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Because modern humans originated in Africa and have adapted to diverse environments,
African populations have high levels of genetic and phenotypic diversity. Thus, genomic
studies of diverse African ethnic groups are essential for understanding human evolutionary
history and how this leads to differential disease risk in all humans. Comparative studies of
genetic diversity within and between African ethnic groups creates an opportunity to recon-
struct some of the earliest events in human population history and are useful for identifying
patterns of genetic variation that have been influenced by recent natural selection. Here we
describe what is currently known about genetic variation and evolutionary history of diverse
African ethnic groups. We also describe examples of recent natural selection in African
genomes and how these data are informative for understanding the frequency of many
genetic traits, including those that cause disease susceptibility in African populations and
populations of recent African descent.

Africa is where modern humans evolved and
is the starting place for the global expansion

of our species (Stringer and Andrews 1988;
Stringer 1994; Templeton 2002). African popu-
lations also have the highest levels of genetic and
phenotypic variation among all humans. This
variation is informative for characterizing de-
mographic history in Africa, including times
when populations increased in size, contracted,

migrated, or when admixture between them oc-
curred. Genetic variation also provides data that
are useful in identifying local adaptation to di-
verse environments (Campbell and Tishkoff
2008). Characterizing human genetic variation
and examining phenotypic variation in extant
African populations is fundamental to the iden-
tification of genes that play a role in function,
adaptation, and complex disease susceptibility
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in Africans and populations of recent African
descent.

LINGUISTIC, CULTURAL, AND SUBSISTENCE
DIVERSITY IN AFRICA

There are over 2000 indigenous languages spo-
ken in Africa. They are classified into four major
linguistic families—Niger-Kordofanian (spo-
ken primarily by agriculturalist populations lo-
cated in large contiguous regions of sub-Saharan
Africa from West Africa to eastern and southern
Africa), Nilo-Saharan (spoken predominantly
by pastoralist populations in central and eastern
Africa), Afroasiatic (spoken predominantly by
agro-pastoralists and pastoralist populations in
northern and eastern Africa), and Khoesan (a
language family that contains click consonants,
spoken by hunter–gatherer San populations in
southern Africa as well as the Hadza and San-
dawe hunter–gatherers in Tanzania) (Fig. 1).

African populations also live in a diverse
range of environments (including deserts, sa-
vannahs, and tropical environments), have dif-
ferent exposures to infectious disease, and have
diverse diets and subsistence patterns. Because
African populations exist in such a broad spec-
trum of environments, they may have regional
or population-specific genetic variants that play
a role in local adaptation to different selection
pressures. The study of African genomic varia-
tion is uniquely interesting because of the large
proportion of human genetic variation ob-
served in African populations and the length
of human history in the continent.

PATTERNS OF GENETIC DIVERSITY AND
DEMOGRAPHIC HISTORY IN AFRICA

The characterization of human genetic varia-
tion began with studies that described human
blood groups and protein polymorphisms
(Cavalli-Sforza 1994). Since then, it has grown
to include numerous studies of mtDNA (mito-
chondrial DNA) that is inherited maternally, Y
chromosome variation that is inherited pater-
nally, and loci from the full nuclear genome
that include sequences of repetitive DNA, single
nucleotide polymorphisms (SNPs), and struc-

tural variation (SVs) (Campbell and Tishkoff
2008).

The pattern of genetic variation at these
loci in modern African populations reflects
their demographic and evolutionary histories
(Campbell and Tishkoff 2008). Modern hu-
mans evolved in Africa �200 kya (thousand
years ago) and migrated from Africa within the
past 50–100 kya, successfully colonizing most of
the terrestrial parts of the globe (Campbell and
Tishkoff 2008). This is called the “Out-of-Afri-
ca” migration. Currently, the precise location of
the origin of modern humans remains a conten-
tious issue. Some argue that South Africa is the
location where our species originated (Tishkoff
et al. 2009; Compton 2011; Henn et al. 2011),
whereas others argue that East Africa is where
modern humans originated (Prugnolle et al.
2005; Ray et al. 2005). However, these inferences
are biased by the lack of archeological and fossil
data in tropical areas of Africa and the fact that
the geographic location of populations in the
present may have differed in the past.

Genetic evidence also indicates that human
populations underwent several major popula-
tion expansions at different time periods over
the last 100 ky (Rogers and Harpending 1992;
Harpending et al. 1993; Excoffier and Schneider
1999; Atkinson et al. 2009; Cox et al. 2009): an
initial major population expansion in Africa
�110–70 kya (Rogers and Harpending 1992;
Harpending et al. 1993; Excoffier and Schneider
1999; Atkinson et al. 2008, 2009) and subse-
quent migration and expansion events around
the globe at �60–55 kya (Atkinson et al. 2009),
�40–25 kya, and �12 kya (Harpending et al.
1993; Atkinson et al. 2009; Cox et al. 2009).

Prior to the domestication of plants and an-
imals �10,000 years ago, all human populations
practiced hunting-gathering/foraging for sub-
sistence. Although we do not know their origi-
nal homeland, ancestors of the extant African
hunter–gatherer populations, including the
current Khoesan speakers, migrated into cen-
tral, eastern, and southern Africa probably
.20 kya (Nurse 1997; Ehret 2002). It is specu-
lated that speakers of Khoesan languages were
widespread throughout a contiguous area that
encompassed southern and eastern African re-
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gions (Sutton 1973; Smith 1992). Based on ar-
chaeological and linguistic data, it is hypothe-
sized that recent migration events that occurred,
due to changes in subsistence patterns, modified
the genetic landscape in Africa through admix-
ture of populations practicing pastoralism and/

