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Lung cancer remains to be one of the most common and serious types of cancer worldwide. While treatment is available, the
survival rate of this cancer is still critically low due to late stage diagnosis and high frequency of drug resistance, thus highlighting
the pressing need for a greater understanding of the molecular mechanisms involved in lung carcinogenesis. Studies in the past
years have evidenced that microRNAs (miRNAs) are critical players in the regulation of various biological functions, including
apoptosis, which is a process frequently evaded in cancer progression. Recently,miRNAswere demonstrated to possess proapoptotic
or antiapoptotic abilities through the targeting of oncogenes or tumor suppressor genes. This review examines the involvement of
miRNAs in the apoptotic process of lung cancer and will also touch on the promising evidence supporting the role of miRNAs in
regulating sensitivity to anticancer treatment.

1. Introduction

Lung cancer remains a major health problem worldwide. In
2012 lung cancer was the most commonly diagnosed cancer
worldwide making up 13.0% of the total incidence of cancer.
It was also the most common cause of death from cancer
worldwide, accounting for nearly one in five cancer deaths
(19.4% of the total) [1]. Lung cancer is clinically divided
into two main groups based upon the size and appearance
of malignant cells: small cell lung cancer (SCLC) (16.8%)
and non-small cell lung cancer (NSCLC) (80.4%) [2]. The
most effective option for treatment of lung cancer is surgical
resection, when feasible [3]. However, majority of patients
are diagnosed at an advanced or metastatic stage of disease
in which case chemotherapy and/or concurrent administra-
tion of chemotherapy and radiation is the most beneficial
form of treatment [4]. Nevertheless, even with treatment,
the 5-year survival rate in patients is only 16.6% [5], with
poor survival rates mainly being attributed to late stage
diagnosis and high frequency of drug resistance. Obtaining

a better understanding regarding the molecular mechanisms
involved in lung carcinogenesis is of utmost importance in
the aim to identify the diagnostic and prognostic markers for
early detection and targeted treatment of lung cancer.

Apoptosis plays an important role during development
and in the maintenance of multicellular organisms through
the removal of damaged, aged, or autoimmune cells [6].
The apoptotic process can be divided into the extrinsic and
intrinsic pathway. Each pathway will ultimately result in the
activation of cell death proteases, which in turn initiates
a cascade of proteolysis involving effector caspases that
carries out the completion of the apoptotic process [7]. In
contrast to normal cells, cancer cells have the ability to evade
apoptosis to promote cell survival under the conditions of
environmental stress. There are a number of mechanisms
by which cancer cells are able to suppress apoptosis. For
example, the tumor suppressor gene p53 is a widely mutated
gene in human tumorigenesis [8]. p53 mutation will inhibit
the activation of DNA repair proteins leading to a decrease
in the initiation of apoptosis [7], allowing for cells to divide
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Figure 1: Scheme depicting up- and downregulated miRNAs and the roles they play in various biological pathways including apoptosis,
proliferation, and angiogenesis.

and grow uncontrollably, forming malignant tumors. Fur-
thermore, cancer cells are able to disrupt the balance between
pro- (BCL-2, BCL-XL) and antiapoptotic factors (BAX, BIM,
and PUMA) [9]. Increased expression of proapoptotic Bcl-2
protein contributes not only to the development of cancer but
also to resistance against a wide variety of anticancer agents,
such as cisplatin (DDP) and paclitaxel [10–12].

MicroRNAs (miRNAs) are a subset of noncoding RNAs
of about 20 to 25 nucleotides longwhich posttranscriptionally
regulate gene expression via inhibition of mRNA translation,
by binding to specific target sites in their 3󸀠-untranslated
region (3󸀠UTR), or inducing degradation of target mRNA
through cleavage [13]. An individual miRNA is able to
modulate the expression of multiple genes; correspondingly,
a single target can be modulated by many miRNAs [14].
MiRNAs were reported to be involved in a vast range of
biological processes, including apoptosis (see Figure 1) [15–
22]. As miRNAs play a key role in an assortment of biological
processes, an alteredmiRNA expression is likely to contribute
to human diseases including cancer [23]. Previous studies
have shown that compared to normal tissues, malignant
tumors and tumor cell lines were found to have widespread
deregulated miRNA expression [24–28]. MiRNAs are critical
apoptosis regulators in tumorigenesis and cancer cells are

able to manipulate miRNAs to regulate cell survival in onco-
genesis. Many studies carried out in the past several years
are aimed at elucidating the specific miRNAs associated with
apoptosis in cancer and their related target genes. In this
review we will examine the recent progress of research on
miRNA-mediated regulation of apoptosis in lung cancer and
its future therapeutic applications.

2. Antiapoptotic miRNAs

Evasion of apoptosis is a significant hallmark of tumor
progression, and onemechanismbywhichmiRNAs influence
development of cancer is through the regulation of the apop-
totic process as shown in various studies [29–32]. miRNA
expression can be either upregulated or downregulated and
evidence has shown that dysregulated miRNAs can behave as
oncogenes or tumor suppressor genes in lung cancers [18, 28,
33]. Amplification ofmiRNAs can lead to the downregulation
of tumor suppressors or other genes that are involved in
apoptosis [34].

miR-197. For example, the expression of miR-197 is increased
in cancer tissues in comparison to normal specimens. Fiori
et al. (2014) demonstrated that knockdown of miR-197 in
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NIH-H460 and A549 cells promoted induction of apoptosis,
evident by the observation of caspases 3–7 activation and
increased apoptotic population byAnnexin staining. Further-
more, the direct interaction of miR-197 with the 3󸀠UTR of
BMF andNOXAwas demonstrated by the luciferase reporter
assay [35]. When activated by intra- or extracellular stimuli,
proapoptotic Bmf binds to and neutralizes antiapoptotic Bcl-
2 family members on the mitochondrial membrane, thus
allowing proapoptotic proteins Bak and Bax to dimerize and
promote the release of cytochrome c, ultimately leading to
cell death [36]. Noxa is a BH-3 only proapoptotic protein
transcriptionally activated by p53. Collectively, miR-197 is
able to act upon different levels of the p53 pathway to
counteract the induction of apoptosis, thus allowing cells to
proliferate uncontrollably [35].

