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Abstract

The structures of many helical protein filaments can be derived from electron micrographs of their

suspensions in thin films of vitrified aqueous solutions. The most successful and generally-

applicable approach treats short segments of these filaments as independent “single particles”,

yielding near-atomic resolution for rigid and well-ordered filaments. The single-particle approach

can also accommodate filament deformations, yielding sub-nanometer resolution for more flexible

filaments. However, in the case of thin and flexible filaments, such as some amyloid-β (Aβ) fibrils,

the single-particle approach may fail because helical segments can be curved or otherwise

distorted and their alignment can be inaccurate due to low contrast in the micrographs. We

developed new software called Frealix that allows the use of arbitrarily short filament segments

during alignment to approximate even high curvatures. All segments in a filament are aligned

simultaneously with constraints that ensure that they connect to each other in space to form a

continuous helical structure. In this paper, we describe the algorithm and benchmark it against

datasets of Aβ(1–40) fibrils and tobacco mosaic virus (TMV), both analyzed in earlier work. In the

case of TMV, our algorithm achieves similar results to single-particle analysis. In the case of

Aβ(1–40) fibrils, we match the previously-obtained resolution but we are also able to obtain

reliable alignments and ~8-Å reconstructions from curved filaments. Our algorithm also offers a

detailed characterization of filament deformations in three dimensions and enables a critical

evaluation of the worm-like chain model for biological filaments.
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1. Introduction

Electron micrographs of thin (tens of nanometers) films of vitrified, dilute suspensions of

biological macromolecules and their assemblies can be analyzed to deduce their three-
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dimensional (3D) structure (Frank, 2006). Cases in which proteins form filamentous

assemblies are particularly well suited to structure determination, since a single image of a

helical filament can yield a full tomographic series of projections through the helical

protomer. Helical filaments permitted some of the earliest examples of structure

determination by electron microscopy (De Rosier and Klug, 1968) and continue to be

studied in many different contexts (DeRosier, 2007).

In recent years, most investigators have been using variations on iterative algorithms

originally developed for the study of so-called single particles. When adapted to helical

structure determination, these methods treat short (tens of nanometers) segments of imaged

filaments as independent projections of the unknown 3D structure to be determined. The

length of those segments is chosen carefully. They must be long enough to allow for reliable

and accurate alignment against projections calculated from the current 3D reconstruction

yet, because no helical filament is perfectly rigid, short enough to approximate the canonical

helical assembly depicted by the 3D reconstruction (Bluemke et al., 1988).

The single-particle approach may be less successful when applied to a class of protein

filaments whose mass-per-length and persistence lengths (with regards to bending, torsion

and/or stretching) are too low to be amenable to such image analysis, given a set of optical

and detection conditions. Such filaments are so deformable that any given image segment

would be unlikely to satisfy both length requirements. Luckily, many filaments of biological

importance do not fall under this regime. Even filamentous actin (f-actin) appears to be (or

can become) rigid enough when imaged in cryo-EM experiments to yield sub-nanometer

resolution (Fujii et al., 2010; Galkin et al., 2012).

Fibrils formed by amyloid-β (Aβ) peptides, which are implicated in Alzheimer’s disease,

present an interesting intermediate case, whence sub-nanometer reconstructions have been

obtained, but with some difficulty. A strong meridional reflection at ~1/4.8 Å−1 can be seen

in averaged power spectra computed from existing micrographs of Aβ fibrils (Sachse et al.,

2008), suggesting that a high degree of axial order is preserved in those specimens and that

the images should therefore be of sufficient quality for higher-resolution reconstructions to

be attainable. However, processing micrographs of unstained Aβ fibrils is challenging

because they are essentially featureless in the axial direction at resolutions >4.8 Å and

because the signal-to-noise ratio (SNR) in micrographs recorded onto film is insufficient to

give reliable alignments (Sachse, 2007; Sachse et al., 2008). Many Aβ fibril morphologies

resemble flat nanoscopic ribbons with slow twists on the order of 1 °/nm (Meinhardt et al.,

2009), so that their projection images periodically exhibit thin (~4–7 nm) high-contrast

crossovers with projected molecular weights of ~5–8 kDa nm−2 and wide (~10–20 nm) low-

contrast regions with projected molecular weights of ~2.3–3.4 kDa nm−2 (Schmidt et al.,

2009), which is comparable with f-actin (~2.8 kDa nm−2, width ~6–10 nm).

Two avenues to improving the resolution of Aβ fibril structures therefore present

themselves: improving the SNR of micrographs and/or improving the image analysis

algorithms to make them even more robust to low SNR and filament deformations. Here, we

explore the second avenue and attempt to make iterative real-space refinement of Aβ fibrils

even more robust to low SNR and fibril deformations.
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In previous work, knowledge about the connectivity of image segments coming from the

same filaments and their geometric relationships due to helical symmetry was used as a

criterion for validation of segment alignments and for the a posteriori selection of segments.

For example, when analyzing micrographs of TMV, Sachse et al. (2007) discarded those

segments for which either the assigned polarity contradicted that of other segments from the

same filament or the shifts perpendicular to the helical axis were greater than ~10 Å. Similar

a posteriori exclusion of segments is employed by the commonly-used method developed by

Egelman (2000). In our approach we tested whether this type of criterion could also be used

as a prior during the iterative real-space processing of filament segments to improve the

overall quality of their alignments. In particular, we were interested in whether it would be

possible to reliably “align” filaments with high curvature and/or low contrast.

To help answer these questions, we developed Frealix, a software tool that introduces “full

filament” restraints so that helical deformations can be tracked accurately using arbitrarily

short linear segments, which are not treated independently from each other.

2. Theory

2.1. Frealix

Frealix is a program for the analysis of electron micrographs of helical filaments. Its inputs

are micrographs, filament coordinates, estimated helical parameters and a preexisting 3D

reconstruction. Its outputs are a 3D reconstruction, refined coordinates and refined helical

parameters.

