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Abstract

Correlated data are obtained in longitudinal epidemiological studies, where repeated

measurements are taken on individuals or groups over time. Such longitudinal data are ideally

analyzed using multilevel modeling approaches, which appropriately account for the correlations

in repeated responses in the same individual. Commonly used regression models are inappropriate

as they assume that measurements are independent. In this tutorial, we use multilevel modeling to

demonstrate its use for analysis of correlated data obtained from serial examinations on

individuals. We focus on cardiovascular epidemiological research where investigators are often

interested in quantifying the relations between clinical risk factors and outcome measures (X and

Y, respectively), where X and Y are measured repeatedly over time, e.g., using serial observations

on participants attending multiple examinations in a longitudinal cohort study. For instance, it may

be of interest to evaluate the relations between serial measures of left ventricular mass (outcome)

and of its potential determinants (i.e., body mass index, blood pressure etc.), both of which are

measured over time. In this tutorial, we describe the application of multilevel modeling to

cardiovascular risk factors and outcome data (using serial echocardiographic data as an example of

an outcome). We suggest an analytical approach that can be implemented to evaluate relations

between any potential outcome of interest and risk factors, including assessment of random effects

and non-linear relations. We illustrate these steps using echocardiographic data from the

Framingham Heart Study with SAS PROC MIXED.

Keywords

multilevel modeling; cohort study; risk factors

Correspondence: Vanessa Xanthakis, PhD, Boston University School of Medicine, Department of Medicine, Section of Preventive
Medicine and Epidemiology, 801 Massachusetts Avenue, Suite 470, Boston, MA 02118, Tel: 617-638-8016, Fax: 617-638-8076,
vanessax@bu.edu.

NIH Public Access
Author Manuscript
Stat Med. Author manuscript; available in PMC 2014 December 10.

Published in final edited form as:
Stat Med. 2013 December 10; 32(28): 5028–5038. doi:10.1002/sim.5880.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Introduction

In this tutorial, we illustrate the use of multilevel modeling to perform longitudinal analysis

of predictor and outcome variables that are measured repeatedly over time. Such data arise

in studies such as the Framingham Heart Study (FHS), one of the largest long-running

epidemiological studies of risk factors for cardiovascular disease. Participants in this

longitudinal cohort study attend periodic examinations (approximately 2–4 years apart) at

the Heart Study clinic, where extensive clinical data are measured. Because measurements

taken within the same participant are correlated, statistical methods that account for this

correlation are needed[1–3] Data structure (also referred to as dimensionality) is a key factor

that determines the choice of appropriate statistical procedures that can be used to analyze

these types of data. The procedures for serial observations warrant approaches other than

those used to analyze cross-sectional data, where individuals are measured only once, and

thus observations are independent. Multilevel modeling is a statistical approach that is often

used to analyze correlated data, such as data that is correlated within individuals or

groups.[4] For example, in the case of the FHS, there are three cohorts reflecting three

generations of participants, i.e., the original cohort, the Offspring cohort and the third

generation cohort.[1–3] Considering the original cohort as an example, participants in this

cohort are considered independent (from a statistical standpoint) and each participant, to

date, has undergone over 30 examination cycles since the start of the study in 1948. The

assessments at these examination cycles are correlated over time, and clustered or nested

within each participant. As an alternative example, one might consider the outcomes of a

surgical procedure in selected patients. Suppose the procedure is performed by ten different

surgeons on patients within the same hospital. Patient-level outcomes are independent but

they are correlated within each operating surgeon. These examples have two levels of

variability. In the FHS example, we have between-participant variability (the participant is

the clustering unit) and within-participant variability (over time). In the surgical example,

we have between-physician variability (the physician is the clustering unit) and between-

patient variability. We usually label the clustering unit as “level 2” (e.g., the participant in

the FHS example, and the surgeon in the surgical example) and the individual measurement

(i.e., at each examination in the FHS example, and in each patient in the surgical example)

as “level 1”.[5] In fact, it is possible to consider additional levels of hierarchy in data. For

example, some of the participants in the FHS are related. One could consider parents

participating in the original cohort as level 3 units, their offspring as level 2 units and

repeated measurements within each offspring participant over time as level 1 units. In the

surgical example, one could compare outcomes across multiple hospitals (level 3), each with

different surgeons (level 2) performing procedures on their patients (level 1). For simplicity,

we focus our discussion in this tutorial on two-level data structures. However, the

approaches outlined here can be readily generalized to higher order data structures.