miR-21. miR-21 is found to be frequently upregulated in a
number of cancers; however its potential role in tumorige-
nesis in vivo is not fully explored. Using transgenic mice
with loss-of-function and gain-of-function miR-21 alleles,
Hatley and colleagues elucidated the role ofmiR-21 inNSCLC
pathogenesis in vivo [37]. It was determined that miR-21
regulates tumor proliferation and survival, which are two
integral components of NSCLC pathogenesis, by targeting
negative regulators of the RAS pathway as well as by targeting
proapoptotic genes [37]. In regards to the apoptotic pathway,
overexpression of miR-21 in vivo leads to decreased protein
levels of Apaf-1, an important component of the intrin-
sic mitochondrial apoptotic pathway, as well as decreased
expression of FasL, a key initiator of the extrinsic apoptotic
pathway. Furthermore, RHOB, with a tumor suppressor role,
is a target of miR-21 and its dysregulation leads to an increase
in cell growth and inhibition of apoptosis [38]. Together these
results suggest that relieving miR-21 downregulation of these
proapoptotic and tumor suppressor genes could provide a
means to enhance the effect of current chemotherapy.

miR-212. Acetylcholinesterase (AChE), a component of the
cholinergic system, has the ability to influence apoptotic
sensitivity both in vitro and in vivo [39–41]. In NSCLC
tissues AChE levels are low and are associated with tumor
aggressiveness, increase risk of postoperative recurrence, and
low survival rate [42]. Lu et al. (2013) determined that AChE
expression in NSCLC was posttranscriptionally modulated
by miR-212 binding to its 3󸀠UTR. Interestingly, alterations in
neither AChE nor miR-212 expression significantly affected
cell survival; however it was observed that during DDP-
induced apoptosis miR-212 levels were reduced with a con-
current increase in AChE protein levels. This suggests that
miR-212 plays a role in DDP resistance by directly inhibit-
ing AChE and preventing apoptosis. Therefore, interference
against miR-212 may potentially be a means to improve the
pharmacotoxicological profile of DDP in NSCLC [43].

miR-17-5p and miR-20a. The miR-17-92 cluster, which is
composed of seven miRNAs and resides in intron 3 of the
C13orf25 gene at 13q31.3, is frequently overexpressed in lung
cancers [44]. Matsubara et al. (2007) demonstrated that inhi-
bition of two components of themiR-17-92 cluster,miR-17-5p,

and miR-20a, with antisense oligonucleotides can induce
apoptosis selectively in lung cancer cells that overexpress
miR-17-92 [45]. Previously, miR-17-5p and miR-20a have
been shown to directly target E2F1 [46]; thus inhibition of
these miRNAs may cause the induction of apoptosis in part
through the induction of E2F1 and subsequent cell cycle
progression into S phase [47]. However additional studies
would have to be carried out to determine the actual targets
for themiR-17-92 cluster to gain a better understanding of the
development of this cancer.

3. Proapoptotic miRNAs

MiRNAs that are downregulated are considered tumor sup-
pressor genes. Tumor suppressor miRNAs usually prevent
tumor development by negatively regulating oncogenes
and/or genes that control cell differentiation or apoptosis
[48]. MiRNAs that act as tumor suppressors can be down-
regulated as a result of deletions, epigenetic silencing, or loss
of expression of transcription factors (see Table 2) [49].

3.1. B-Cell Lymphocyte 2 (BCL-2) Family Related miRNAs.
Members of the evolutionarily conserved BCL-2 family are
thought to be the central regulators of apoptosis. The expres-
sion level of BCL-2 differs for different cell types; however
high levels and aberrant patterns of BCL-2 expression were
reported in a wide variety of human cancers, including lung
cancer [50]. Elevation of Bcl-2 protein expression contributes
not only to the development of cancer but also to resistance
against a wide variety of anticancer agents [10–12].

miR-7. Xiong et al. showed that miR-7 was downregulated in
NSCLC cells and BCL-2 was identified as a direct target [51].
Transfection of miR-7 in A549 cells led to a significant reduc-
tion in endogenous BCL-2 mRNA and protein levels and
correspondingly led to increase in the activities of caspase-3
and caspase-7 in cells with apoptotic nuclei [51].These results
thus provide evidence that BCL-2 may be involved in miR-7
mediated apoptosis induction in A549 cells.

miR-335. BCL-W, another antiapoptotic member of the BCL-
2 family, was found to be a direct target of miR-335 [52].
miR-335 was downregulated in A549 and NCI-H1299 cells,
and upregulation of this miRNA via transfection of miR-
335 mimics led to a suppression of cell invasiveness and
promotion of apoptosis. Furthermore Dyanan and Tjian
(1983) discovered that miR-335 directly targeted SP1 gene,
a member of the family of Sp/Kruppel-like transfection
factors [53], which can enhance the activity of promoters
of numerous genes involved in cell proliferation, apoptosis,
differentiation, cell cycle, progression, and oncogenesis thus
regulating these genes’ expression [54].

miR-608. Studies in our lab identified a BCL-XL-induced
miRNA, miR-608, involved in the regulation of cell death in
A549 and SK-LU-1 cells [55]. BCL-XL, a major prototype of
the antiapoptotic BCL-2 gene was found to be overexpressed
in NSCLCs [56]. Silencing of BCL-XL in A549 and SK-LU-1
led to the significant dysregulation of a number of miRNAs,
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as determined through miRNA microarray, with miR-608
being the most upregulated miRNA. Upregulation of miR-
608 in A549 and SK-LU-1 via miR-608 mimics led to an
increase in apoptotic population, as determined by Annexin-
VFITC apoptotic assay, in comparison toNP-69 cells (normal
human nasopharyngeal epithelial cell line) (see Table 1) [55].
Bioinformatics analysis determined that miR-608 may be
associated with various signaling pathways, primarily the
phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT),
wingless-type MMTV integration site family (WNT), trans-
forming growth factor (TGF-𝛽), mitogen activated protein
kinase (MAPK), and the intrinsic pathway. However the true
targets of miR-608 and its direct effects on the apoptotic
process is yet to be determined.