Internally, each filament is represented as an assembly of (rigid-body) subunits positioned

along a helix which has a space curve as its axis. The space curve and helical parameters are

refined iteratively by maximizing a function which compares the experimental (noisy) image

of the filament to projections of the current reconstruction as predicted by its model. The

scoring function also integrates restraints derived from mechanical considerations when

modeling filaments.

Below, we describe the parametrization of our model for helical filaments (Section 2.2), the

function used to “score” sets of parameter values given a model and a micrograph (Section

2.3), maximization strategies we use during refinement (Section 2.4) and the 3D

reconstruction protocol (Section 2.6).

2.2. Modeling helical filaments

The simplest model of a straight filament without distortions can be described by two

parameters: the rise (Δt) and twist (Δφ) per helical subunit (Fig. 1A). If we let the helical axis

coincide with the Z axis and position the first asymmetric unit on the Z = 0.0 plane, the Z

position of the ith asymmetric unit is Z = (i − 1)Δt and its (X,Y) coordinates are obtained

from the (X,Y) coordinate of the first unit by i − 1 rotations of Δφ around Z. All the

asymmetric units lie on a continuous helix which has a characteristic pitch, the distance

along its axis over which a revolution (2π) is completed. One can define t, the distance along

the helical axis: in this simple case t = Z.
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A more generalized description of observable filaments needs to account for their elasticity

with regards to bending, torsion and stretching. To achieve this in the simplest possible way,

we chose to describe the axis of a filament as a space curve r defined by 3 cubic spline

functions x(t), y(t) and z(t) (t, as before, is the arc length along the axis), which interpolate a

set of n waypoints defined by (xi,yi,zi) coordinates, where i = 1, …, n.

At waypoint i, the θi (out-of-plane) and ψi (in-plane) Euler angles are related to the curve’s

tangent vector (Fig. 1B) and thus its derivatives x′(ti), y′(ti) and z′(ti), and can be used as

constraints when solving the splines:

(1)

where ti is the arc length from the filament’s first waypoint to waypoint i. Interpolating

cubic splines which are thus constrained by their tangents are sometimes called Hermite

splines (Knott, 2000 p. 66). Conversely, Euler angles at any point along the filament axis

can be computed from the local tangent vector:

(2)

Arbitrary bending deformations of the helical axis can be accurately described by these three

spline functions, given a sufficient number of waypoints.

We also define two additional parameters per waypoint – rotation around the helical axis

(φi) and helical subunit number (hi) – and use natural cubic splines to interpolate values for

these parameters. This allows us to define at every point along the filament the local helical

parameters Δφ and Δt, the axial twist and rise which relate a subunit to its neighbors:

(3)

Each waypoint thus contributes 7 parameters to the description of a filament: x, y, z, θ and ψ

describe the trajectory of the helical axis while φ and h describe the position of helical lattice

points (we chose the convention that subunits be located where h(t) is integral). Every

possible asymmetric, 1-start helical lattice can be modeled by these 7n parameters (where n

is the number of waypoints). Multiple helical starts and symmetries can be described by

adding 3 more parameters: axial symmetry, perpendicular (side dyad) symmetry and the

number of starts. Although these 3 parameters can be supplied by the user, they are not

optimized by Frealix.

The goal of refinement within Frealix is to find the best possible description of each imaged

filament using this parametrization. In other words, optimal values for 7n parameters must

be sought. We define optimal parameter values as those which maximize the scoring

function described below.
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2.3. Scoring function

The purpose of the scoring function is to evaluate the agreement between the (3 + 7n)-

parameter description (internal representation) of a filament and its experimental image,

given a 3D reconstruction. To achieve this, we compute a normalized cross-correlation

coefficient between projections from the reconstruction and image data along the path of the

filament. Our algorithm is described below and in Fig. 2.

First, the model of the filament must be updated with the new parameter values to be

evaluated (of which there may be up to 7n). In practice,

1. the new values for xi, yi, zi, θi and ψi (i = 1,…, n) are used as constraints to solve

the x(t), y(t) and z(t) splines and redefine the axial space curve;

2. the arc lengths between waypoints are recalculated using Pythagoras’ relation over

very short steps, giving new values of ti;

3. steps 1 and 2 are repeated until convergence – the axial space curve is now arc-

length parametrized;

4. φ(t) and h(t) are solved as natural cubic splines, which interpolate the new φi and hi

values.

Once the filament model has been updated, a set of m “scoring” positions regularly spaced

along the path of the filament is defined.

The helical filament will be treated using a linear approximation at each position, with m

(and therefore the linear segment length) chosen such that the approximation is accurate

enough even in cases of large local deformations (see Section 2.3.1). At each position:

1. the image of a small segment is extracted from the micrograph and Fourier-

transformed (the segment length is such that there is no overlap with neighboring

segments);

2. using the Euler angles corresponding to the model’s space curve tangent at that

point (Eq. (2)), a plane through the Fourier transform of the 3D model is also

extracted;

3. the pixel-wise cross-product between the image and the projection is evaluated (up

to a radius corresponding to the maximum spatial frequency to be used during

refinement), as well as the power of the image and the power of the projection.

The cross-correlation between the model and the experimental image of the filament is then

the sum of the cross-products accumulated at each of the m points, normalized:

(4)

Optionally a weighted, rather than linear, cross-correlation score can be computed (Stewart

and Grigorieff, 2004) and/or mechanical considerations can be used to modify the scoring

function (Section 2.6.3).
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2.3.1. Segment length—The choice of m (the number of scoring positions), which

determines the segment length, is crucial to successful refinement of helical structures.

Lower m values allow for faster computation, since there are fewer projections to compute.

However, since our algorithm does not use overlapping segments (each pixel in the

micrograph is used only once by the scoring function), lower m values also imply longer

segments, which offer less accurate approximations of local deformations such as bending of

the helical axis or local variations in helical parameters.

Among other considerations, our algorithm imposes an upper bound on the segment length L

(and therefore m) for a given filament by taking into account its maximal local curvature (c,

in Å−1, see Section 2.6.3), the spatial frequency corresponding to the target resolution for the

refinement (f, in Å−1; this can be specified by the user at runtime) and a maximum tolerated

phase error (ΦT, for example π/6): L ≤ .