or agriculture with indigenous hunter–gatherer
populations. For example, the expansion of
agriculturalists from Central-West Africa and
the migration of pastoralist populations from
northeastern Africa have contributed to the cur-
rent genetic landscape in Africa. One of the larg-
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Figure 1. The geographic distribution of the major linguistic groups in Africa. The map was drawn using
information (geographic locations of ethnic speakers in Africa that are based on published sources) from
Haspelmath et al. (2008) (wals.info/), www.ethnologue.com (International HapMap 2005), Greenberg
(1963, 1972), Vansina (1995), and Ehret (1971, 1993, 1995, 2001b). Geographic range occupied by Bantu
speakers, the major linguistic subfamily within the Niger-Kordofanian phylum mentioned in the text, is also
shown. Putative centers of origin and estimated time of initial expansion based on linguistic studies for three of
the four language families are also listed: AA, Afroasiatic (14 kya) (Ehret 1995); NS, Nilo-Saharan (Blench 1993;
Ehret 1993; Blench 2006); NK, Niger-Kordofanian (5 kya) (Nurse 1997; Ehret 2001a). Afroasiatic-speaking
pastoralists were the first food-producing populations to migrate into East Africa circa 5 kya (X) (Leakey 1931;
Butzer 1969; Robbins 1972; Barthelme 1977); followed by Nilo-Saharan-speaking pastoralists circa 3 kya (Y)
(Leakey 1931; Bower 1973; Ambrose 1982; Distefano 1990), and later Bantu-speaking agriculturalists after circa
2.5 kya (Z) (Posnansky 1961a,b). P and q represent initial expansion of pastoralists (2.5 kya) and later Bantu-
speaking agriculturalists (after 2 kya) to southern Africa from East Africa, respectively.
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est migration events in Africa that was mediated
by a shift in subsistence patterns was the migra-
tion of Bantu-speaking populations, a sub-
family of Niger-Kordofanian languages, from
their proposed homeland in Nigeria/Cameroon
across sub-Saharan Africa within the past 5000
years (Fig. 1) (Nurse 1997; Ehret 2001a). The
result of this expansion is the current predomi-
nance of Bantu languages in many African
countries. Other major migration events have
included the migration of Nilo-Saharan pasto-
ralists from their homeland in Chad/Sudan,
both westward across the Sahel �7000 years ago
and eastward into Kenya and Tanzania within
the past �3000 years (Blench 1993; Ehret 1993).
Afro-Asiatic-speaking agro-pastoralists migrat-
ed from their homeland, which encompassed
the Nile Valley to the Ethiopian highlands, into
western, northern, and eastern Africa within the
past 8000–5000 years (Ehret 1995, 1998) (Fig.
1). Demographic history in Africa has also been
influenced by the more recent migration of non-
Africans into Africa. Most noteworthy is the mi-
gration of southwestern Asians into Northern
and Eastern Africa within the past �3000 years
(Van Beek 1967; Butzer 1981; Phillipson 2009).
Europeans, southern and eastern Asians have
also migrated into Southern Africa within the
past several hundred years.

Consistent with the “Out of Africa” model of
modern human origins, analyses of genetic data
indicate that Africans have higher levels of ge-
netic diversity than non-Africans (Cann et al.
1987, 2002; Tishkoff et al. 1998; Marth et al.
2004). Overall, the extant patterns of genetic
variation in global populations suggests serial
founder events, with increasing genetic distance
correlated with geographic distance from East
Africa, indicating the cumulative effect of genet-
ic drift as humans expanded into the rest of the
world (Prugnolle et al. 2005; Ramachandran
et al. 2005; Hofer et al. 2009). Studies of autoso-
mal genetic variation show that genetic distance
between populations also increases with geo-
graphic distance within Africa (Prugnolle et al.
2005; Ramachandran et al. 2005; Hofer et al.
2009; Tishkoff et al. 2009). The greater genetic
diversity in sub-Saharan Africans, as compared
to other continental populations, may also be

partially a result of ancient admixture with yet-
to-be identified archaic population(s) (Zietkie-
wicz et al. 1998; Labuda et al. 2000; Plagnol and
Wall 2006; Hammer et al. 2011; Lachance et al.
2012), analogous to the proposed admixture be-
tween Neanderthals and modern humans in
Eurasia (Reich et al. 2010, 2011; Abi-Rached et
al. 2011; Green et al. 2011; Yotova et al. 2011).
Genomic introgression from Neanderthals has
been detected in some East African populations
but was inferred to be a signature of recent back-
migrations from Eurasia (Wang et al. 2013).

Many of the recent population genetic stud-
ies of African populations are based on analy-
sis of genetic markers that were genotyped in a
small number of populations that are part of the
CEPH-HGDP collection (Centre d’Étude du
Polymorphisme Humain–Human Genome Di-
versity Panel) or the International Haplotype
Map (HapMap) Project (Batzer and Deininger
2002; Rosenberg et al. 2002; Li et al. 2008). Only
six African populations are included in the
CEPH-HGDP panel, whereas the International
HapMap Project includes just three African
populations (Niger-Kordofanian-speaking Yo-
ruba from Nigeria, Bantu-speaking Luhya from
Kenya, and Nilo-Saharan-speaking Maasai from
Kenya). A more recent international collabora-
tive effort that aims to catalogue human genetic
variation through whole genome resequencing,
the “The 1000 Genomes Project” (2010), origi-
nally had only two African populations repre-
sented in the project but has since expanded to
include the Esan from Nigeria, individuals from
The Gambia, the Luhya from Kenya, and the
Mende from Sierra Leone. However, it should
be noted that all of these populations speak Ni-
ger-Kordofanian languages and share recent ge-
netic ancestry. The 1000 Genomes project has
also expanded to include people of recent Afri-
can descent including African Americans from
the southwestern United States and African Ca-
ribbean individuals from Barbados. Although
these projects are important in their descrip-
tion of overall human genetic diversity, they
are limited in their coverage of African popula-
tions, despite the recent additions (Consortium
2010). Because these projects have sampled a
small number of African populations it is likely
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that a substantial portion of human genetic var-
iation will be missed. Thus, it is important to
continue to add African populations that are
underrepresented in human genomic studies,
particularly those speaking languages belonging
to the other three language families in Africa.
Analysis of genomic variation across a broad
range of African populations will be useful for
elucidating fine-scale population structure and
demographic patterns in African populations.