3.2. Protein Kinase C (PKC) Family Related miRNAs . PKC
is a serine/threonine kinase that is involved in various signal
transduction pathways including those related to cellular
proliferation, differentiation, and apoptosis [57–59]. PKC
plays a role in lung cancer and levels of PKC proteins were
found to be increased in various cell lines (A549, NCI-H1355,
NCI-H1703, NCI-H157, and NCI-H1155) in comparison to
primary normal human bronchial epithelial cells (NHBE)
[60].

miR-203. To determine the role that miR-203 can play in the
influence of cellular function, putative target prediction was
carried out and PKC-𝛼 was determined to be a target [61].
Luciferase reporter assay further revealed miRNA-203 direct
binding of the 3󸀠UTR of PKC-𝛼 mRNA transcript. miR-203
negatively regulated proliferation and migration through the
repression of PKC-𝛼, and miR-203 was also able to modulate
cell apoptosis. However, siRNA silencing ofPKC-𝛼 resulted in
a less significant apoptotic phenotype in comparison to that
observed by miR-203 overexpression, thus suggesting that
miR-203 may modulate multiple apoptotic genes that work
together to regulate cell apoptosis [61]. Further studies must
therefore be carried out to determine the additional apoptosis
related targets of miR-203.

miR-143. miR-143 expression was reported to be downregu-
lated in cancer tissues and inhibition of miR-143 promotes
cell proliferation but hinders cell apoptosis. To determine
the role that miR-143 plays in the apoptotic process, Akita
(2002) investigated the possible targets of miR-143 and found
that PKC-𝜀, a crucial enzyme in various cellular signaling
pathways [62], was a putative target. Using the luciferase
reporter assay it was determined that miR-143 specifically
targets PKC-𝜀, and overexpression of miR-143 increases the
cell apoptosis in A549 cells [63]. PKC-𝜀 was suggested to
play a role in regulating the antiapoptotic signaling pathway
through the upregulation of Bcl-2 with a concurrent sup-
pression of proapoptotic Bid [64–66]. Furthermore, PKC-
𝜀 is able to activate Akt to apply its prosurvival effects [67,
68]. Therefore, the targeting of PKC-𝜀 could potentially be a
valuable therapeutic strategy for lung cancer.

3.3. Other miRNAs

miR-198. miR-198 is downregulated in NSCLC cell lines
and overexpression of this miRNA inhibits cell viability and
enhances apoptosis in A549 cells. Overexpression of miR-
198 induces the expression of poly(ADP-ribose) polymerase
(PARP) and of cleaved caspase-3. miR-198 was also able to
inhibit growth of tumor grafts in nude mouse. FGFR1, a
lung cancer oncogene, which is a membrane-bound receptor
tyrosine kinase that regulates proliferation via theMAPK and
PI3K pathway, much like EGFR, was found to be a direct
target of miR-198 [69].

miR-146a. Expression of miR-146a is low in malignant
tissues in comparison to corresponding adjacent normal
lung tissues. Functionally, miR-146a suppresses cell growth,
inhibits cell migration and increases cellular apoptosis [70].
Upregulation of miR-146a expression via miR-146a mimic
transfection resulted in the downregulation of EGFR as well
as phosphorylated EGFR, both at the mRNA and at protein
levels. Furthermore, downstream pathways (ERK-1/2, AKT,
and STAT) were also downregulated in response to miR-
146a mimic transfection, albeit with a weaker effect as that
seen by cells transfected with EGFR specific siRNA.miR-146a
mimic also led to the decrease of phosphorylation of the NF-
𝜅B inhibitor I𝜅B𝛼, but not total I𝜅B𝛼. Levels of phospho-
NF𝜅B, totalNF-𝜅B, and the total immune-modulating kinase,
IRAK-1, were also found to be decreased following miR-146a
mimic transfection, suggesting that miR-146a regulates NF-
𝜅B and IRAK-1 signaling [70].

miR-26a. miR-26a expression is downregulated in lung can-
cer tissues relative to normal tissues. Transfection of miR-26a
into A549 cells was able to decrease cell proliferation, block
the G1/S phase transition of cell cycle, and induce apoptosis
[71].The chromatin regulator enzyme EZH2, which regulates
survival and metastasis of cancer cells [72], was found to be
a direct target of miR-26a. Downregulation of EZH2 expres-
sion, caused by overexpression of miR-26a will transactivate
downstream tumor suppressor genes DAB21P and RUNX3.
DAB21P is a potent growth inhibitor that induces G0/G1
phase cell cycle arrest and could lead to apoptosis [73], while
RUNX3 leads to cell cycle arrest, apoptosis, and significant
decrease of tumor growth and abrogation of metastasis [74].