Future implementations of the algorithm could include similar upper bounds on L derived

from torsional and stretching deformations.

2.4. Maximization strategy

Finding the best model for each filament requires that we maximize the scoring function

described in Section 2.3. Because of the large number of parameters (up to 7n, where n > 3),

this is a search problem in a high-dimensionality space which is likely to be multimodal

because of the periodic nature of the filaments and their images. Below we describe some

strategies we implemented in Frealix to approach this problem.

2.4.1. Minimizers—Frealix currently uses three types of minimizers: Powell conjugate

gradient (Harwell Numerical Library, 1979), downhill simplex (Nelder and Mead, 1964) and

differential evolution (Brest et al., 2006; Storn and Price, 1996). The choice of minimizer is

made at runtime by the user (conjugate gradient being the default). The user has the option

to start the minimizer several times at randomized positions in the neighborhood of the

current best parameter values. Such multi-start strategies can lead to the discovery of better

local maxima, particularly during early stages of refinement.

2.4.2. Reducing dimensionality—The refinement in 7n dimensions of a helical

reconstruction can account for many possible types of filament deformations. At times it is

appropriate to ignore some of these deformations and thus reduce the dimensionality of the

problem, for example because such deformations are known to be insignificant at the target

resolution. As an extreme example one can imagine an ideal filament, entirely rigid and with

every helical subunit related to its neighbors by the canonical helical parameters. Such an

idealized filament could be parametrized by 7 quantities (five to describe its straight helical

axis, one for the length of the filament and one for the position along that length of one of

the repeats).

Frealix allows for many combinations of refinement parameters between these two extremes

(7 and 7n). Here are a few examples available in the current implementation:
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• The rise per subunit can be held constant, which may be a good approximation for

amyloid β fibrils (this replaces n dimensions corresponding to hi and replaces them

with a single value for the filament’s phase origin of subunits).

• One may “turn off” out-of-plane (θ) refinement, e.g. because it is not necessary

when targeting 8–10 Å resolution for some specimens (e.g. Sachse et al., 2008).

This removes 2n dimensions from the refinement problem (Z and θ) by

constraining filaments to the plane of the micrograph, which may be approximated

by using CTF estimation (Mindell and Grigorieff, 2003).

• The Z position of waypoints can be computed from the out-of-plane tilt at

waypoints (θi angles), the filament’s average Z (defocus) and a constraint to

minimize the filament’s curvature. This removes n dimensions.

• The rise and/or twist per subunit can be held constant by introducing discontinuities

in the helix between waypoints, so that the internal representation of the helical

assembly has sharp discontinuities halfway between waypoints, while the axis is

still a continuous space curve (this is described in detail in Section 2.4.2.1). This

can remove n or 2n dimensions.

There are other ways to reduce the minimization’s dimensionality:

• the number of waypoints can be reduced (see Section 2.3.1);

• rather than refining all of a filament’s free parameters simultaneously, each

waypoint can be refined in turn;

• longer filaments can be “split” so that they are modeled as two independent

filaments (connectivity restraints are then lost, but this can be alleviated by leaving

“overhanging” ends).

2.4.2.1. Dropping continuity restraints: Frealix implements two runtime options for the

user to drop continuity restraints. One option drops all restraints and treats the n waypoints

as independent objects, in a manner similar to previously-described single-particle

approaches.

The other option lets the user drop continuity restraints for φ and/or h. In this case, linear

extrapolation from the nearest waypoint (rather than cubic spline interpolation between

waypoints) is used to compute an arbitrary point’s φ(t) and h(t) parameter values. All other

parameters are computed as described in Section 2.2.

2.4.3. Normal modes parametrization of the search space—Under the control of a

runtime option, the minimizer can either refine directly the real-space representation of

filaments (described in Section 2.2) or refine a normal mode re-parametrization thereof. The

normal mode analysis describes deviations from a perfectly straight helix with constant

helical parameters but it does not attempt to be mechanically realistic. Rather, it is used as

an alternative way for the minimizer to address and modify the configuration of filaments.

The analysis is done as follows.
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Before refinement begins, the analysis is set up by treating the n waypoints as coupled

oscillators with coupling constants inversely proportional to the arc lengths between them.

We then compute the one-dimensional normal mode eigenvectors and eigenvalues for the

system and sort them by increasing eigenvalues (i.e. low-frequency modes first). Typical

normal modes (eigenvectors) are plotted in Fig. 3 for the case where waypoints are

equidistant. We then perform a linear fit of the 5 splines (x, y, z, φ, h), treat these fits as the

equilibrium configuration for each dimension and use the normal modes (eigenvectors) to

describe residuals from these fits. This amounts to a change of coordinate system.

During refinement, if the user has activated that option, the minimizer refines the normal

mode amplitudes corresponding to these transverse displacements rather than the actual

waypoint parameter values. The normal mode amplitudes are converted to waypoint

parameter values before the scoring function is called.

Normal-mode parametrization often results in a much sparser representation of the filament

model. For example, decreasing the twist per unit length along the filament involves

increasing the amplitude of the second mode (mode 1 in Fig. 3) for the φ spline. Without the

use of normal modes, the minimizer would have to “tweak” n values to achieve the same

result.

2.4.4. Refining waypoints sequentially—In some cases, only a few of the waypoints

are misaligned. For those situations, Frealix has an option to refine waypoints sequentially

rather than simultaneously. This reduces considerably the dimensionality of the

minimization problem while retaining the full set of restraints from the full-filament model.

However, it may then miss solutions that involve “moving” several neighboring waypoints

together. One may iterate between sequential and simultaneous maximization of waypoints

during refinement (normal-mode reparametrization can only be used during simultaneous

waypoint refinement).