The current studies of global human genetic
variation suggest that human populations may
have been divided into distinct subpopulations
in Africa prior to the migration of modern hu-
mans Out-of-Africa �100 kya (Labuda et al.
2000; Satta and Takahata 2004; Adeyemo et al.
2005; Plagnol and Wall 2006; Bryc et al. 2009;
Tishkoff et al. 2009; Wall et al. 2009; de Wit 2010;
Patterson 2010; Sikora 2010; Henn et al. 2012;
Pagani et al. 2012; Schlebusch et al. 2012). For
example, we (Tishkoff et al. 2009) identified
14 ancestral population clusters in Africa with
four predominant clusters that broadly repre-
sent populations from major African geograph-
ical regions and those that speak the four Afri-
can language families mentioned above. The
remaining 10 are mainly restricted to specific
geographic regions, languages, or in some cases,
individual populations (e.g., Hadza hunter–
gatherers). Other studies of African genetic di-
versity (Adeyemo et al. 2005; Bryc et al. 2009; de
Wit 2010; Patterson 2010; Sikora 2010; Henn
et al. 2012; Pagani et al. 2012; Schlebusch et al.
2012) have largely recapitulated the regional
clusters (Tishkoff et al. 2009) while also adding
some fine-scale genetic structure between pop-
ulations from different ethnicities or popula-
tions that speak different languages within the
regions studied.

Studies of genetic variation in Africa suggest
that even though high levels of mixed ancestry
are observed in most African populations, the
genetic variation observed in Africa is broadly
correlated with geography, language classifica-
tion (Adeyemo et al. 2005; Bryc et al. 2009;
Tishkoff et al. 2009) and subsistence classifica-
tions (Tishkoff et al. 2009). For example, genetic
variation among Nilo-Saharan and Afroasiatic-
speaking populations from both Central and

East Africa (Tishkoff et al. 2009; Bryc et al.
2009) reflect the geographic region from which
they originated, and generally shows a complex
pattern of admixture between these populations
and the Niger-Kordofanian speakers who mi-
grated into the region more recently. Consistent
with linguistic evidence regarding the origin of
Nilo-Saharan languages in the Chad/Sudan
border, the highest proportion of Nilo-Saharan
ancestry is observed among southern Sudanese
populations (Tishkoff et al. 2009). Additionally,
North/Northwest African populations are ge-
netically differentiated from sub-Saharan Afri-
can populations, but have considerable shared
ancestry with East African Afroasiatic speakers
(Tishkoff et al. 2009; Henn et al. 2012) and
southwest Asian populations (Rosenberg et al.
2002; Behar et al. 2008, 2010; Li et al. 2008;
Kopelman et al. 2009; Tishkoff et al. 2009; Atz-
mon et al. 2010; Bray 2010; Hunter-Zinck 2010;
Henn et al. 2012), likely reflecting historic mi-
grations from those source populations into
northern Africa. Finally, several studies of genet-
ic variation in the “colored” population from
South Africa (Tishkoff et al. 2009; de Wit et al.
2010; Patterson et al. 2010) are consistent with
the documented history of this population,
which indicates that they have South African
Khoesan, Niger-Kordofanian, European, South
Asian, and Indonesian ancestors (Tishkoff et al.
2009; de Wit et al. 2010; Patterson et al. 2010).

mtDNA AND Y CHROMOSOME VARIATION

A refined view of uniparental genetic diversity
in Africa has been hampered by a lack of exten-
sive sampling in Africa and a lack of consensus
on the proper method to estimate mutation
rates that are essential to make inferences about
human demography. The time to the most re-
cent common ancestor (TMRCA) for mtDNA
lineages, based on large datasets, ranges from
121.5 to 221.5 kya, (Ingman et al. 2000; Behar
et al. 2008), which is older than most estimates
of the Y chromosome TMRCA, which are based
on patchy sampling within Africa (60–140 kya)
(Thomason 1988; Cruciani et al. 2011; Wei et al.
2013). The fact that there has been limited sam-
pling in Africa is further exemplified by recent
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results that include more African samples and
infer that the TMRCA of the human Y chromo-
some is similar (120–200 kya) (Mendez et al.
2013) or even older (237–581 kya) than the
TMRCA of mtDNA (Ingman et al. 2000; Behar
et al. 2008; Francalacci et al. 2013; Mendez et al.
2013; Poznik et al. 2013). Generally, there is a
lack of precision in TMRCA estimates reported
by different studies using the same marker sys-
tems (Francalacci et al. 2013; Mendez et al.
2013; Poznik et al. 2013). Nonetheless, the con-
sensus based on numerous studies, is that hu-
man populations exhibit structure (e.g., genetic
differences among populations from different
regions) based on both mtDNA and Y chromo-
some variation (Wallace et al. 1999; Ingman
et al. 2000; Maca-Meyer et al. 2001; Herrnstadt
et al. 2002; Mishmar et al. 2003).