miR-451. Poor tumor differentiation, advance pathological
state, lymph node metastasis, and poor prognosis are associ-
ated with downregulation of miR-451, which occurs in lung
cancer [75]. To observe the functions of miR-451, Wang
et al. (2011) upregulated miR-451 expression via mimics and
observed suppressed in vitro proliferation, chromatin con-
densation and nuclear fragmentation upon 4󸀠,6-diamidino-
2-phenylindole (DAPI) staining, and significant caspase-3
activity. These results suggested that ectopic expression of
miR-451 was able to induce an increase in apoptosis in a
caspase-3 dependent manner. In addition, the RAB14 gene
was identified as a direct target of miR-451. Inhibition of
RAB14 led to a decrease in phosphorylation of Akt, which
subsequently decreased levels of Bcl-2 protein expression
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and increased proapoptotic Bax or Bad protein expression.
As the expression levels of RAB14 protein were inversely
correlated with the expression levels of miR-451 in NSCLC
tissues it was concluded that downregulation of RAB14 may
be the mechanism by which miR-451 carries out its tumor
suppressor functions [75].

miR-192. miR-192 was found to be downregulated in A549,
NCI-H460, and 95D cell lines [76]. Cell viability was greatly
decreased following miR-192 upregulation, while levels of
apoptosis were elevated with induced expression of PARP
protein and cleaved caspase-7, thus suggesting that miR-
192 induces apoptosis through the caspase pathway. Using
bioinformatics analysis, RB1 gene was determined to be a
putative target of miR-192 and luciferase reporter assays
confirmed direct binding of miR-192 to the 3󸀠-UTR of this
gene [76]. Since RB1 plays a vital role in regulating cell
apoptosis, its downregulation was shown to induce 𝛾-H2AX
foci formation, a marker of DNA damage, and to promote
apoptosis in A549 cells [77].

4. miRNA and Response to Cancer Therapy

Many cancer therapies available today aim to induce tumor-
selective cell death; however resistance to chemotherapeu-
tics is a significant obstacle to the long-term treatment
and survival of NSCLC patients [78]. Presently, there are
various chemotherapeutics that are being utilized in the
treatment of lung cancer, including FDA approved drugs
(DDP, paclitaxel, docetaxel, gemcitabine, and EGFR-TKIs),
natural compounds (curcumin), and small organic com-
pounds (PRIMA-1) (see Table 3). The association of miRNAs
as regulators of malignancy and apoptosis has been widely
reported; thus it is reasonable to assume that miRNAs play
significant roles in sensitivity/resistance to common cancer
treatments (see Figure 2) [79]. Indeed, recent studies have
demonstrated miRNAs as potential agents involved in the
sensitivity of lung cancer cells to cytotoxic therapy.

4.1. Cisplatin- (DDP-) Related miRNAs. DDP is a platinum-
coordinated complex that is themost widely used chemother-
apy for human NSCLC in the past two decades [80–82].
However, multiple administration of DDP results in the
development of drug resistance leading to failure of treat-
ment, as demonstrated by tumor growth or tumor relapse
[78, 83]. Therefore, to overcome the treatment plateau of
DDP on NSCLC, the biological mechanisms by which DDP
action is enforcedmust be further elucidated. As miRNAs act
as critical regulators in the development of drug resistance,
it would be interesting to research the mechanism through
which oncogenic miRNAs modulates DDP-induced apopto-
sis in NSCLC.

miR-451. miR-451 was downregulated in NSCLC tissues in
comparison to normal lung tissues, and upregulation of
miR-451 enhances DDP chemosensitivity in A549 cells by
inhibiting cell growth and inducing apoptosis enhancement

[84]. Bian et al. (2011) demonstrated in their study that upreg-
ulation of miR-451 enhanced caspase-3-dependent apopto-
sis through the inactivation of the Akt signaling pathway,
which in turn decreased Bcl-2 while increasing expression
of Bax protein levels. Furthermore, results of Annexin V-
FITC apoptosis assay indicated that in miR-451 transfected
A549 cells (A549/miR-451) a higher percentage of apoptosis
was observed in comparison to mock A549 cells. Caspase-3
activity in A549/miR-451 treated with DDP was significantly
increased against the control, thus suggesting that miR-451
upregulation increases chemosensitivity of A549 cells by
enhancing DDP-induced apoptosis. Together these results
suggest a possible strategy for treatment of human NSCLC
through the combined application of DDP treatment with
miR-451 upregulation [84].

miR-31. On the other hand, miR-31 is upregulated in NSCLC
cell lines and was demonstrated to induce DDP resistance.
To demonstrate this, Glavinas et al. (2004) transfected miR-
31 mimics into DDP-sensitive SPC-A-1 cells which led to
a marked increase in the resistance of SPC-A-1 cells, while
transfection of miR-31 inhibitors increased sensitivity of
resistant NCI-H1299 to DDP treatment. To elucidate the
mechanism by which DDP resistance is induced by miR-
31, bioinformatics analysis was carried out and ABCB9, a
membrane transporter involved in drug uptake [85], was pre-
dicted to be a target gene. The luciferase reporter assay then
confirmed direct miR-31 regulation of ABCB9 by binding to
its 3󸀠UTR [86].Overexpression/knockdown studies indicated
a significant decrease in the percentage of DDP-induced
apoptotic cells when miR-31 was increased via mimics and
a marked increase in DDP-induced apoptotic cells when
miR-31 inhibitors were introduced, thus suggesting that miR-
31 exerts an antiapoptotic effect in DDP-induced apoptosis
through the inhibition of ABCB9.