2.5. Refinement bootstrapping

Frealix is a refinement program. Although this may be a feature in a future release, it does

not attempt an initial estimate of the helical parameters. Therefore, a good estimate of those

parameters must be supplied by the user. This can be done by selecting relatively straight

filaments to get estimated helical parameters using single-particle or Fourier–Bessel

approaches (see for example Desfosses et al., 2013 and references therein). Once helical

parameters (and a reliable 3D reconstruction) have been obtained, Frealix can be used to

analyze the full dataset, including bent and twisted filaments. So far, we have implemented

two ways to obtain initial values for the 7 waypoint parameters refined by Frealix:

• A Frealign (Grigorieff, 2007) parameter file and the corresponding stack of boxed

images can be given as input. A normalized cross-correlation search (Roseman,

2003) is performed to find which micrograph each segment was extracted from as

well as its coordinates.

• The relevant data are extracted from Boxer (Ludtke et al., 1999) coordinate files or

IMOD (Kremer et al., 1996) model files (X,Y,ψ) and the output of either CTFFIND

or CTFTILT (Mindell and Grigorieff, 2003; Z, θ). If the supplied X,Y coordinates
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are of crossovers, φ angles of i × 180° degrees are assigned to waypoints (i is the

waypoint index). Otherwise, the helical parameters supplied by the user are

assumed to be constant along each filament and φ and h values are assigned as a

linear function of arc length (in which case the filaments are not “phased” with

respect to each other).

2.6. Three-dimensional reconstruction

3D reconstruction in Frealix is done using a direct Fourier inversion similar to that of

Frealign (Grigorieff, 2007). At each point along the filament where h(t) is integer, an image

is extracted from the micrograph, Fourier transformed, multiplied by the local CTF, filtered

with a B factor, and inserted into the 3D reconstruction. The Euler angles at which this

insertion occurs can be computed from the model splines, as detailed in Section 2.2.

Therefore, whereas the scoring function relies on a piecewise linear approximation of

filament deformation during refinement, this assumption is dropped during reconstruction. If

the helical geometry includes a point-group symmetry, the insertion is repeated in the

symmetry-related orientations. Squared CTF functions are accumulated in a separate volume

and once all image and CTF2 data have been accumulated into their respective volumes, a

Wiener-like filter is applied as described by Grigorieff (2007), yielding a single volume

which is back Fourier transformed.

This real-space volume suffers from two distinct artifacts: attenuation near its edges and

corruption by aliases. The attenuation is due to the convolution step during Fourier-space

interpolation and is corrected exactly using the inverse of the reciprocal of the convolution

kernel. The corruption by aliases, which is due to the sampling step of the interpolation

operation, cannot be avoided but since the aliases are also modulated by the attenuation

function, a judicious choice of convolution kernel and reconstruction volume dimensions

can minimize their influence (Jackson et al., 1991). We have implemented several

interpolation schemes in Frealix (nearest-neighbor, linear and windowed sinc), which can be

selected at run-time by the user for use during refinement and reconstruction. The

appropriate attenuation function correction is performed on the final 3D reconstruction

volume, according to the user’s choice. The default is linear interpolation.

2.6.1. Helical symmetrization—Currently, to our knowledge, the most common way to

impose helical symmetry on a real-space volume (for example in Frealign (Alushin et al.,

2010) or SPARX-IHRSR (Behrmann et al., 2012)) is to “smear” a central slab of the volume

over the full volume, with rotations matching the Z-shift of the slab. In the reconstruction

algorithm used by Frealix, however, only the “central” helical asymmetric unit of the

reconstructed volume is optimally reconstructed. All the other repeats will be slightly low-

pass filtered, depending on their distance from the origin of the reconstruction and on

filament deformations. Frealix therefore implements a helical symmetrization algorithm

whereby each output voxel is mapped back into the central asymmetric unit cell and its

value interpolated from the input volume at that position.

In our implementation, the primitive helical unit cell is defined by the two basis vectors a⃗

and b⃗ which, in a (φ,z) plot (Fig. 4), are the vectors that define the helical starts with the
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smallest absolute rise and twist per subunit, respectively. This choice is intuitive when

visualizing helical reconstructions such as TMV, f-actin, etc. because it relates a given

repeat to its nearest neighbors to the sides (a⃗) and above and below (b⃗). For example, in the

case of a TMV reconstruction, the chosen helices are 1- and 16-start, respectively:

 and .

When looping over output voxels, the interpolating coordinates are computed by converting

from Cartesian to cylindrical coordinates, then to indexed (φ,z) lattice coordinates, which

can be mapped to the primitive unit cell by translation by an integer multiple of (a⃗,b⃗). The

coordinates are then converted back via cylindrical coordinates to the Cartesian grid, where

interpolation is carried out.

2.6.2. Fourier shell correlation—For the purposes of spectral SNR estimation, for

example to apply a figure-of-merit filter, Fourier shell correlations (FSC) may be computed

at every refinement round. For this, the data are split into two groups, either even- and odd-

numbered filaments or the first and second halves of a filament if only one is available. 3D

reconstructions are computed from each half, helical symmetry is imposed on both volumes

and a mask is computed from each volume. These masks are then applied to each half-

dataset reconstruction before the volumes are Fourier transformed for FSC computation.

The masks are computed from the reconstructed volumes thus: (1) the volume’s Z edges are

tapered to 0.0 in real space with a cosine-edge falloff over the first and last 4 slices; (2) a

Fourier-space low-pass filter is applied with a cosine falloff width of 1/40 pixels−1

(equivalent to 7.5 Fourier shells for a volume of 3003 voxels) so that frequencies beyond

1/20 Å−1 are zeroed; (3) the filtered volume is binarized such that the number of non-zero

voxels corresponds to the expected protein volume; (4) the first and last 20% of Z slices are

set to 0.0; (5) the binary mask is “softened” in real space with a cosine edge extending from

the current 3D boundary with a falloff of ~16 pixels.

2.6.3. Geometrical & mechanical properties—Using the parametrization introduced

in Section 2.2, it is possible to evaluate geometrical properties of each filament such as

curvature and torsion. The local curvature C(t) (in units of inverse distance or radians per

distance) can be evaluated from the axial space curve’s first and second derivatives r′(t) and

r″ (t) (Kreyszig, 1959): . The ϱ(t) vector lies in the plane normal

to the tangent r′(t) and indicates the direction of filament bending at t, in the laboratory

frame of reference. This can be affine-transformed to the frame of reference of the 3D

reconstruction by using the Euler angles φ(t), θ(t) and ψ(t).