The distribution pattern of uniparental lin-
eages in Africa suggests ancient geographi-
cal and cultural subdivision in African. African
populations exhibit greater diversity in the Y
chromosome than those of other continents
(Hammer 2002). Based on the latest classifica-
tion of Y chromosome haplogroups (Karafet
et al. 2008), A, B, E, and J haplogroups are found
in Africans, whereas C, D, and the lineages de-
scending from haplogroup F are almost exclu-
sively observed outside of sub-Saharan Africa
(Fig. 2). The oldest lineages, A and B, with a
TMRCA over �75 kya, are present only in Afri-
cans. The younger lineages, E and J haplogroups,
with a TMRCA less than 75 kya, are present in
both African and non-African populations (Fig.
2) (Seielstad et al. 1998; Scozzari et al. 1999).
Haplogroup E represents the great majority of
Y chromosome haplotypes across Africa (Cru-
ciani et al. 2002). Furthermore, the sublineages
within these haplogroups exhibit unique re-
gional distribution patterns within Africa (Cru-
ciani 2002, 2010, 2011; Hammer 2002; Luis et al.
2004; Wood et al. 2005; Batini 2007, 2011; Ber-
niell-Lee et al. 2009), with some restricted to
specific geographical regions and/or language
families (Fig. 3), consistent with substructuring
of diverse African populations.

Analogous to variation observed on the Y
chromosome, mtDNA haplotypes also show
geographic structuring. African populations

are characterized by having the oldest hap-
logroup lineages (L0–L5), with TMRCA over
�80 kya (Bandelt et al. 1995, 2001; Chen et al.
1995, 2000; Graven et al. 1995; Soodyall et al.
1996; Watson et al. 1996, 1997; Alves-Silva et
al. 2000; Torroni et al. 2001; Salas et al. 2002),
as well as the M1 haplogroup, an L3 sublineage.
Although lineages M, N, and all of their de-
scending lineages with inferred TMRCA less
than 80 kya are found in most global popula-
tions, they are observed almost exclusively out-
side of sub-Saharan Africa. There is also a
unique distribution pattern of mtDNA haplo-
types across Africa with some lineages restricted
to specific geographical regions and/or lan-
guage families (Fig. 3) (Newman 1980; Vigilant
1990, 1991; Chen et al. 1995, 2000; Ehret 1995,
2006; Watson et al. 1996, 1997; Rando et al. 1998;
Krings et al. 1999; Richards et al. 2000; Pereira
et al. 2001; Salas et al. 2002; Thomas et al. 2002;
Destro-Bisol et al. 2004; Kivisild et al. 2004; Be-
leza et al. 2005; Coia et al. 2005; Jackson et al.
2005; Cerny et al. 2006, 2008, 2009; Gonzalez
et al. 2006; Batini et al. 2007; Gonder et al.
2007; Behar et al. 2008; Coudray et al. 2008;
Quintana-Murci et al. 2008, 2010; Castri et al.
2009; Coelho et al. 2009; Poloni et al. 2009; Sau-
nier et al. 2009; Stefflova et al. 2009; Veeramah
et al. 2010). Additionally, there is also a predom-
inance of some Y chromosome and mtDNA
lineages in specific regions of Africa. There is
also sharing of many of these lineages between
regions (Watson et al. 1996, 1997; Pereira et al.
2001; Salas et al. 2002; Beleza et al. 2005; Behar
et al. 2008; Quintana-Murci et al. 2008), suggest-
ing that there have been both recent and ancient
migration events between these regions over the
last 20 ky (Ehret 1967).

Despite the large amount of ethnic and ge-
netic diversity observed in African relative to
non-African populations, there has been limit-
ed sampling in Africa. Additional sampling and
characterization of genetic diversity, particular-
ly from underrepresented central, southern and
eastern African countries will be crucial to de-
ciphering fine-scale genetic history of genetical-
ly, culturally, and linguistically diverse African
populations and for reconstructing both an-
cient and recent human evolutionary history.
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Comprehensive analysis of African genetic var-
iation will help us address some of the outstand-
ing questions about the origin of our species
such as: (1) precisely where and when modern
humans originated in Africa; (2) the number
and age of ancestral structured populations in

Africa; (3) the age and direction of ancient mi-
gration events both within and out of Africa
(e.g., we do not yet have a consensus from ge-
netic studies on the timing and route/s modern
humans took out of Africa to populate the rest
of the globe); and, (4) determination of the ar-
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Figure 2. Evolutionary tree of Y chromosome and mtDNA haplogroups. (A) Nomenclature for major lineages
of Y chromosome haplotypes. The M, P, and YAP labels leading to haplogroup/s are SNPs and indels that are used
to define these haplogroups. Haplogroup F encompasses haplogroups F to T. Haplogroups A, B, and E are mainly
found in Africa, whereas the rest are found mainly outside Africa. (B) Overview of mtDNA haplogroup phylog-
eny. In the mtDNA haplogroup nomenclature, the letter names of the haplogroups run from A to Z, with further
subdivisions using numbers (from 0) and lowercase letters (from a). The naming was done in the order of their
discovery and does not reflect the actual genetic relationships. Haplogroup M and N encompasses all of the
haplogroups lettered A to Z excluding haplogroup L. Haplogroups L (L0–L6) are mainly found in Africa, whereas
the rest are found mainly outside Africa (Richards et al. 1998; Macaulay et al. 1999; Quintana-Murci et al. 1999;
Salas et al. 2002; Kivisild et al. 2004; Behar et al. 2008).
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chaic source population(s) from which genetic
introgression occurred into African popula-
tions and when these events took place.

DARWINIAN SELECTION AND GENETIC
VARIATION

Demographic events such as those described
above, that is changes in population size, short-
and long-range migrations, and admixture or
gene flow from one population to another, in-
fluence the levels and patterns of genetic varia-
tion across the genome (Campbell and Tishkoff
2008). In addition to demography, natural se-
lection, recombination and mutation, which
take place in specific parts of the genome, can
also influence genetic variability.