4.2. Paclitaxel-Related miRNAs. Paclitaxel was the first iden-
tified member of taxanes in the list of FDA-approved anti-
cancer drugs. This compound has been shown to have
significant single-agent activity against various solid tumors
[87, 88] including NSCLC [89]. However, combination of
this compound with DDP or carboplatin showed superior
response and improved survival rates [90].

miR-133a/b and miR-361-3p. High-throughput screening
(HTS) approach was performed by Du and colleagues in
2013 to identify miRNAs that modulate lung cancer cell
survival and response to paclitaxel treatment [91]. Using
threeNSCLC cell lines that have distinct genetic backgrounds
(NCI-H1155, NCI-H1993, and NCI-H358), inhibition of
two miRNAs (miR-133a/b and miR-361-3p) was found to
potently decrease cell viability, although cytotoxicity of the
two miRNAs vary greatly, which may be due to different
endogenous expression levels of the miRNAs in each cell
line. Interestingly, the inhibitors of miR-133a/b and miR-
361-3p were found to reduce cell survival through different
mechanisms. miR-133a/b inhibitor was able to dramatically
increase apoptotic events as seen by increased percentage
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Figure 2: Scheme depicting the roles miRNAs play in sensitivity and resistance to common cancer treatments.

of cells undergoing apoptosis and increased levels of acti-
vated caspase-3. However miR-361-3p only showed a modest
effect on caspase-3 activation thus suggesting that additional
mechanisms are involved in the cytotoxicity of this miRNA.
The effect of miRNA inhibitors on cell cycle distribution
was then evaluated and results indicated that S phase arrest
contributes to cytotoxicity induced by miR-133a/b and miR-
361-3p inhibitors. Together these results suggest that miR-
133a/b and miR-361-3p may function as oncogenes in cancer
cells by regulating tumor suppressor genes.

miR-101. Increasing evidence has revealed that EZH2 has
oncogenic properties, as an increased expression of EZH2
augments proliferation and invasion of cancer cells [92–
94], while depletion leads to a decline in cell proliferation,
increased apoptosis, and inhibition of metastatic tumor
growth in vivo [95, 96]. Overexpression of EZH2 has been
associated with tumor progression and cancer aggressiveness
in NSCLC [97]. In a study by Zhang and colleagues (2011),
it was discovered that a decreased expression of miR-101
was associated with EZH2 overexpression in NSCLC tissues
[98]. Luciferase reporter assay revealed thatmiR-101 regulates
EZH2 expression through the binding of its 3󸀠UTR mRNA.
Overexpression of miR-101 led to a decrease in EZH2 protein
levels with subsequent decrease in the proliferation and
invasive ability of NSCLC cells. Furthermore, overexpression
of miR-101 led to a sensitization of NSCLC cells to paclitaxel.

4.3. Docetaxel-Related miRNAs. Docetaxel, a semisynthetic
analog of paclitaxel, is one of the first-line chemotherapy
regimens for advanced NSCLC, with genotoxic effects caused
by microtubule stabilizing, apoptotic induction through
microtubule bundling, and Bcl-2 blocking [99, 100].

miR-100. In a miRNA microarray profiling carried out by
Rui and colleagues in 2010, miR-100 was significantly down-
regulated in docetaxel-resistant SPC-A1/DTX cells relative to
SPC-A1 parental cells [101]. To elucidate the role that miR-
100 plays in the formation of docetaxel resistance, the authors’
transfected miR-100 mimics SPC-A1/DTX cells [102]. Results
suggested that restoration of miR-100 expression chemosen-
sitizes cells to docetaxel in vitro, complemented with a
suppression of cell proliferation, enhancement of apoptosis,
and cell cycle arrest in the G2/M phase of cell cycle. Ectopic
miR-100 expression was also able to downregulate in vivo cell
proliferating ability. Moreover, PLK1 gene was identified to
be a direct target of miR-100. PLK1 plays a role in promotion
of cell proliferation and overexpression of this gene has been
observed in various human cancers [103] including NSCLC
[104]. Knockdown of Plk1 protein expression by miR-100
led to a significant suppression of cell proliferation of SPC-
A1/DTX, dramatic increase of early apoptosis rate, G2/M
arresting population, and an increase in the response of SPC-
A1/DTX cells to docetaxel both in vitro and in vivo. miR-
100 was therefore concluded to function as a chemosensitizer
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restorer to docetaxel by targeting PLK1 and inducing the
suppression of cell proliferation, enhancement of apoptosis,
and mitotic arrest.

miR-650. High expression of miR-650 can be found in
lung cancer tissues, and its dysregulation is correlated with
advance clinical stage as a poor prognostic factor for these
patients [105]. Furthermore, Huang et al. (2013) determined
that the expression of miR-650 is negatively correlated
with patients’ response to docetaxel. Using two docetaxel-
resistant cell lines (SPC-A1/DTX and H1299/DTX), the
authors demonstrated that downregulation of miR-650 was
able to reverse the resistance. ING4, a novel tumor suppressor
gene, was then identified as the functional target of miR-
650 and results from flow cytometry and Hoechst staining
assays indicated that miR-650 inhibitor was able to induce an
increase in caspase-3-dependent apoptosis. Cells transfected
miR-650 inhibitors exhibited decreased expression of Bcl-2
protein, with an increased expression of Bax protein, led to
the progression of apoptosis. The findings of this study con-
firmed that miR-650 was able to confer docetaxel chemore-
sistance through the regulation of Bcl-2/Bax expression by
targeting of ING4 [105].

4.4. Gemcitabine-Related miRNA. Gemcitabine, a pyrim-
idine nucleoside antimetabolite, has been shown to be
an effective agent most particularly when administered in
combination regimes [106]. Due to its theoretical ability
of interfering with the inhibition of repair of platinum-
induced DNA damage, gemcitabine is the perfect partner
for platinum compounds. Gemcitabine in combination with
DDP represents a common first-line treatment for patients
with advanced NSCLC, especially in Europe [80, 107–110].

miR-133b. miR-133b is greatly reduced in cancer tissue in
comparison to adjacent normal lung tissue [111]. Prediction
programs identified two common predicted targets of miR-
133b, the antiapoptotic MCL-1 and BCL-W, both of which
are members of the antiapoptotic BCL-2 family [112] and
have previously been reported to be increased in both solid
and hematological malignancies including lung cancer [113,
114]. Transfection of miR-133b using pre-miR-133b resulted
in a decrease in Bcl-W and Mcl-1 protein expression with a
moderate increase of apoptosis. However combination treat-
ment of miR-133b overexpression with 24 hours treatment
of gemcitabine resulted in a greater degree of cleaved PARP
expression as well as apoptosis. This concludes that miR-133b
is able to target prosurvival molecules and induce apoptosis
in the setting of chemotherapeutic agents [111].