In addition to curvature, local torsional and stretching deformations can be characterized

relative to the canonical (undeformed) helical twist per unit length  and rise per subunit

 (Kornyshev et al., 2007):  and .
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If the rigidities (persistence lengths) of a filament with respects to curvature, torsion and

stretch are known, the total elastic energy associated with an observed deformed state can be

evaluated by integrating the squared deformations over its arc length L (Kornyshev et al.,

2007):

where lc1 and lc2 are the principal bending persistence lengths and lt and ls are the torsion

and stretching persistence lengths. In the case of isotropic bending rigidity, a single

curvature term and bending persistence length are sufficient.

Assuming that observed deformations are thermal in nature, the probability of observing a

particular deformation is related to the deformation energy by Boltzmann’s constant:

 (Boal, 2002). For example one might expect a normal probability

distribution of curvatures, so that large curvatures are unlikely to occur:

 (assuming isotropic bending rigidity and thus a single bending

persistence length).

If the persistence lengths are known, these Gaussian priors can be used to improve our

search for the correct parameter values for a given filament, by biasing the scoring function

against large filament deformations (Chen et al., 2009):

(5)

In Frealix, the user can activate any combination of these three restraints and specify the

relevant persistence lengths on input. In the current version, isotropic bending rigidity is

assumed in the implementation of the curvature restraint.

3. Implementation

Frealix is implemented in Fortran 2003 with OpenMP directives for shared-memory

parallelism. Image file input/output and Powell conjugate gradient minimizer routines were

adapted from Frealign (Grigorieff, 2007), while the rest of the code was developed

independently. It is dependent on the FFTW (Frigo and Johnson, 2005) and GSL (Galassi et

al., 2003) libraries. Source code and executable binaries are available from http://

grigoriefflab.janelia.org.

4. Results

To test the algorithms implemented in Frealix and help minimize the number of

implementation errors, we re-processed datasets which had been analyzed previously with

single-particle methodologies (Sachse et al., 2008, 2007).
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4.1. Aβ(40) fibrils

We selected for analysis 450 filaments (ranging in length from ~0.3 to 1.6 µm; Fig. 5F) from

63 micrographs densitometered by Sachse et al. (2008). We included all the filaments we

could select visually, regardless of their curvature or crossover-to-crossover distances,

excluding only those which were bundling or aggregating with others and those for which

we could not select three consecutive crossovers. The positions of crossovers were selected

manually using the program Boxer (Ludtke et al., 1999), and for each filament we

additionally selected two extra (non-crossover) points at either end of the filament.

CTFTILT (Mindell and Grigorieff, 2003) was used to estimate the defocus of the

micrographs.

To generate a starting model, a single fibril was reconstructed by assigning φ angles of

multiples of 180° to crossover points (see Section 2.5). This reconstruction was then refined

and used as a starting model for the analysis of the full dataset.

Throughout processing the rise per subunit was assumed to be constant (4.8 Å), 2-fold axial

symmetry was assumed and the Z coordinates were not free parameters (they were functions

of the θi values with each filament’s mean Z value constrained to the CTFTILT plane; see

Section 2.4.2). To reduce the influence of image noise on the refinement, only data up to

1/20 Å−1 were used during early rounds. This limit was gradually increased to 1/9 Å−1,

while ensuring throughout that only frequencies with high estimated SNR (FSC > 0.9) were

used for refinement.

Successive rounds alternated simultaneous and sequential refinement of waypoints, as well

as real-space and normal-mode search space parametrization. The average waypoint-to-

waypoint distance was 132.7 nm (σ = 13.5 nm) and the average segment size was 4.3 nm (σ

= 0.2 nm). The final reconstruction obtained from the full dataset (450 filaments) had a

resolution of 7.5 Å (Fig. 5H). Its central section normal to the helical axis is shown in Fig.

5A. This reconstruction and its estimated resolution are very similar to those obtained

previously (Sachse et al., 2008).

Using the same refined alignment parameters, we computed reconstructions from subsets of

the data which included the same number of fibrils as were used in that study (e.g. Fig. 5B,

computed from the 188 most bent fibrils). Those reconstructions had estimated resolutions

of 8.0–8.3 Å, marginally lower than previously reported (Sachse et al., 2008), but suggesting

that Frealix is able to align curved filaments almost as well as straight ones. This is not the

case for single-particle refinement: when processed using Frealign (Alushin et al., 2010) for

15 rounds starting from the alignment parameters obtained by Frealix, the 188 most bent

fibrils gave a reconstruction where most features of the peptide backbone were smeared

(Fig. 5C), consistent with significant misalignments, especially in between crossovers. We

also found that the Frealix algorithm was generally resistant to overlap between filaments,

with no significant misalignments in “crowded” regions of micrographs (Fig. 5I and J).

After selecting fibrils with mean crossover distances between 130 and 150 nm, as was done

by Sachse et al. (2008), we obtained a 7.1-Å reconstruction (Fig. 5D), matching the

resolution obtained by these authors (Fig. 5H). This suggests that mean crossover distance is
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a correlate of Aβ peptide conformation. As in previous work, we did not reach resolutions

sufficient to distinguish the β strand repeats of the cross-β structure, despite the increase in

the number of fibrils analyzed. In addition to the difficulties caused by the lack of image

features (power in the Fourier transform) between ~1/50 and 1/4.8 Å−1 along the helical axis

of amyloid fibrils and their heterogeneity (see Discussion), this may be because

experimental factors during microscopy such as beam-induced specimen movement (Brilot

et al., 2012) and suboptimal contrast transfer at 1/4.8 Å−1 (because of variable defocus)

rendered some images inadequate for registration at this spatial frequency.

Inspection of 3D reconstructions from each individual filament would seem to support this

notion. Reconstructions from filaments of similar lengths should have similar SNR (all other

things being equal), yet we observed large variations in the quality of their reconstructions,

indicative of significant variations in the quality of imaging and/or alignment of individual

filaments, even in spatial frequencies around 1 nm−1. For example, only in about 3% of

reconstructions from individual Aβ(40) fibrils, all of which were longer than 0.8 µm (Fig.