Natural selection occurs when the fitness
effects of genotypes are unequal (Nielsen 2005).
For example, a beneficial genetic variant is likely

to increase in frequency in a population over
time because of positive selection. Likewise, if
a genetic variant is deleterious, it may be select-
ed against and its frequency in a population
will decrease over time. The occurrence of nat-
ural selection can thus create substantial dif-
ferences in the patterns of genetic variation
between human populations (Aquadro et al.
2001). Identifying loci that exhibit patterns of
genetic variation that are indicative of natural
selection is, therefore, important because these
loci are likely to be regions of the genome that
are, or have been, functionally important and
play a role in adaptation to local environments.
Furthermore, understanding which regions of
the genome have been subject to natural selec-
tion will aid in the identification of genetic var-
iation that contributes to phenotypic variation
among human populations, including disease
susceptibility (Ronald and Akey 2005). Here,

E1b1b1a*; E1b1b1b; J

N1a; K1; R0a; I; J1; HV1; U6

E1; E1b1a7

L1b; L1c; L2b; L2c;
L3b; L3d; L3e

mtDNA
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A2; A3b1
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A3b2; E1a1; B2a1a; B2a3;
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Figure 3. Distribution of mtDNA and Y chromosome haplogroups across Africa. The black lines represent the
approximate geographical boundaries of the distribution of each haplogroup cluster, with each of the clusters
predominantly observed in the demarcated regions.
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we discuss results of several studies of local ad-
aptation to distinct environments and diets
within Africa.

Lactase Persistence

Adult mammals lose the ability to effectively
digest lactose, the main carbohydrate in milk,
after weaning. The inability to digest lactose is
a result of decreased production of the enzyme
lactase-phlorizin hydrolase, or lactase (Swallow
2003; Ingram et al. 2009). Individuals who are
unable to digest lactose have what is called the
“lactase nonpersistent” (LNP) trait. Although
the LNP trait was once considered to be patho-
logic, it is now well understood that this trait is
“ancestral” (i.e., all ancestors of modern humans
had this condition) and widespread among hu-
man populations (Auricchio et al. 1963; New-
comer et al. 1983; Segal et al. 1983). Individuals
with the “lactase persistent” (LP) trait continue
to have high levels of lactase production into
adulthood. The LP trait is common only in
populations whose ancestors practiced cattle
domestication or pastoralism (Ingram et al.
2009). For example, LP occurs at high frequen-
cies in northern European dairying populations
(e.g., Finns, Swedes, and Danes), and decreases
in frequency in southern Europe, the Middle
East, and in most of Asia (Durham 1991). LP
is also found to be common in some pastoral
populations in Africa (Tishkoff et al. 2007).
Thus, it has been hypothesized that LP is an
adaptive trait in human populations that prac-
tice cattle domestication and dairying (Swallow
2003).

In Europe, a common regulatory variant
outside of the gene that encodes lactase (LCT)
has been identified as being strongly associated
with the LP trait (Enattah et al. 2002; Ingram
et al. 2007; Tishkoff et al. 2007; Enattah et al.
2008). Several studies also suggest that this var-
iant is causal and is a target of recent natural
selection (Enattah et al. 2002; Poulter et al. 2003;
Bersaglieri et al. 2004; Coelho et al. 2005). This
suggestion is based on several lines of evidence.
First, experiments in small intestine cell lines
suggest that the European mutation increases
the expression of the lactase gene and causes

an increase in the production of the lactase en-
zyme (Enattah et al. 2002; Olds and Sibley 2003;
Troelsen et al. 2003; Lewinsky et al. 2005). Ad-
ditionally, several different tests indicate that the
LCT locus has experienced recent strong natural
selection (Poulter et al. 2003; Bersaglieri et al.
2004; Coelho et al. 2005). These studies have
identified unexpectedly long genomic regions
of genetic similarity flanking the LCT locus,
which is a signature of recent positive selection.
When positive selection causes a variant or var-
iants to increase in frequency, the selected var-
iant will cause neighboring genetic variation
to “hitchhike” as the selected variant increases
in frequency, thereby causing large tracks of
identical sequences surrounding the variant un-
der selection. This genetic feature has been iden-
tified in many European individuals with the
regulatory variant who have the LP trait (Poulter
et al. 2003). Finally, the estimated age of the
European LP-associated variant is between
�20,000 and �2000 years ago (Bersaglieri et
al. 2004; Coelho et al. 2005; Tishkoff et al.
2007). These dates are consistent with the ori-
gins of dairy farming in southwest Asia that have
been estimated from the archaeological record at
�8–9 kya (Evershed et al. 2008).

Although this is a convincing example of
gene/culture co-evolution in Europe, the genet-
ic basis of the LP phenotype was largely un-
known in Africa for many years. Previous stud-
ies (Mulcare et al. 2004) indicated that the
European regulatory variant was noticeably ab-
sent in many African populations, including
populations that have a history of pastoralism
and drinking milk. This observation called into
question whether the European variant is truly
the causal variant for lactase persistence (In-
gram et al. 2007). However, genotype/pheno-
type association studies of LP in Africa (Swal-
low 2003; Tishkoff et al. 2007) have identified
three novel variants upstream of LCT, near the
European variant, that are significantly associ-
ated with LP in African populations. All three of
the African sites enhance the expression of
LCT (Tishkoff et al. 2007; Enattah et al. 2008),
and the most common of the three African mu-
tations also shows strong evidence of recent
strong positive selection. The estimated age of
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this African variant is �3000–7000 years, con-
sistent with the introduction of cattle domesti-
cation south of the Saharan Desert within the
past �5500 years (Tishkoff et al. 2007). Togeth-
er, these examples from Europe and Africa show
us that strong selective pressure can increase the
frequency of numerous rare mutations that arise
independently and regulate lactase gene expres-
sion where people practice dairying. The occur-
rence of multiple mutations that evolved under
similar selection pressures is a good example of
convergent evolution in several different human
populations.

