequencing studies under a range of genetic models. In a

fixed number of samples, however, exome chip genotyping

studies miss a substantial portion of causal variation that

could be detected by sequencing. Continued sharp drops

in the cost of sequencing and/or targeted sequencing to

follow up initial results might enable better-powered and

more cost-efficient exome sequencing or whole-genome

sequencing studies. Given the requirement for large sample

sizes, the ability to combine studies, for example, in meta-

analyses will be critical for a new wave of discoveries. Of

note, as reference panels for imputation become larger

and represent more populations, imputation of rare vari-

ants into samples with existing genotype data is another

likely complementary approach for future studies.

Our study has a number of limitations. We have taken a

forward-in-time approach for simulating population

sequence data, which has substantial advantage in terms

of being able to model different genetic architectures and

demographic parameters, but this approach comes with

the cost of requiring greater computational resources.

Because of this limitation, as well as the complexity of

the demographic models, we did not do a complete search

through the entire parameter space for the best-fitting

demographic model. Another limitation with our simula-

tion is that the limited sample size of the empirical data

provided an incomplete view of rare variants in the popu-

lation, so our simulations might not be completely accu-

rate at very low allele frequencies. Moreover, as suggested

by Casals et al.,35 there might be a relaxation of selection

in the founder population, which we did not consider in

our simulation. It is also worth noting that our empirical

Finnish samples are from all across Finland (Table S1),
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and therefore our model for simulating the Finns ignores

the demographic heterogeneity within Finland. As deeper

and richer human genetic data become available, the

models can be calibrated and improved. Last, but not least,

our study did not explore the effects of properties such as

gene size or mutation rate on power, nor did it characterize

the power of rare-variant tests at noncoding loci, where

causal-variant frequencies and effect sizes might be

different.

In summary, our study has highlighted the usefulness

of understanding the population-genetic properties of a

study population to explore a range of genetic models

and recognize the features and limitations of different

association study designs in that population. As the field

of human genetics moves forward to explore new and

expanded sources of variation, such models offer a context

in which researchers can interpret the data and plan future

studies for gene discovery. With current approaches

focused on rare variation, our work suggests that founder

populations such as Finland can play an important role

in genetic studies.
Appendix A: Fitting Finnish Demographic-History

Parameters

P(datajmodel) for each model was calculated as below. The

first two terms are the probabilities of the observed allele

frequency spectra of synonymous and missense variants

given the demographic model being tested. The third

term is the probability of the observed synonymous/

missense ratio. The last two terms calculate the probabili-

ties of the observed allele sharing between Finns and NFEs.
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i

�
1� yi
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Abbreviations are as follows: s and m, observed total

number of synonymous and missense variants, respec-

tively; si and mi, observed number of synonymous and

missense variants, respectively, in the ith frequency cate-

gory; pi, predicted proportion of synonymous variants in

the ith frequency category among all synonymous variants;

qi, predicted proportion of missense variants in the ith

frequency category among all missense variants; ri,

predicted proportion of synonymous variants in the ith fre-

quency category among all variants (both synonymous

and missense) in the ith frequency category; ssi and smi,

observed number of synonymous and missense variants,

respectively, in the ith frequency category in the Finns

and shared with NFEs; xi and yi, predicted proportion
718 The American Journal of Human Genetics 94, 710–720, May 1, 2
of synonymous and missense variants, respectively,

within the ith frequency category in the Finns and shared

with NFEs.
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