5F, red bars), some internal density features were partially resolved (Fig. 6), suggesting that

those fibrils had been reconstructed to higher resolution than is usual for single filament

reconstructions (compare Fig. 6 to fibril 11 in Fig. 6 of Meinhardt et al., 2009). The SNR at

~1 nm−1 in those reconstructions is still too low to permit reliable interpretation, but the

separation between the two peptides within each protofilament (see description in Sachse et

al., 2008) appears to be partially resolved in a few of the 16 filaments, particularly in the

core region of the fibril, near the helical axis.

At 1/4.8 Å−1, although in aggregate the set of fibrils has a clear diffraction line (Fig. 1C in

Sachse et al., 2008), indicative of high order and sufficiently good imaging, individual fibrils

vary greatly in the strength of this reflection (data not shown) and the quality of their

reconstructions (Fig. 6). It is likely that disorder or conformational heterogeneity in parts of

the peptide are limiting our resolution – multi-reference refinement could be applied to sort

out this heterogeneity but it is not implemented in the current version of Frealix.

4.2. TMV

Starting from the approximate coordinates of 135 TMV filaments on seven micrographs,

which had been picked manually by Sachse et al. (2007), and a map decimated in Fourier

space to give a pixel size of 4.65 Å, we bootstrapped the analysis of TMV filaments by

assuming constant helical parameters for all filaments, as described in Section 2.5.

Initial efforts to refine this structure using “full-filament” mode, where all parameters are

constrained to continuous functions, yielded reconstructions of approximately 5.8 Å

resolution. We hypothesized that this may have been due to the shallow helix of TMV

filaments, which means that slight errors in translation (on the order of 1.4 Å) along the

helical axis or in h (helical repeat number, see Section 2.2) could yield strong local maxima

of the scoring function, which the minimizer was unable to escape from. In other words,

very small deviations from canonical helical parameters, which are to be expected even from

very rigid filaments such as TMV, may be challenging to track accurately because of the

highly periodic and polymodal nature of the scoring function along those parameters.
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To test this, we continued refinement with an assumption of constant helical parameters and

without continuity restraints on the φ and h parameters (see Section 2.4.2.1). Data up to 5.5

Å were eventually included in the refinement. We estimated the resolution of the final

reconstruction to be 4.5 Å and the map was of comparable quality to that obtained by Sachse

et al. (Fig. 7). The final segment size used in the scoring function was 2.4 nm on average (σ

= 0.1 nm) and the waypoint-to-waypoint distance was fixed at 10 nm.

4.3. Bending fluctuations

Bending fluctuations can be used to estimate the flexural rigidity of biological filaments by

assuming a worm-like-chain (WLC) model is applicable (see Boal, 2002 for an overview).

Since Frealix generates and refines geometrical descriptions of each filament as a

“byproduct” of the structure-refinement process, we attempted to estimate the bending

rigidities of TMV and Aβ(40) filaments from our data.

The smaller dimension of our micrographs was ~1.2 µm (Fig. 5I). This means that filaments

whose measured arc length is >1.2 µm must be significantly curved and conversely that we

could not have observed straight filaments with those arc lengths. We therefore excluded

filaments with arc lengths longer than 1.0 µm from the analysis below to avoid biasing the

analysis towards more bent filaments.

The bending persistence length lc (Kratky and Porod, 1949) is defined in three dimensions

by 〈r′ (0) . r′ (s) 〉 = e− s / lc, where the left hand side is the mean dot product between

tangent vectors separated by arc length s. We calculated this quantity for 24 nm ≤ s ≤ 1 µm

and the resulting fit with an exponential yielded estimates of lc = 13.1 ± 0.7 µm and lc =

405.2 ± 17.5 µm for Aβ(40) and TMV filaments, respectively (Fig. 8; ± denotes the

asymptotic standard error of the fit). Another estimate of the persistence length can be

obtained by measuring the chord length L and mid-point normal distance δu in 2D projection

(Turner et al., 2006): . Using this method, we obtained estimates of lc = 26

± 2 µm and 202 ± 39 µm for Aβ(40) and TMV, respectively (± denotes standard error of the

mean). These estimates are similar to previous estimates from the same micrographs (290

µm for TMV, see Sachse, 2007; 30–100 µm for Aβ(40), see Sachse et al., 2010) but TMV

filaments are so rigid that on the length scales observable here, lc estimates using either

method may not be reliable. Indeed, they differ significantly from estimates reported in the

literature (1.4 mm in Falvo et al., 1997; 7 mm in Schmatulla et al., 2007; 1.3 mm Zhao et al.,

2008).

To test whether the WLC model offers a valid description of our data in the first place, we

computed the distribution of curvatures of short segments of the filaments. Contrary to our

expectation (see Section 2.6.3), the distributions of curvatures were not normal (Fig. 9A and

B). In the case of TMV filaments, the probability P(C)dC of observing a curvature in the

interval between C(t) and C(t) + dC followed approximately the theoretical prediction of

Rappaport et al. (2008) for worm-like chains in three dimensions: 

CdC.

Rohou and Grigorieff Page 14

J Struct Biol. Author manuscript; available in PMC 2015 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



In the case of Aβ(40), the curvature distribution did not seem to match that prediction.

Heuristically, we found the following function described the observed distribution more

accurately:  CdC. This empirical function also approximated the

TMV curvature distribution quite well (Fig. 9B). This suggests that the curvatures of Aβ(40)

fibrils observed in our experiments are not solely due to thermal bending of thin rods with

isotropic material properties in three dimensions as commonly assumed in the WLC

description. Indeed, as expected from their cross-sections, we found that TMV but not

Aβ(40) had isotropic bending probabilities by recording the distribution of the azimuth of

the curvature vector ϱ in the frame of the 3D reconstruction (Fig. 9C and D).