Malaria

Examination of population-level genetic varia-
tion and recent natural selection caused by in-
fectious diseases can help us understand differ-
ences in disease susceptibility and incidence,
and why some genetic variants, especially those
that are potentially deleterious, are common in
specific populations. Malaria is one such exam-
ple that has had an important impact on pat-
terns of human genetic variation and the geo-
graphic distribution of a number of genetic
disorders (Fortin et al. 2002).

Malaria is a parasitic disease caused by spe-
cies in the genus Plasmodium. There are several
Plasmodium species that infect humans, includ-
ing P. falciparum, P. ovale, P. malariae, and
P. vivax. A large number of genetic variants
that are associated with malaria-protective phe-
notypes have been identified and many of them
cause serious disease (Ko et al. 2012; Gomez
et al. 2013a). For example, variants associated
with hemoglobinopathies, a and b thalassemi-
as, and the structural hemoglobin variants S, C,
and E, are classic examples of deleterious genet-
ic variants that nevertheless confer protection
from malaria (Weatherall 2001; Gomez et al.
2013b). Early studies of thalassemias (Haldane
1949; Flint et al. 1986) noted that these diseases
have a geographic distribution that coincides
with P. falciparum endemicity. In what is now
called the “malaria hypothesis,” JBS Haldane
suggested that the genetic variants responsible
for the thalassemias may be maintained in some
human populations because of an advantage

associated with malaria resistance (Haldane
1949). In a recent analysis, Piel et al. (2010)
revisited the global distribution of sickle cell
anemia, a disease caused by a mutation in the
b-globin gene (HbS). They showed strong geo-
graphical correlation between HbS allele fre-
quency and malaria endemicity in Africa (Fig.
4), consistent with the malaria hypothesis.

Additional studies of other genes have shed
further light on our understanding of the co-
evolution of humans and P. falciparum, and
provide evidence of recent natural selection in
the human genome. For example, studies of ge-
netic variation at G6PD (glucose-6-phosphate
dehyrogenase), a gene that is known to harbor
mutations associated with G6PD enzyme defi-
ciency and protection from P. falciparum infec-
tion, have revealed signatures of genetic varia-
tion consistent with recent natural selection
(Tishkoff et al. 2001; Saunders et al. 2002; Ver-
relli et al. 2002; Sabeti et al. 2006). Among the
G6PD variants that are associated with protec-
tion from malaria, the A-variant is most com-
mon in sub-Saharan Africa. Several studies, in
African and non-African populations (Tishkoff
et al. 2001; Sabeti et al. 2002; Saunders et al.
2002; Verrelli et al. 2002), have identified signa-
tures of recent natural selection acting on the A-
variant and inferred the TMRCA for this variant
to range from �1200 to 12,000 ya, which is
consistent with the idea that selective pressures
caused by malaria increased in African popula-
tions as population densities increased after the
introduction of domesticated plants and ani-
mals (Tishkoff et al. 2001).

Kidney Disease

In the United States, diseases like type 2 diabetes
mellitus, hypertension, and prostate cancer are
known to be more common in African Amer-
icans than European Americans (Landis et
al. 1999; Brancati et al. 2000; Ong et al. 2007).
This disparity in disease occurrence suggests
that genetic factors mediating disease risk, to-
gether with environmental factors, may differ
among European and African descent popula-
tions (Hunter 2005; Yang et al. 2005; Cooper
2013). It has been proposed that genetic risk
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factors could be more common in African pop-
ulations because they may have been adaptive in
past African environments but increase risk for
disease in today’s Western environment (Camp-
bell and Tishkoff 2008).

One example of such a disease at high prev-
alence in African Americans is chronic kidney
disease (CKD). In 2009, the mortality rate of
African Americans with CKD was significant-
ly higher than the mortality rate in European
Americans and patients of other ethnicities
(United States Renal Data System 2011). Addi-
tionally, in2009, end-stagerenaldisease(ESRD),
a serious complication of CKD in which a
patient has complete or near complete loss of

renal function and requires either frequent dial-
ysis or a kidney transplant, occurred at a rate that
is 3.5 times greater in African Americans than
European Americans (United States Renal Data
System 2011). There are many different causes
of CKD; however, the primary proximal causes
include diabetes and hypertension. There are
also inherited forms of CKD; some of these in-
clude polycystic kidney disease (PKD), focal seg-
mental glomerulosclerosis (FSGS), and pediat-
ric nephrotic syndrome (Friedman and Pollak
2011).

Most African Americans have mixed ances-
try originating from Africa and Europe; studies
have inferred the average amount of European

HbS allele frequency (%)
0–0.51
0.52–2.02
2.03–4.04
4.05–6.06
6.07–8.08
8.09–9.60
9.61–11.11
11.12–12.63
12.64–14.65
14.66–18.18