An additional feature of multilevel modeling is related to missing data, which arises

frequently in longitudinal studies as individuals may not attend some examinations or may

not have available data at all examinations. Multilevel models offer a reasonable option to

address some of the limitations of traditional regression models in these situations because
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they handle correlated observations obtained at multiple levels, and also take into account

the fact that all participants may not attend all serial examinations.

Motivation

Using data collected in the FHS, Cheng et al.[6] described the correlates of

echocardiographic indices of cardiac structure and function using serial data from the FHS

Offspring examinations 2, 4, 5 and 6. They analyzed observations from multiple

examinations (both risk factors and echocardiographic data [the latter serving as the

outcome]) and applied multilevel modeling to assess the relations between risk factors and

outcomes. These sequential measurements of risk factors and outcomes are not independent,

because multiple measurements are obtained on the same individual over time. Here the

participants represent the “level 2” units and the measurements at each examination

represent the “level 1” units.

Because of the availability of multiple sequential observations on participants using serial

echocardiography, FHS offers a unique opportunity to evaluate how the different parts of the

heart change over the adult life course using data from the successive imaging studies. FHS

investigators[6–9] have effectively used multilevel modeling methods to evaluate the clinical

correlates of cardiac structure and function using up to nearly 15,000 echocardiographic

observations obtained serially in about 4,500 FHS participants. The objective of these

investigations was to characterize cardiac structure and function over the adult life course by

evaluating individual chamber dimensions, wall thickness and cardiac pump function

separately. For instance, it is widely believed (based on cross-sectional and autopsy studies)

that older individuals have greater cardiac mass, thickened heart walls and smaller

ventricular cavity size.[10, 11] The choice of multilevel modeling for this purpose allowed the

use of serially-obtained longitudinal data and enabled the investigators to account for the

fact that some participants may not attend consecutive examinations.[6–9] From a clinical

point of view, it may be important to investigate whether there are common clinical

correlates for the different echocardiographic traits (translating into parallel changes in

different heart chambers) by integrating the findings from these prior FHS investigations.

The premise for such a comparative evaluation of tracking of cardiac chambers, wall

thickness and ventricular function is that the impact of individual CVD risk factors on

different parts of the heart may vary with age, sex and potentially modifiable risk factors.

We illustrate herein how to analyze serial longitudinal observations on individual

echocardiographic traits (see below).

Methods

Data structure and example of code

We investigated the longitudinal tracking of measures of cardiac structure and function and

how variation in key biological determinants (that vary over time) influence the former in

FHS participants who attended several serial examinations at which both cardiac structure/

function and biological determinants were measured. Specifically, we aimed to evaluate the

correlates of cardiac structure and function (outcome of interest, dependent variable), to

assess the linearity of the associations between risk factors (biological factors, independent
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variables) and the outcome of interest, and finally to test for effect modification by one or

more of the risk factors. Given the longitudinal and repeated nature of the observations,

multilevel modeling was used for analyses. The SAS statistical software[12] offers multiple

procedures for analyzing correlated observations. We used PROC MIXED[12] because it

handles correlated observations obtained at multiple levels over time and accounts for the

fact that participants may not attend all serial examinations (some data may be missing).

PROC MIXED also fits the data into linear mixed effects models, allowing for testing of

random intercepts and slopes (i.e., different baseline values and associations between risk

factors and outcomes for each participant). When a model includes a random intercept, it

allows for the intercepts to vary across participants, i.e., each participant may have a

different starting value of the outcome of interest (e.g., left ventricular mass), before even

considering the other risk factors to be included in the model. A model including a random

slope for a given risk factor e.g., for age, allows for the association between age and

outcome (e.g., left ventricular mass) to vary across participants.