4.5. Epidermal Growth Factor Receptor Tyrosine Kinase
Inhibitors- (EGFR-TKIs-) Related miRNAs. EGFR is a plasma
membrane glycoprotein that belongs to a family of four
different tyrosine kinase receptors (EGFR (ErbB1),HER2/neu
(ErbB2), HER3 (ErbB3), and HER4 (ErbB4)) [115]. Dimer-
ization of EGFR may result in cancer cell proliferation,
inhibition of apoptosis, invasion, metastasis, and tumor
induced neovascularization [116]. Mutations and subsequent

overexpression of EGFR can be found in all histologic
subtypes of NSCLC [117]. Deletion in exon 19, which removes
the conserved sequence LREA, and a single point mutation
in exon 21, which leads to the substitution of arginine for
leucine at position 858 (L858R), are the most clinically
relevant and extensively studied drug-sensitive mutations
[118]. Studies have shown that these mutations preferentially
bind to first generation EGFR-TKIs, gefitinib and erlotinib
[119, 120]. First generation EGFR-TKIs function by selectively
targeting the receptor via a competitive, reversible binding
at the tyrosine kinase domain, thus leading to the inhibition
of ATP binding and subsequent signal transduction and
downstream functions [121]. However, acquired resistance to
EGFR-TKIs in the metastatic setting is unavoidable. While
the average progression-free survival (PFS) is between 10 and
16 months, treatment duration can last as short as 1 month
[122]. Drug resistance therefore still remains a problem and
new therapies and strategies must be developed to overcome
such resistance.

miR-30b/c and miR-221/222. EGF and MET receptors con-
trol gefitinib-induced apoptosis and NSCLC tumorigenesis
through the downregulation of specific oncogenic miRNAs,
miR-30b/c, and miR-221/222 [123]. Using bioinformatics
analysis and luciferase assays, APAF-1 and BIM (previously
found to play a role in TKI sensitivity [124, 125]) were
determined to be direct targets ofmiR-221/222 and -30b/c. To
investigate the roles these miRNAs play in gefitinib-induced
apoptosis, wild-type EGFR expressing NSCLC cells (Calu-1
and A549) and cells with EGFR exon-19 deletions (PC9 and
HCC827) were utilized. Upon gefitinib treatment, significant
downregulation of miR-30b/c and miR-221/222 with an
increased BIM and APAF-1 protein levels were observed only
in PC9 and HCC827 sensitive cells. To further determine
the contribution of miR-30b/c and miR-221/222-mediated
APAF-1 and BIM downregulation to cellular TKI response,
Garofalo et al. (2012) overexpressed APAF-1 and BIM in
A549 resistant cells, which consequently led to gefitinib-
induced PARP cleavage. Furthermore, as miR-30b/c and
miR-221/222 are regulated by MET, a strong downregulation
was observed of these miRNAs when Calu-1- and A549-
MET overexpressing cells were treated with MET inhibitors
SU11274. Furthermore an increase in caspase-3/7 activity
and decreased cell viability was observed in SU11274-treated
Calu-1 cells following exposure to varying gefitinib concen-
trations. Together, these results suggest that MET inhibition
restores gefitinib sensitivity in TKI-resistant Calu-1 through
downregulation of miR-30b/c and miR-221/222 [123].

miR-214. miR-214 is significantly upregulated in gefitinib
resistant lung adenocarcinoma cell line, HCC827/GR, in
comparison to parental HCC827 lung adenocarcinoma cells.
HCC827/GR was obtained by exposing HCC827 cells to
increasing concentrations of gefitinib over six months [126].
Using dual-luciferase reporter assay, Wang et al. (2012)
confirmed PTEN as a direct functional target of miR-214.
PTEN encodes a 403 amino acid dual-specificity lipid and
protein phosphatase which functions as a tumor suppressor
inmany tumors [127, 128]. KnockdownofmiR-214 expression
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resulted in the upregulation of PTENprotein and inactivation
of AKT, which is largely linked to antiapoptotic function
[129, 130]. Furthermore, knockdown of miR-214 resensitized
HCC827/GR to gefitinib, as demonstrated through MTS
assay. miR-214 was thus concluded to potentially serve as a
therapeutic target to reverse the acquired resistance of gefit-
inib in lung adenocarcinoma cells.

miR-133b. Expression of miR-133b is significantly downregu-
lated in NSCLC tissues in comparison to nonneoplastic lung
tissues [131], and the 3󸀠UTR of EGFRwas found to be a direct
target of thismiRNA thus inhibiting its expression. Treatment
of EGFR-addicted lung cancer cells, PC-9 and A549 with
miR-133b mimic inhibited phosphorylation of EGFR, AKT,
and extracellular signal-related kinase (ERK)1/2, thus inhibit-
ing their growth and invasion abilities. However in non-
EGFR-addicted NSCLC cells NCI-H1650 and NCI-H1975,
no significant changes in the expression of phosphorylated
EGFR, AKT, and ERK1/2 were found. Furthermore, miR-
133b was able to restore or enhance EGFR-TKI sensitivity in
NSCLC cells, especially in EGFR-addicted cells. These find-
ings reveal that transfection of miR-133b in EGFR-addicted
NSCLC has the therapeutic potential for overcoming EGFR-
TKI resistance [131].