Malaria endemicity

Malaria free

Epidemic

Hypoendemic
Mesoendemic
Hyperendemic

Holoendemic

Figure 4. Global distribution of the HbS sickle cell anemia allele compared to the historic geographic distribu-
tion of malaria. (Top) Global distribution of HbS allele frequency predicted from Bayesian geostatistical mod-
eling. (Bottom) Historical map of malaria endemicity. The classes are defined by PfPr2210 (PfPr2210 ¼ propor-
tion of 2- to 10-year olds with confirmed blood stage asexual parasites): malaria free, PfPr2210 ¼ 0; epidemic,
PfPr2210 � 0; hypoendemic, PfPr2210 , 0.10; mesoendemic, PfPr2210 � 0.10 and , 0.50; hyperendemic,
PfPr2210 � 0.50 and , 0.75; holoendemic, PfPr021 2 1 � 0.75 (this class was measured in children ages 0–
1) (From Piel et al. (2010); reproduced, with express permission, from Nature Publishing Group # 2010.)
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ancestry in African Americans to be �20% and
the remainder to be predominantly of western
and central African origin (Smith et al. 2004;
Bryc et al. 2009; Tishkoff et al. 2009). It should
be noted, however, that there is substantial var-
iation in the level of African ancestry in indi-
vidual African Americans. The proportion of
African ancestry in a given individual can range
from 99% to 1%. Additionally, the level of Afri-
can or European ancestry in African Americans
not only varies by individual but also by geno-
mic region (Bryc et al. 2009). To identify genetic
factors mediating disease predisposition in pop-
ulations of recent African descent, like African
Americans, a number of different approaches
have been employed (Dong et al. 1999; Smith
et al. 2004; Malhotra et al. 2005; Leak et al. 2007;
Adeyemo et al. 2009; Sale et al. 2009; Mc-
Donough et al. 2011). One of these, called ad-
mixture mapping, is based on the premise that if
a trait or disease of interest has a different prev-
alence in the parental populations prior to ad-
mixture, then it is likely that the genetic varia-
tion causing the disease or trait of interest in the
admixed population is associated with chromo-
somal segment(s) derived from that parental
population where the disease or trait is more
prevalent (Winkler et al. 2010).

The identification of genetic risk factors for
CKD in African Americans is an important ex-
ample of the success of admixture mapping
(Kao et al. 2008; Kopp et al. 2008; Genovese
et al. 2010; Tzur et al. 2010). In 2008, two studies
independently identified MYH9 as a candidate
locus associated with CKD or ESRD in African
Americans. Kopp et al. (2008) analyzed FSGS
African-American cases and controls and
showed a significant association on chromo-
some 22 near the MYH9 locus. They also found
a marked increase of African ancestry in FSGS
cases. Because MYH9 is expressed in the kidney,
the authors considered this to be a good causal
candidate gene. In the second study, Kao et al.
(2008) also used admixture mapping to search
for genetic variants associated with CKD and
identified a single location significantly associ-
ated with disease on chromosome 22 in a pop-
ulation of nondiabetic ESRD patients. They also
showed that the amount of European ancestry

in the ESRD cases at that region was significantly
lower than the average across the genome. Sim-
ilar to Kopp et al. (2008), Kao et al. (2008) iden-
tified MYH9 as the likely candidate gene respon-
sible for the strong association signal, given the
expression patterns of MYH9 in the kidney.

Following publication of these two papers,
numerous studies were conducted to find the
functional variants responsible for these admix-
ture signals (Kao et al. 2008; Kopp et al. 2008;
Freedman et al. 2009a,b; Reeves-Daniel et al.
2010; Rosset et al. 2011; Freedman and Murea
2012). In 2010, two groups (Genovese et al.
2010; Tzur et al. 2010) used the data from the
1000 Genomes Project to identify potential
functional variants that differ in frequency be-
tween Africans and Europeans near the MYH9
locus. Genovese et al. (2010) performed associ-
ation tests of genome-wide variants with FSGS
using African-American cases and controls (a
genome wide association study or GWAS). They
showed that the strongest signal with FSGS was
not at MYH9 but at APOL1, which is a gene that
is a short distance from MYH9. The strongest
association signal was observed at a genetic var-
iant termed G1. When the authors controlled
for the association of G1 with FSGS they found
a second associated allele that they termed G2.
The combined signal at G1 and G2 was 35 orders
of magnitude greater than the signal found at
MYH9. Tzur et al. (2010) also used the 1000
Genomes data to search for new variants near
MYH9 that might be functional. They found
four genetic variants that were potential candi-
dates; two variants in APOL1 (also identified by
Genovese et al. 2010), one in APOL3, located
further upstream, and one in FOXRED2, locat-
ed downstream from MYH9. They found that
the APOL1 variants are more strongly associated
with CKD than the MYH9 risk alleles in Afri-
can-American and Hispanic-American ESRD
cases.

In addition to the association study, Geno-
vese et al. (2010) tested whether either the G1 or
G2 gene variants exhibited a signature of recent
positive selection. The results of their analyses
suggest that at G1 there is a strong signal of re-
cent positive selection and a weak, but note-
worthy, signal of recent positive selection at G2.
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Because it is unlikely that G1 and G2 were pos-
itively selected for their deleterious role in the
pathogenesis of kidney disease, Genovese et al.
(2010), Tzur et al. (2010), and Oleksyk et al.
(2010) speculated that these alleles must serve
a separate beneficial role in an African environ-
ment. In Africa, APOL1 is an important factor
in resistance to infection from Trypanosoma
brucei brucei, one of the trypanosomes that
cause African sleeping sickness. Genovese et al.
hypothesized that this function may be the un-
derlying reason for the apparent recent positive
selection at APOL1 (also see Oleksyk et al. 2010;
Tzur et al. 2010). To test this hypothesis, Geno-
vese et al. (2010), examined whether the G1 or
G2 alleles influence the resistance phenotypes
conferred by APOL1 during infection caused
by three subspecies of Trypanosoma brucei (Try-
panosoma brucei brucei, Trypanosoma brucei
rhodesiense, and Trypanosoma brucei gambiens).
They showed that the G1 and G2 alleles effective-
ly killed .60% of the T.b.rhodesiense samples
and suggested that the signature of selection ob-
served at these variants may be the result of the
selective advantage conferred against Trypano-
soma infection. However, it should be noted that
T.b.rhodesiense is presently found in East Africa
and the signature of selection identified by Ge-
novese et al. was found in West African popula-
tions. Additionally, Tzur et al. (2010) did not
find the APOL1 variants in people from Ethio-
pia, which implies that the G1 and G2 alleles may
not be common in East African populations.
The absence of the G1 and G2 variants in Ethi-
opia is difficult to reconcile with the observation
that that G1 and G2 are most effective at killing
Tryanosoma species that are common in East
Africa. However, Genovese et al. (2010) suggest
that changes in Trypanosoma biology and distri-
bution and/or human migration could explain
the lack of correlation between parasite range
and the distribution of the G1 and G2 alleles
today. They also propose that the G1/G2 vari-
ants at APOL1 could play a role in immunity to
other pathogens common in western Africa.