Table 1 shows an example of the structure of a dataset appropriate for analysis using PROC

MIXED. The Table displays a subset of the data used for the analysis of longitudinal

tracking of left ventricular (LV) mass, where 4,217 participants contributed 11,762 person-

observations (measurements).[8] Each row represents measurements obtained from a single

examination attended by a single participant; therefore, multiple rows may correspond to a

single participant if they attended more than one examination (e.g., ID = 4 attended

examinations 2, 4, 5, and 6). The outcome is left ventricular mass; body mass index (bmi),

systolic blood pressure (sbp), and diabetes status are some of the potential risk factors

associated with the outcome. We present below an example of the SAS code to analyze

longitudinal tracking of left ventricular mass over time and the associations between body

mass index, systolic blood pressure, and diabetes status (all of which also vary over time) as

potential risk factors for left ventricular mass. Table A in the Appendix provides more

detailed explanations of each of the SAS keywords used in the code below.

proc mixed noclprint data=dataset covtest method=ml;

 class id;

 model lvm = bmi sbp diabetes;

 random int/type=un subject=id;

run;

The SAS code above fits a model with a random intercept, and the mathematical model is as

follows:

where lvmij denotes the left ventricular mass measured at each i on participant j (i denotes

each serial or repeated measurement, and j denotes individual or independent participants),

β0 and αj represent the fixed and random (varying across individuals) parts of the intercept,

respectively, and β1, β2, and β3 denote the slopes for bmi, sbp, diabetes, respectively.
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Analytical steps

The analytical steps below outline an approach for modeling serial longitudinal

measurements on participants over multiple time points. In the following examples of SAS

code, we use out to represent the outcome of interest (e.g., left ventricular mass), rf to
represent the main or primary risk factor of interest (e.g., BMI) and cov_1 – cov_5 to

represent important covariates (e.g., age, sex, sbp, dbp, and diabetes). Figure 1 summarizes

the analytical steps described below:

1 We start by assuming that each participant has a different baseline value of the

outcome of interest, or a random intercept in the model. This is particularly

helpful in settings like the FHS, where participants may not attend all

examinations, and therefore all participants may not have the same baseline

examination. The assumption of the randomness of the intercept is tested

statistically by including the “random int” statement in the model.

If we are interested in testing whether the association between a risk factor and the outcome

varies among participants (i.e., random slope) we can perform this in two different ways:

a) We compare models with and without the random effect of a specific risk factor.

Specifically, we run the following models, where the difference is the inclusion

or omission of the random effect of the risk factor (note the difference in the two

random statements below), using the maximum likelihood method (method=ml):

Model 1:

proc mixed noclprint data=dataset covtest method=ml;

 class id;

 model out = rf;

 random int/type=un subject=id;

run;

where out = outcome of interest, and

rf = main or primary risk factor.

Model 2:

proc mixed noclprint data=dataset covtest method=ml;

 class id;

 model out = rf;

 random int rf/type=un subject=id;

run;

If Model 2 (i.e., the model including the random effect of the risk factor) has a smaller

Akaike Information Criterion (AIC) value, then this model has a better fit as compared to

Model 1, and, therefore, we should allow for random effect of the risk factor in the SAS

random statement. The significance of including a random effect is often supported by a
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substantial decrease in the AIC value; however, the comparison of the AIC values does not

provide proof of statistical significance.

b) Alternatively, we can perform a likelihood ratio test for the random effect of the

risk factor using Restricted Maximum Likelihood (REML) estimation. Using

Models 1 and 2 described above, compare the difference between the two

-2*LogLikelihood values to a chi-square value with 1 degree of freedom. If the

difference is larger than the critical value from the chi-square distribution, then

we conclude that Model 2 is a better fit as compared to Model 1 and, therefore,

we should allow for random effects of the risk factor in the SAS random
statement.

2) Variables considered as the main or primary risk factor may not have a linear

relationship with the outcome. Therefore, in the second step, we evaluate the

functional form (e.g., linear versus non-linear) of the association between the

primary risk factor and the outcome. This is achieved by plotting the unadjusted

means of the outcome of interest for each value of the risk factor. If the plot

indicates the possibility of a non-linear relation, then we can test for a non-linear

effect. This is done by including a non-linear term in the model and assessing its

statistical significance. For example, Figure 2 shows an example of a quadratic

relation between the risk factor and the outcome; in this case, we would test the

statistical significance of a quadratic relation between the risk factor and the

outcome. Using the term “rf2” to denote the squared term of the risk factor of

interest “rf”, we then run the following models:

Model 3:

proc mixed noclprint data=dataset covtest method=ml;

 class id;

 model out = rf;

 random int/type=un subject=id;

run;

Model 4:

proc mixed noclprint data=dataset covtest method=ml;

 class id;

 model out = rf rf2;

 random int/type=un subject=id;

run;

If the p-value corresponding to rf2 in Model 4 is significant, this indicates a

significant quadratic relation between the risk factor and the outcome, and

suggests the inclusion of the quadratic term for the risk factor in the model

statement. Alternatively, we could compare the difference in -2*Log Likelihood

ratio values between Model 3 and Model 4 to a chi-square value with 1 degree
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of freedom. If significant, we conclude that Model 4 is a better fit and, therefore,

we include the quadratic term for the risk factor in the model statement. The

same strategy can be followed for evaluating a potential cubic relation, or other

non-linear association between the primary risk factor and the outcome of

interest.