5. Discussion

All biological filaments are subject to deformations, and these can be direct impediments to

analysis when the micrograph SNR is too low and sufficiently short segments cannot be

aligned reliably independently from each other. Frealix uses a full-filament model to allow

for the use of much shorter image segments than would be feasible otherwise, which in turn

makes flexible filaments more amenable to analysis.

In the current work, we used segment lengths of ~4.3 and 2.4 nm for Aβ(40) and TMV,

respectively, much shorter than in previous work (84.2 and 70 nm, respectively; Sachse et

al., 2008, 2007). We demonstrate that our implementation of connectivity constraints makes

it possible to use such short segments and match results from a single-particle algorithm. In

the case of amyloid fibrils, we are able to align filaments accurately regardless of curvature

or crossover distance (Fig. 5). We expect there will be cases involving more challenging

filaments in which our use of shorter segments will be even more advantageous, and that our

ability to reliably align severely deformed filaments will make it easier to generate large

datasets for future analysis.

In its current incarnation, Frealix does not address all the technical challenges which stand

between us and atomic-resolution reconstruction of Aβ fibrils. Even with improved imaging

and, for example, beam-induced movement correction (Brilot et al., 2012), heterogeneity

and disorder may need to be overcome by future versions of the software before β-strands

can be resolved. Indeed, it is likely that only a core region of amyloid fibrils is ordered

following the cross-β fold, with the rest of the peptide acting as noise for the purpose of

alignments, and/or that there are a range of conformations the peptide can assume, each

giving rise to slightly different helical parameters. This last complication may be adequately

addressed by collecting larger datasets and implementing multi-reference refinement in

Frealix, whereas the first issue (of partial disorder) can probably only be alleviated by

improved imaging and higher micrograph SNR.

Processing TMV filaments also suggests how Frealix may be improved in future versions.

When segments do not have the “freedom” to align to the reference independently of each

other, one loses the ability to discard segments if their alignment parameters do not conform

with those of other segments from the same filament. Sachse et al. (2007) rejected ~2 to

12% (at various iterations of the refinement) of segments because they aligned with the

“wrong” polarity or with an abnormally large shift normal to the axis. One might speculate
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that some of these rejected segments had suffered from local deformations, beam-induced

movements, ice contamination or defects in the helical assemblies. In the current

implementation of our algorithm, such segments are always included in the 3D

reconstruction and may thus impede convergence towards the correct global alignment

parameters. This may explain why our TMV reconstruction has a slightly lower estimated

spectral SNR in the 1/5 Å−1 region than that of Sachse et al. (Fig. 7C). Such marginal loss in

final resolution may be acceptable in cases where the flexibility of filaments calls for short

segments, but future versions of Frealix could also perform similar exclusion of segments,

perhaps based on localized (as opposed to filament-wide) measures of the score.

Using “full-filament” constraints comes with another penalty, at least in our initial

implementation: the optimization problem is posed in a high-dimensionality space. This can

make Frealix much more compute-intensive per filament than other approaches. We have

begun exploring strategies to alleviate this problem (see Section 2.4), and future versions of

Frealix will likely improve on the current implementation in terms of computing efficiency.

Useful lessons might be learned from other fields of study. For example, our approach of

combining image correlations and prior knowledge about filament connectivity and

deformation statistics (Section 2.6.3) resembles that of open active contours (Smith et al.,

2010). In our case, the relative weighting of image correlation and mechanical restraint is

inversely proportional to the SNR in the image (Chen et al., 2009; Sigworth, 1998). A

similar functional form is also used in the field of data smoothing using spline functions. In

that context, the relative weighting of fidelity to observed data versus smoothness of the

fitted function is a parameter which can be optimized using generalized cross validation

(Craven and Wahba, 1978). It would be interesting to see whether similar regularization

approaches could be used to determine, for example, the optimal number of waypoints to

model filaments accurately. Currently, the number of waypoints is chosen by the user; too

few waypoints may lead to inaccuracies and too many, to overfitting.

It remains to be seen whether our particular choice of model, essentially a WLC

approximation (for a review see Poelert and Zadpoor, 2012) for the helical axis, is optimal.

In terms of cryo-EM image processing, we demonstrate that this is sufficiently accurate to

derive sub-nanometer resolution structures. However, the distribution of curvatures (Fig.

9A) and mean tangent correlations (Fig. 8) of Aβ(40) fibrils both appear to differ from

predictions from the WLC model, suggesting that it should be modified before it is used to

derive accurate mechanical properties of Aβ fibrils in the semi-flexible regime. The first

such modification might concern the anisotropic nature of fibrils, but other experimental

factors such as the presence of air–water interfaces or local crowding (Fig. 5I and J) may

also be taken into account. Frealix could provide a suitable framework for testing

experimentally such future versions of the WLC model, for example by providing

quantitative measurements of curvature anisotropy (Fig. 9C and D). It is possible that a

WLC model that takes into account bending anisotropy would “track” Aβ fibrils more

accurately between waypoints.

These considerations raise the question of whether the restraints on our scoring function are

valid as currently implemented (second term in Eq. (5)). Quantitatively, we are confident
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they are not, since they assume Gaussian distribution of local curvatures. However, we posit

that they fulfill the role of restraints adequately in a qualitative sense, since they do penalize

large deviations from straightness during refinement.