More recently, Ko et al. (2013) further exam-
ined genetic variation at APOL1 and showed
that the G2 variant has a similar frequency across
diverse African populations (3%–8%) and that

the G1 variant is only common in the Yoruba
population (39%). These authors identified an-
other variant, termed G3, which has a more
widespread distribution than the G1 variant,
and showed a signature of recent natural selec-
tion in a West African Fulani population. Fur-
ther studies of G1/G2 allele frequencies in di-
verse African populations and additional tests
of recent natural selection are necessary to better
understand the evolutionary history of this lo-
cus and how selection has influenced allele fre-
quencies at APOL1. It is also important to note
that the functional mechanism(s) underlying
the association of G1/G2 with CKD is currently
unknown. In addition to further studies of kid-
ney disease in African populations, additional
studies are also needed to demonstrate the func-
tional roles that the G1, G2, and G3 variants play
in infectious disease and kidney disease.

The identification of regions in African ge-
nomes that are recent targets of natural selection
has resulted in important insights into the
genetic basis of many pathological and nonpa-
thologic phenotypes common in African pop-
ulations. However, despite the growth of evolu-
tionary studies to understand the prevalence
of disease phenotypes, there is a general lack
of epidemiological studies that help us under-
stand the prevalence of noncommunicable dis-
eases in African countries and how genetic var-
iation plays a role in presence and prevalence
of these diseases. Dalal et al. (2011) reported
that in 2004 about one-quarter of all deaths in
sub-Saharan Africa were caused by noncommu-
nicable diseases, and they estimate that by 2030
noncommunicable diseases will increase to
46% of all deaths in sub-Saharan Africa. Unfor-
tunately, their review of the literature suggests
that community-based epidemiologic studies
of noninfectious diseases, such as diabetes, car-
diovascular disease, and obesity, are lacking in
many African nations compared to the focus
on maternal–child health and infectious diseas-
es. Thus, despite the current shift in the preva-
lence of noninfectious diseases, we are currently
ill-equipped to describe who is being affected
and what the genetic and environmental risk
factors that contribute to noncommunicable
disease susceptibility in Africa are.
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In the coming decades, it will be crucial to
focus on the prevalence of noninfectious dis-
eases in African countries and to understand
what genetic variants predispose African people
to conditions like obesity and cardiovascular
disease. The effort to understand the genetic
basis of complex noninfectious diseases in Afri-
ca should be twofold—our efforts should be
placed on large-scale studies of both families
and unrelated people. These two approaches
will allow us to better characterize how dis-
ease-causing variants are distributed among di-
verse populations, and family-based studies will
also help us to identify rare genetic variants that
are difficult to identify in studies of unrelated
people. Comparison of African populations
and those within the African diaspora across
diverse environments may also help to disentan-
gle genetic and environmental effects on vari-
able phenotypes and disease risk. These efforts
will help to elucidate factors contributing to
complex diseases in Africa and may also eluci-
date the genetic basis of these conditions in pop-
ulations that have recent African admixture, like
African Americans, Hispanics, and peoples of
the Caribbean.

CONCLUSIONS

The pattern of genetic variation observed at
mtDNA, Y chromosome, and autosomal loci
in African populations reflects the demographic
history of these populations. These data indi-
cate high levels of genetic diversity within and
between African populations, and also show
that the current pattern of genetic variation in
Africa is a result of both ancient and recent
migration and admixture events.

The genomes of Africans have also been im-
pacted by natural selection, sometimes resulting
in prevalence of genetic variants that cause
disease. Studies of natural selection in African
populations show that functionally important
genetic variants may be common but geograph-
ically restricted within Africa because of local
adaptation to a particular lifestyle or environ-
ment. Also, many common variants that are
adaptive because of protection from an infec-
tious disease may also result in susceptibility to a

different, possibly noninfectious, disease in
populations of recent African origin. This ob-
servation points to the importance of including
ethnically diverse Africans in human genetic
studies because these populations represent an
important component of human genomic var-
iation, and data from African populations help
us to understand the context in which some
genetic variants were selected.

Going forward, as the cost of whole genome
sequencing decreases, it will become feasible to
conduct large-scale genomic sequencing studies
across ethnically diverse Africans. These data are
necessary to understand the genetic basis of
complex disease in Africa and also the genetic
basis of complex disease in populations like Af-
rican Americans. Currently, most large-scale
studies that seek to identify genetic variants
that are associated with complex disease risk
are heavily biased toward the identification of
genetic variants initially discovered in European
populations. Large-scale sequencing studies in
African populations will identify new non-Eu-
ropean variants that can be added to the reper-
toire of variation that is included in large asso-
ciation studies. The inclusion of a more diverse
panel of variants will increase what we know
about the genetic basis of complex diseases be-
cause new variants will allow us to search for
associations among sites that are common in
people from many different ethnic backgrounds.
These studies will shed light on modern human
origins, African and African-American popula-
tion history, and the genetic basis of nonpatho-
logic traits as well as traits that affect disease
susceptibility.
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