3) In the next step, we test whether there is effect modification. This is performed

by entering all potential predictor variables (the primary risk factor and other

covariates, here denoted as rf and cov_1–cov_5, respectively) in the model,

along with any clinically plausible interaction terms among the predictor

variables. For this example, we will assume that there are no statistically

significant non-linear associations between the primary risk factor and the

outcome, and that there are no random effects of the predictor variables. We will

also assume that the only clinically plausible interaction term is between the

primary risk factor and covariate 1 (e.g., sex), which we denote as rf*cov_1. We

use the following code:

Model 5:

proc mixed noclprint data=dataset covtest method=ml;

class id;

model out = rf cov_1 cov_2 cov_3 cov_4 cov_5 rf*cov_1 ;

random int /type=un subject=id;

run;

Model 6:

proc mixed noclprint data=dataset covtest method=ml;

class id;

model out = rf cov_1 cov_2 cov_3 cov_4 cov_5;

random int /type=un subject=id;

run;

We assess the statistical significance of the interaction term rf*cov_1 by either comparing

the corresponding p-value from Model 5 to a pre-specified significance level or by

comparing the difference in the -2*Log Likelihood ratio values between Models 5 and 6

(Model 6 does not include the interaction term rf*cov_1) to a chi-square value with 1 degree

of freedom. Non-significant interaction terms can be removed from the model. Statistical

tests for interaction terms are often characterized by a low power, therefore we may use a

higher significance level (e.g., 0.10 instead of the widely used 0.05) to which we compare

the p-value of each interaction term to assess its statistical significance. Additionally,

graphical displays may be used to further evaluate the statistical significance of an

interaction term. For example, if we are interested in evaluating whether the effect of age on

LV mass depends on the levels of sex, we could plot LV mass versus age using a different

line for men and women on the same graph, and assess whether the lines are parallel or not.
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If they are parallel, this means that the effect of age on LV mass does not depend on whether

the participant is a man or a woman.

i. If the interaction term is statistically significant, we retain it in the model, and

assess the statistical significance of other variables in the model.

ii. If the interaction term is not statistically significant, we remove it from the model

and re-run the model without the interaction term. We then assess the statistical

significance of the remaining variables. Non-significant variables can be removed,

unless they are included in a statistically significant interaction term.

Application and Results

At each of examination cycles 2, 4, 5 and 6 that occurred over a 16-year follow-up period,

participants in the Framingham Offspring cohort underwent echocardiography using a

standardized protocol (maximum of 4 imaging studies). Excellent inter- and intra-observer

reproducibility of echocardiographic traits has been reported for the FHS echocardiographic

laboratory.[13] Clinical risk factors were defined at each of these examinations and included:

age, sex, body mass index, systolic blood pressure, antihypertensive treatment, smoking, and

diabetes.

Figure 3 displays examples of participants’ (“level 2”) LV mass values observed over

multiple examination cycles attended (“level 1”). Each participant has a different LV mass

value for each exam attended. Accordingly, the values for the risk factors are also updated at

each examination cycle attended by the participant. Table 2 shows the clinical correlates of

LV mass over the adult life course;[8] LV mass was natural logarithmically transformed for

these analyses to normalize its distribution and also to render comparable its variance in men

versus women. We used a random intercept in the models to reflect a different baseline

value of LV mass for each participant. Of note, we observed effect modification by sex and

diabetes on the impact of age on LV mass (Table 2). We also observed that the impact of

BMI on LV mass varied in men versus women (the interaction was statistically significant).