Non-Gaussian distributions of local curvatures have been reported for microtubules in vivo

(Bicek et al., 2009; Yang et al., 2011) and taken as evidence of non-thermal bending

fluctuations. However, Rappaport et al. (2008) predict that as long as worm-like chains are

free to bend in three dimensions (i.e. they are not adsorbed on a surface), the zero-curvature

case should not be the most common, and that non-Gaussian curvature distributions should

be expected. Our data for both TMV and Ab(40) filaments in vitro support this notion (see

Section 4.3) and in the case of TMV these authors’ predicted distribution matches our

observations well. As far as we are aware, we are the first to report on the in vitro

distribution of 3D curvatures of filaments. We could only find one previous publication

where in vitro curvature distributions were reported, a cryo-EM study of microtubules in

various nucleotide-bound states (Vale et al., 1994) where curvatures were measured in 2D

and followed approximately normal distributions, as expected (Rappaport et al., 2008).
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Fig.1.
Helical filament parametrization. (A) Ideal straight helix. (B) A generalized helical axis is a

space curve r, drawn in bold. Its x, y and z positions are functions of t, its arc length, and it

interpolates a set of n waypoints (blue dots). At any given point, the derivatives of x, y and z

with respect to t define the tangent vector (dashed arrow) and are related to the local

(instantaneous) Euler angles ψ (in-plane) and θ (out-of-plane rotation). The helix was not

drawn in this panel, for clarity.
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Fig.2.
Scoring function algorithm.
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Fig.3.
Normal modes of linear fit residuals in the case where waypoints are equally spaced along

the filament. These modes are reminiscent of the hydrodynamic modes of an unconstrained

slender rod (Howard, 2001, p. 108).
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Fig.4.
(φ,z) Plot of the real-space helical lattice of TMV. This is the real-space equivalent of (n,Z)

plots (DeRosier, 2007). The two axes are scaled arbitrarily to aid visualization. Two vectors

a⃗ and b⃗ are chosen to define the primitive helical unit cell. In Frealix, the helical starts with

the smallest absolute rise (1-start) and twist (16-start) per subunit are selected. Any point P

(gray) with cylindrical coordinates (ΦP,zP; light gray) can be mapped into the unit cell (gray

shaded area) by first recasting its coordinates to the a⃗, b⃗ coordinates system, giving (x,y; in

blue) and then shifting it by integer numbers of a⃗ and b⃗.
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Fig.5.
Aβ(40) fibril reconstructions. Central sections of 3D reconstructions of Aβ (40) fibrils

computed using Frealix from the full dataset (A, 450 fibrils), the 188 most curved (B), and

the 188 straightest filaments with mean crossover distance between 130 and 150 nm (D).

The 188 most curved filaments were also processed using Frealign, starting from the

alignment parameters determined by Frealix. The reconstruction after 15 rounds of

refinement is shown in C. Scale bar: 30 Å. The reconstructions were generated assuming 2-

fold axial symmetry. A negative B factor (−600 Å2) was applied, as well as a low-pass filter

with cosine edge reaching 0.0 at 7.5 Å (A and D) or 8.0 Å (B and C). (E) Distribution of

mean crossover-to-crossover distance (measured along the arc length of the helical axis). (F)

Distribution of filament arc lengths. (G) Distribution of the total change of direction of

filaments, defined as the integral of the curvature along the length of a filament. Red portion

of bars (E–G) Correspond to the 16 filaments whose reconstructions are shown in Fig. 6. (H)

FSC curves for Aβ(40) reconstructions. Following refinement, filaments were split into two

groups and the FSC between the groups was computed. The FSC for the full set of 450

fibrils (blue) is greater than 0.5 and 0.143 until 8.5 and 7.5 Å respectively. The 188 straight

filaments (yellow) gave an FSC greater than 0.5 and 0.143 until 9.0 and 7.1 Å, respectively,

as compared to 8.9 and 7.2 Å (Sachse et al., 2008; grey). The 188 most curved filaments

gave a very similar reconstruction & FSC curve, greater than 0.5 and 0.143 until 9.0 and 8.3

Å (red). (I) Digitized film micrograph of a somewhat “crowded” sample area. The edges of

the carbon hole are visible (top & bottom right corners), as are the film label (top) and the

fringes at the edge of the electron beam (corners). The image was band-pass filtered to

attenuate low-frequency digitization artifacts and high-frequency noise. (J) Traces of the

filaments analyzed from the same micrograph illustrate that Frealix reliably “tracks”

filaments even in crowded environments. Dots indicate waypoints, which correspond

approximately to crossovers.
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Fig.6.
3D reconstructions from individual Aβ(40) fibrils. After visual inspection, 16 of the 450

single-filament 3D reconstructions were selected because they showed features within the

molecular envelope. A figure-of-merit filter was applied to each reconstruction, based on the

FSC between the two halves of each filament, as well as a sharpening B factor (−100 Å2)

filter. In addition, a cosine-edge low-pass filter was applied to remove remaining high-

frequency data (beyond 1/8 Å−1). Scale bar: 30 Å.
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Fig.7.
TMV reconstruction using Frealix (A) compared with the reconstruction obtained by Sachse

et al. from the same filaments using single-particle methods (B). The FSC curve (C)

computed for the Frealix reconstruction is above 0.5 and 0.143 until 5.0 and 4.5 Å,

respectively, compared to 4.7 and 4.3 Å (Sachse et al., 2007). Both reconstructions were

filtered using a B factor of −280 Å2 up to 1/10 Å−1, amplitude matching at frequencies

greater than 1/10 Å−1 against a density derived from atomic coordinates fitted into the map,

and a figure-of-merit filter.
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Fig.8.
Mean tangent dot products for Aβ(40) fibrils (blue) and TMV filaments (green). Tangent

vectors were calculated at every 24 nm along all filaments shorter than 1 µm. Dot products

were then computed between pairs of vectors separated by arc length s (X axis) and the

mean dot product is plotted. Y error bars denote standard errors of the means. The data were

fit with exp(−s/lc) by minimizing the weighted sum of squared residuals using the

Marquadt–Levenberg algorithm as implemented in Gnuplot (Williams and Kelley, 2012).

The fits yielded lc estimates of 13.1 ± 0.7 µm (Aβ) and 405.2 ± 17.9 µm (TMV; ± denotes

asymptotic standard error in fit).
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Fig.9.
Statistics of local curvature measurements along TMV and Aβ(40) filaments. The local

curvature was measured at the estimated position of every helical subunit along every

filament. There were a total of 600,884 subunits for the Aβ40 dataset, and 211,017 subunits

for the TMV dataset. (A and B) Histograms of the local curvature amplitudes. Full lines: fits

of probability function proposed by Rappaport et al. (2008); dashed lines: fits of empirical

function, see main text. (C and D) Histograms of the local curvature azimuths, as related to

the filament structure (see Section 2.6.3 for the definition of ϱ).
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