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Echinocandins are the preferred therapy for invasive infections due to Candida krusei. We present here a case of clinical failure
involving C. krusei with a characteristic FKSI hot spot mutation not previously reported in C. krusei that was isolated after 14

days of treatment. Anidulafungin MICs were elevated by =5 dilution steps above the clinical breakpoint but by only 1 step for a
Candida albicans isolate harboring the corresponding mutation, suggesting a notable species-specific difference in the MIC in-

crease conferred by this mutation.

Echinocandins are generally advised as first-line antifungal
agents for the management of invasive candidiasis, especially
where the local epidemiology reveals a significant proportion of
species that are less susceptible or resistant to fluconazole (1-4).
Not surprisingly, the shift in treatment recommendations from
fluconazole to echinocandins has resulted in breakthrough infec-
tions. In recent years, the emergence of echinocandin resistance
has been observed, as demonstrated by the increasing number of
publications on treatment failure and breakthrough infections (5—
10). Nonsynonymous mutations in hot spot regions of FKSI
and/or FKS2 are linked to decreased echinocandin susceptibility
due to the altered amino acid composition of the target protein
1,3-B-p-glucan synthase (11). This correlation is well established
and has been demonstrated in the most clinically relevant Candida
species (7, 8, 11-20). Regarding Candida krusei, echinocandin re-
sistance has significant therapeutic implications, as this species is
inherently less susceptible or resistant to azoles, limiting the al-
ready narrow spectrum of antifungal treatment options (21). So
far, alterations at amino acids F655 and L658 in hot spot 1 and
R1368 in hot spot 2 of Fkslp have been reported in C. krusei
isolates with elevated echinocandin MICs (12, 22, 23). Here, we
present a clinical failure case of breakthrough infection caused by
C. krusei strongly attributable to the acquisition of a resistant FKS1
genotype that has not been previously described in C. krusei.

A 62-year-old woman with diffuse large B-cell lymphoma was
admitted for chemotherapy in 2013. During prior admissions and
as an outpatient, she had received fluconazole orally (200 mg
daily) for a 2-month period until 1 week before this admission.
Due to her febrile neutropenia, rising C-reactive protein (CRP)
levels, and lack of response to broad-spectrum antibiotics, empir-
ical fluconazole was resumed on day 2 (200 mg/day), followed by
caspofungin starting on day 8 (50 mg/day after a loading dose of
70 mg). Blood cultures remained negative until a peripheral blood
culture obtained at day 22 yielded a C. krusei isolate after 14 days of
caspofungin therapy. The patient died from cerebral infarction
and fungal infection on day 25 while still on caspofungin therapy
and before identification or susceptibility patterns were available.

Susceptibility testing was done according to EUCAST defini-
tive document EDef 7.2 (24) (anidulafungin, micafungin, and
azoles) and by the Etest (caspofungin and amphotericin B
[AMB]). FKSI gene sequencing was performed for the resistant C.
krusei isolate (CPH-T5842), including reference strain ATCC
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6258, and aligned to the FKSI wild-type sequence of C. krusei
(NCBI accession no. EF426563) using CLC Main Workbench
(CLC Bio, Denmark) as previously described (12). Susceptibility
data for a Candida albicans isolate with the corresponding mutant
fksI genotype (DPL-1012) and a clinical unrelated FKSI wild-type
isolate (CPH-T53911) were included for comparison. Echinocan-
din susceptibility was evaluated using the EUCAST species-spe-
cific MIC breakpoints for anidulafungin (=0.06 mg/liter, suscep-
tible [S], and >0.06 mg/liter, resistant [R], for C. krusei and =0.03
mg/liter, S, and >0.03 mg/liter, R, for C. albicans) and micafungin
(=0.016 mg/liter, S, and >0.016 mg/liter, R, for C. albicans) and
the revised CLSI breakpoints for the interpretation of caspofungin
Etest results (=0.25 mg/liter, S, and >0.5 mg/liter, R, for both
species) (25). The EUCAST micafungin breakpoints have not yet
been established for C. krusei; therefore, the common epidemio-
logical cutoff (ECOFF) value (0.25 mg/liter for C. krusei) was used
to discriminate between wild-type (WT) and non-WT suscepti-
bility (26).