4.6. PRIMA-1-Related miRNA. The tumor suppressor p53
gene regulates cell growth through the activation of the
transcription of numerous genes specifically those involved
in cell cycle regulation, apoptosis, and genomic stability [132–
134] andhas also been implicated in the response to anti-
cancer therapies [133]. p53 has been reported to be frequently
mutated in humans cancers with mutations occurring in
greater than 50% of lung tumors [135, 136]. Restoration of
wild-type p53 function has led to regression of cancers in
mice [137, 138], and thus efforts to treat cancers through the
reactivation of p53 with a low-molecular-weight compound
such as PRIMA-1 (p53-dependent reactivation and induction
of massive apoptosis) [139, 140] are widely supported.

miR-34a. In a study conducted by Duan et al. (2010), the
role of miR-34 family members in regulating PRIMA-1
induced apoptosis was investigated. The authors discovered
that PRIMA-1 was able to upregulate miR-34a in p53mutant
cells. Previous studies have shown evidence that the miR-34
family plays a role in the regulation of cell proliferation and
apoptosis [19, 141–147]. The results of this study suggest that
PRIMA-1 is able to restore wild-type function to mutant p53,
which will upregulate miR-34a to induce apoptosis in lung
cancer cells [148].

4.7. Curcumin Related miRNA. Curcumin is a compound
extracted from the rhizomes of Curcuma longa L. and studies
carried out exhibited its diverse pharmacological effects
which include anti-inflammatory, antioxidant, and antitumor
activities [149]. Previous studies have also shown that cur-
cumin can induce apoptosis in many types of cancer cells
[150, 151], through the inhibition of NF-𝜅B, survivin/BIRC5,
and BCL-2 [152, 153]. However few studies have been carried

out to report the importance of miRNA expression modula-
tion in mediating the biological effects of curcumin.

miRNA-186∗. In a study conducted by Zhang et al.(2010),
curcumin was shown to have the ability to inhibit cell
proliferation and induce apoptosis in A549 cells. The authors
performed a cluster analysis on the expression profiles on
curcumin-treated and dimethyl sulfoxide (DMSO) control-
treated samples and found that miR-186∗ was shown to be
significantly downregulated in response to curcumin treat-
ment, thus suggesting that miR-186∗ may play an oncogenic
role in human lung cancer cells. Inhibition of miR-186∗ was
shown to greatly decrease cell proliferation in A549 cells and
increase the induction of apoptosis. Furthermore, caspase-10
was revealed to be a direct target of miR-186 [154].This study
thus provided the first evidence that miR-186∗ is essential
for the anticancer effects of curcumin in A549 cells and
that caspase-10 may be an important target of miR-186∗ in
preventing apoptosis.

However, even though curcumin has exhibited antitumor
activity, there has been concern regarding the effects of cur-
cumin onmultidrug resistant cells [155, 156]. To analyze such
effects, A549/DDP, the DDP-resistant derivative of parental
A549 cells generated by coculturing parental A549 cells with
6 nm DDP to maintain the drug resistance phenotype, was
utilized. In a study conducted by Zhang et al. (2010), a com-
prehensivemiRNAprofiling of untreatedmultidrug-resistant
cell line (A549/DDP) was performed and compared against
results obtained for A549/DDP cells treated with curcumin.
Results showed that miR-186∗ was downregulated more than
2.5-fold compared to levels in control cells.The antiapoptotic
effects of miR-186∗ in A549/DDP cells were investigated and
it was found that transfection of miR-186∗ mimics led to an
inhibition of apoptosis in comparison to that in the control,
thus suggesting that miR-186∗ plays an oncogenic role in this
cell line. To confirm the role miR-186∗ plays in curcumin-
induced A549/DDP apoptosis, flow cytometry was used to
detect the rate of apoptosis in A549/DDP cells treated with
curcumin, control cells, or curcumin combined with miR-
186∗mimic cells. Results indicated that apoptosis in the com-
bination group was significantly decreased in comparison
to cells treated with curcumin [157]. These findings reveal
that curcumin is able to induce apoptosis in the multidrug
resistant cell line by downregulating miR-186∗.

4.8. Multidrug Resistance

miR-200bc/429. In 2012, Zhu et al. reported that the miR-
200bc/429 cluster was downregulated in multidrug-resistant
A549/DDP cells, in comparison to parental A549 cell [158].
Recent studies have suggested that aberrant DNA methyla-
tion of the promoter region of themiR-200bc/429 clustermay
be a critical mechanism leading to dysregulated expression
level of the miR-200 family [159, 160]. While the roles of the
two sequence clusters of miR-200 family on the epithelial-
to-mesenchymal transition of tumor cells are well studied,
the role that this miRNA family plays on apoptosis has
been minimally studied. Zhu et al. demonstrated using
MTT that transfection of miR-200bc/429 cluster mimics
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into A549/DDP greatly enhanced sensitivity of this cell line
to various anticancer drugs including vincristine (VCR),
etoposide (VP-16), adriamycin (ADR), and DDP. It was
found that miR-200bc/429 cluster was able to modulate
multidrug resistance (MDR) in lung cancer cell lines, at
least in part by inhibiting the antiapoptotic Bcl-2 and XIAP
protein expression, thus affecting the mitochondrial release
of cytochrome c. Therapeutic methods that target the miR-
200bc/429 clusters thus provides a promising method to
enhance treatment effect of NSCLC.

miR-181b. In another study by Zhu et al. (2010), miR-181b
was also found to be downregulated in multidrug-resistant
A549/DDP cells, in comparison to parental A549 cell line
[161]. To determine whether miR-181b has a direct role in
MDR development, MTT assay was performed revealing
that all A549/DDP cells transfected with miR-181b mimic
exhibited a significant increase in sensitivity to a number
of anticancer drugs including 5-fluorouracil (5-Fu), VCR,
DDP, VP-16, and ADR. Bioinformatics analysis predicted
antiapoptotic BCL-2 as a potential target of miR-181, with
two conserved target sites in the 3󸀠UT region. Transfection
of miR-181a in A549/DDP cells led to a significant decrease
in Bcl-2 protein levels, as demonstrated byWestern blot. Fur-
thermore, A549/DDPmiR-181b transfected cells also led to an
increase in apoptosis as detected by flow cytometry. Together
these results demonstrate miR-181b’s ability to modulate the
development of MDR in lung cancer cell lines, at least in
part, by modulation of apoptosis through the targeting of the
antiapoptotic BCL-2.

