Skip to main content
. 2014 Jan 22;30(10):1400–1408. doi: 10.1093/bioinformatics/btu039

Table 2.

Number of Jackknife rounds for which each method captured the largest number of features

Feature Data LMS LMS LOO LOO
Cohort Category Type MIST MAST DIP SIBER SST MOP SST MOP
14 AMKLs TSG SX 330 0 0 0 34 0 0 0
14 AMKLs TSG SJ 247 0 0 0 118 0 0 0
14 AMKLs TSG AX 125 0 209 33 1 0 0 0
14 AMKLs TSG AG 309 0 58 0 0 0 0 0
14 AMKLs GDR SX 128 0 63 0 174 0 0 0
14 AMKLs GDR SJ 192 0 48 0 131 0 0 0
14 AMKLs GDR AX 106 0 253 17 0 0 0 0
14 AMKLs GDR AG 111 6 204 166 22 0 0 0
14 AMKLs TOL SX 11 142 0 1 166 1 70 0
14 AMKLs TOL SJ 0 113 6 232 89 61 116 49
14 AMKLs TOL AX 11 301 1 33 0 8 23 38
14 AMKLs TOL AG 235 353 0 21 78 55 38 34
157 AMLs TSG SX 1 1 0 0 60 32 0 6
157 AMLs TSG SJ 0 1 0 0 100 0 0 0
157 AMLs GDR SX 92 0 0 0 8 0 0 0
157 AMLs GDR SJ 82 0 0 0 18 0 0 0

Note: For each row, the greatest number is shown in boldface. *TSG = tumor subgroup; GDR = gender; TOL = tumor outlier; SX = sequence exons; SJ = sequence junctions; AX = array exons; AG = array genes. Sums of rows may be greater than the total number of jackknife rounds due to ties.