The C. krusei isolate displayed wild-type susceptibility to AMB
(MIC, 0.5 mg/liter) and azoles (fluconazole MIC, >16 mg/liter;
voriconazole MIC, 0.25 mg/liter) but was classified as resistant to
all three echinocandins, with =5, =3, and 6 MIC dilution steps
above the defined clinical breakpoints for anidulafungin, mica-
fungin, and caspofungin, respectively (Table 1). FKSI sequencing
revealed a D662Y alteration in Fkslp of the resistant C. krusei
isolate. In comparison, a corresponding D648Y alteration in C.
albicans Fks1p was associated with minor decreases in susceptibil-
ity, with elevations of 1, 2, and 2 MIC dilution steps above the
clinical breakpoints for anidulafungin, micafungin, and caspo-
fungin, respectively (Table 1).

Wild-type C. krusei displays higher echinocandin MICs (most
pronounced for micafungin) than does C. albicans, potentially
related to the naturally occurring amino acid difference 1660 in C.
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TABLE 1 Species, hot spot sequences, and relevant susceptibility data for the echinocandin-resistant Candida krusei isolate and relevant reference

isolates

MICs (mg/liter) and susceptibility data according to™:

EUCAST

Fkslp hot spot 1°

Isolate no. Species Anidulafungin Micafungin Etest: caspofungin (aa no.-sequence)
ATCC 6258 C. krusei 0.03, S 0.125, WT 0.5,1 655-FLILSIRDP
CPH-T5842 C. krusei >1,R(=5) >1,non-WT (=3) 16, R (6) 655-FLILSIRYP
CPH-T53911 C. albicans 0.008, S 0.008, S 0.125,S 641-FLTLSLRDP
DPL-1012 C. albicans 0.06, R (1) 0.06, R (2) LR(2) 641-FLTLSLRYP

“ Dilution steps above clinical breakpoints (anidulafungin and caspofungin) or ECOFF (micafungin) are shown in parentheses. S, susceptible; R, resistant; I, intermediate.
b The intrinsic amino acid (aa) isoleucine (1660) uniquely found in the C. krusei Fks1p hot spot region 1 is underlined, and the FKS-encoded substitution is in bold type.

krusei corresponding to L646 in C. albicans (Table 1) in the hot
spot region of Fks1p not found in other Candida species. Hence,
hot spot mutations in C. krusei may be of particular clinical im-
portance. To our knowledge, the D662Y alteration has not been
described in C. krusei (2,12, 13, 22, 27, 28). The equivalent amino
acid substitution has been described in a clinical isolate of C. albi-
cans (D648Y) to be associated with intermediate MICs, as also
demonstrated in this study (29). Similar discrete MIC elevations
were found in Candida glabrata with the equivalent substitution
D632Y (9, 30), while the combination with a nonsense mutation
(D632Y plus R1377STOP) was associated with high echinocandin
resistance (31). It is evident that the phenotypic resistance is de-
pendent both on species and on FKS genotype, signifying the dif-
ficulties in therapeutic management when encountering acquired
resistance. Nonetheless, the significantly elevated MICs for anidu-
lafungin and caspofungin above the clinical breakpoints and the
micafungin MICs above the ECOFF indicate that echinocandins
are very unlikely to be effective against this C. krusei mutant strain
(30). The MICs for the resistant isolate may even be underesti-
mated due to the truncated upper end of the concentration range
for anidulafungin and micafungin (2, 16, 30).

In conclusion, this case represents another breakthrough in-
fection where the previous use of fluconazole prophylaxis proba-
bly selected for C. krusei, which in turn developed resistance to
echinocandins while the patient was on therapy with caspofungin.
This emphasizes the crucial importance of susceptibility testing
for appropriate patient management, particularly for echinocan-
din-exposed patients. Future dissection of the hot spots of FKSI
and FKS2 may provide further knowledge on the interplay be-
tween Candida species and individual FKS mutations and their
associated susceptibilities to echinocandin in vitro and in vivo.
Due to the low rates of positive blood cultures, particularly during
treatment, it may also highlight the potential value of molecular
methods in detecting resistance genotypes directly from primary
patient samples. This is specifically important in patients not re-
sponding to treatment, but it requires a species-specific algorithm
developed for the translation of each unique alteration into a clin-
ically meaningful susceptibility profile (32, 33).
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