Figure 4 displays the percent change in LV mass with increasing BMI for men and women

separately. This figure was created using the regression equation formed by the parameter

estimates (regression coefficients) shown in Table 2. For comparison purposes, Table 3

shows the results of a cross-sectional analysis of the same risk factors and their association

with LV mass using data from a single examination cycle (FHS Offspring Cohort

examination cycle 5) and multiple linear regression analysis. It is clear that using an

ordinary multiple regression model such as that summarized in Table 3 (recommended for

cross-sectional studies) does not allow us to capture the complex associations between the

risk factors and the outcome. More specifically, when using multilevel modeling, more

interaction terms between the risk factors appear statistically significant, suggesting that the

associations between risk factors and the outcome vary depending on the levels of other risk

factors (Table 2). Moreover, additional main effects appear to have a significant associations

with LV mass (e.g., smoking status, antihypertensive treatment), therefore explaining more

of the inter-individual variability in the outcome (Table 2). Table 4 summarizes the

directionality of the association for these clinical covariates with echocardiographic traits,

i.e., left ventricular mass (LVM), LV wall thickness, LV diastolic dimensions, fractional
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shortening, aortic root diameter and left atrial size.[6–9] The use of multilevel modeling

revealed interesting patterns of associations as well as interactions among the covariates

(Table 4).[6–9] For instance, systolic blood pressure (SBP) was positively associated with

both LV mass and wall thickness. However, diastolic BP was inversely associated with LV

diastolic dimensions, left atrial size and with fractional shortening. In contrast, aortic root

diameter was inversely associated with systolic BP but directly associated with diastolic BP.

Smoking was associated positively with LV mass, whereas diabetes was inversely

associated with LV mass and LV diastolic dimensions, but directly associated with LV wall

thickness. The effect of age on LV mass, LV wall thickness and aortic root size varied with

sex. The effect of body mass index on LV mass, diastolic dimensions, left atrial size and

aortic root diameter varied according to sex. The association of diabetes on LV mass, wall

thickness, and diastolic dimensions varied with age. These observations suggest a complex

relation among standard cardiovascular risk factors and different components of cardiac

structure and function, a revelation made possible by using multilevel modeling.

Discussion

Utility of multilevel modeling: A Brief Overview

Multilevel modeling is an ideal statistical approach for analyzing data that are correlated, for

instance repeated measures obtained on individuals, such as longitudinal observations of

biological variables in an epidemiological context.[14, 15] Multilevel models can be used for

continuous outcomes, and for categorical and ordinal outcomes with multinomial error

distributions.[4] The examples illustrated in this tutorial are relevant for single continuous

outcomes, but the multilevel modeling method can also be applied to multivariate (multiple

outcomes of interest) linear models, and to processes following a binomial or Poisson

distribution, as well as for ‘time to event’ outcomes (with or without modeling of competing

risks).[4] Multivariate multilevel modeling, not discussed herein, is a special case where we

can estimate associations between risk factors and an outcome that is comprised of more

than one response variable. The multilevel method can also be applied to studies focused on

meta-analysis[4] that combine individual-level data with aggregate-level data, as discussed

by Langford et al.[16] It can also be used at the planning stage of multilevel studies by

accounting for the choice of covariates, level of randomization (trials) and determination of

sample sizes at different levels.[4] An excellent and comprehensive resource for the various

uses of multilevel modeling is reference 4.[4]

Attractiveness of the use of multilevel modeling in epidemiological

research

The multilevel modeling approach is a good option for analyzing data with missing

observations. The nature of missing-ness (random versus non-random) should be evaluated

to define the best strategy for handling missing-ness. It is possible that observations are

missing due to study design (data obtained on a sub-sample) or other reasons unrelated to

the response variable itself. In this situation, model parameters, such as level 1 or level 2

random effects, are uninfluenced by the missing values. If on the other hand, observations

are missing non-randomly and are related to the values of the response variable itself, then
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one has to model in the missing-ness mechanism in the analytic strategy, and then proceed

as though the data are missing at random.[4] For example, individuals who are missing

echocardiographic observations at FHS examinations are often not missing those

observations at random, i.e., they tend to be older, and have a greater prevalence of co-

morbidities such as chronic obstructive pulmonary disease or cardiovascular disease.[17]

Sensitivity analyses may be helpful in these situations, where missing values for either

response or predictor variables can be imputed by assigning them select values empirically,

or by estimating them from the available data. Additionally, the example of SAS code that is

presented in the Methods section is easy to use and, therefore, analysis of serial

measurements using the PROC MIXED[12] procedure is recommended.