4.9. TRAIL-Related miRNAs. The Apo2L/tumor necrosis
factor- (TNF-) 𝛼-related apoptosis inducing ligand (TRAIL)
is a member of the TNF family that is known to induce apop-
tosis in various cancers [162]. Treatment of transformed cells
with TRAIL has been shown to successfully induce apoptosis
both in vitro and in vivo [162, 163]; however a wide range of
human cancer cells are resistant to TRAIL-induced apoptosis
[164].

miR-221 and -222. To identify the mechanisms by which
miRNAs may play a role in TRAIL resistance, Garofalo et
al. (2008) carried out a genome wide profiling of miRNAs in
three different lung cancer cell lines (A459, Calu-1, and NCI-
H460) and found that miR-221 and miR-222 were markedly
upregulated in TRAIL-resistant cells. In TRAIL sensitive
cells NCI-H460, TRAIL was able to induce the activation of
the caspase cascade, evaluated by the appearance of cleaved
fragments. However, transfection of NCI-H460 cells with
pre-miRs-221 and -222 caused a significant reduction of
TRAIL-mediated cell death machinery activation. Further
experiments deduced that miR-221 and -222 directly targeted
𝑝27Kip1, and inhibition of 𝑝27Kip1 via pre-miR-221 and
-222 transfection led to an increase in cell resistance to
TRAIL as assessed by Annexin V staining, and PARP and
caspase-8 activation. Taken together, the authors’ results
demonstrate that increased levels of miR-221 and -222 may

modulate sensitivity ofNSCLCcells to TRAILwith important
implications in the design of new therapeutic agents.

miR-34a and miR-34c. In another study, miR-34a and miR-
34c expression were found to be significantly downregu-
lated in NSCLC cells and lung tumors in comparison to
normal lung tissues. Performing a bioinformatics search,
Garofalo et al. (2013) determined that PDGFR-𝛼 and PDGFR-
𝛽 were targets of these miRNAs; both of which have been
reported to be overexpressed and associated with poor
outcome in lung cancer [165]. Through targeting PDGFR-𝛼
and PDGFR-𝛽, miR-34a/c were able to decrease invasiveness
as well as increase TRAIL-induced apoptosis. TRAIL resis-
tance is common in lung tumors and it has been reported
that PDGFR-𝛼 and PDGFR-𝛽 regulate the PI3K/Akt and
ERK1/2 pathways [166, 167], which play a role in TRAIL-
induced apoptosis [168]. Phosphorylation levels of ERKswere
found to be decreased following ectopic expression of miR-
34a/c; additionally caspase-3/7 assay revealed an increase in
TRAIL sensitivity. This study demonstrates that inhibition of
PDGFR-𝛼 and PDGFR-𝛽 by miR-34a/c is able to antagonize
tumorigenicity and increase sensitivity to TRAIL-induced
cell death [169].

miR-212. PED/PEA-15 is a death effector domain (DED) fam-
ilymember, which has been implicated in the processes of cell
growth and metabolism [170–172]. Furthermore, PED/PEA-
15 has a broad range of antiapoptotic ability, being able
to inhibit both the intrinsic and extrinsic apoptotic path-
ways [171, 173]. Zanca and colleagues (2008) reported that
PED/PEA-15 overexpression plays a role in TRAIL resistance
in NSCLC [174]; however the mechanism that regulates its
expression is not well known. In further studies, Incoronato
et al. (2010) reported that NSCLC-affected lung tissue has
an increased expression of PED/PEA-15 with a concurrent
downregulation ofmiR-212 and decreased response toTRAIL
treatment [175]. miR-212 negatively regulates PED/PEA-15
by directly binding to its 3󸀠UTR. miR-212 downregulation
has previously been reported to be involved in lung cancer
response to chemotherapy, in particular to docetaxel [101].
In this study, transfection of NSCLC Calu-1 cells with
pre-miR-212 led to a decrease in PED/PEA-15 expression
with increased caspase-8 activation following treatment with
TRAIL, indicating increased sensitivity of Calu-1 cells to
TRAIL-mediated cell death. Therefore, the expression of
miR-212 could be used to predict therapeutic response to
TRAIL in lung cancer.

5. Conclusions

In terms of molecular events occurring in tumors, evasion
of apoptosis is an important hallmark of tumor progres-
sion. Recent evidence has exhibited deregulated miRNAs
to play a role in the apoptotic process. In lung cancer,
upregulatedmiRNAs have been shown to serve as oncogenes,
targeting tumor suppressor, and/or proapoptotic genes, while
downregulated miRNAs can function as tumor suppressors,
targeting oncogenic and/or antiapoptotic genes. Additionally,
studies have also indicated thatmiRNAs play a significant role
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in altering sensitivity and resistance to cytotoxic treatment.
Targeting of specific miRNAs could therefore potentially be
used as valuable therapeutics for lung cancer. Together, these
studies have illustrated the importance for further studies and
validation of miRNAs and their targets. Furthermore, there is
a serious shortage in research being carried out in miRNA-
regulated apoptosis in SCLC. As SCLC accounts for 16.8%
of lung cancer incidence and is a highly aggressive form of
lung cancer it would be of great interest to determine the
functions of miRNAs in regulation of apoptosis in this lung
cancer subtype.
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[107] L. Crinò, G. V. Scagliotti, S. Ricci et al., “Gemcitabine and cis-
platin versus mitomycin, ifosfamide, and cisplatin in advanced
non-small-cell lung cancer: a randomized phase III study of the
Italian Lung Cancer Project,” Journal of Clinical Oncology, vol.
17, no. 11, pp. 3522–3530, 1999.
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