Multilevel modeling is mostly used for analyzing serial measurements over time, often

obtained on participants in a longitudinal study, and is able to assess the correlates of

clinically important outcomes (e.g., fractional shortening) and also evaluate the longitudinal

tracking of a specific outcome, capitalizing on the wealth of information in serial

observations. Applying the multilevel method in FHS studies,[6–9] we were able to not only

evaluate the associations between echocardiographic outcomes and their potential clinical

risk factors, but also evaluate possible effect modification that was present among some of

the risk factors. This was made possible by including corresponding interaction terms in the

models and evaluating their statistical significance. Power to detect significant interaction

terms was enhanced by the wealth of longitudinal observations; this may not have been

possible in a smaller cross-sectional study.

Conclusion

Multilevel modeling is a suitable statistical approach for analyzing correlated risk factor data

obtained from participants attending sequential examinations over time in a longitudinal

cohort setting. The use of the wealth of these serial observations allows for the assessment

of the associations between clinical risk factors and outcomes, offering opportunities to

reveal complex relations among the risk factors with respect to their effect on the outcomes,

which may have not been observed in smaller cross-sectional studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Analytical steps for applying multilevel modeling
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Figure 2.
Graphic representation of a non-linear relation between a hypothetical risk factor (exposure)

and an outcome of interest
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Figure 3.
Examples of participants’ (“level 2”) LV Mass values observed over multiple examination

cycles (“level 1”)
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Figure 4.
Percent change in Left Ventricular Mass for increasing BMI for men and women (source is

reference 8)
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Table 2

Clinical correlates of longitudinal tracking of LV mass over a 16-year period.

Variable Regression coefficient Standard error p-value

Age 50, years 0.002073 0.00032 <0.0001

Men   0.3286 0.02814 <0.0001

Men*age 50 −0.00262 0.000381 <0.0001

Body mass index, kg/m2   0.01658 0.000602 <0.0001

Men*body mass index −0.00209 0.001032 0.04

Systolic blood pressure, mm Hg 0.001376 0.000122 <0.0001

Antihypertensive treatment   0.02322 0.005569 <0.0001

Current smoking   0.01163 0.004752 0.01

Diabetes −0.01628 0.01146 0.16

Age 50*diabetes   0.00338 0.000928   0.0003

Source of data in Table is reference 8.

Age 50 indicates that age was centered at the mean of all participants at all exams (50 years) to reduce multi-collinearity between regression

coefficients. The regression coefficient indicates the ebeta-fold increase in LV mass in original units per one-unit-increment in the independent
variable (for binary traits that corresponds to the presence vs. absence of the trait).

The effect of a variable that is included in a statistically significant term should be interpreted, accounting for the corresponding interaction term.
For example, the effect of BMI depends on sex; therefore, in women, a 1-unit increase in BMI results in 0.01658 units increase in log-transformed

LV mass (e0.01658 or 1.0167–fold increase in LV mass in grams). In men, a 1-unit increase in BMI results in 0.01449 (= 0.01658–0.00209) units

increase in log-transformed LV mass (e0.01449 or 1.0146–fold increase in LV mass in grams).
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Table 3

Clinical correlates of LV mass using a cross-sectional design (single examination)

Variable Regression coefficient Standard error p-value

Age 53, years  0.000343 0.00043   0.4277

Men  0.232528 0.007573 <0.0001

Body mass index, kg/m2   0.0132406 0.000886 <0.0001

Systolic blood pressure, mm Hg   0.0017879 0.0002349 <0.0001

Diabetes −0.0205336 0.018619   0.2702

Age 53*diabetes  0.006068 0.00181455   0.0008

Age 53 indicates that age was centered at the mean of all participants at all exams (53 years) to reduce multi-collinearity between regression

coefficients. The regression coefficient indicates the ebeta-fold increase in LV mass in original units per one-unit-increment in the independent
variable (for binary traits that corresponds to the presence vs. absence of the trait).

The effect of a variable that is included in a statistically significant term should be interpreted, accounting for the corresponding interaction term.
For example, the effect of age depends on diabetes status; therefore, in people with no diabetes, a 1-unit increase in age results in 0.000343005

units increase in log-transformed LV mass (e0.000343005 or 1.000343–fold increase in LV mass in grams). In people with diabetes, a 1-unit

increase in age results in 0.006411 (= 0.000343005+0.0060683) units increase in log-transformed LV mass (e0.006411 or 1.00643–fold increase in
LV mass in grams).
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