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We assessed the activity of tigecycline (TGC) combined with colistin (COL) against carbapenem-resistant enterobacteria. Syn-
ergy occurred in vitro against the majority of isolates, with the exception of Serratia marcescens. In a simple animal model (Gal-
leria mellonella), TGC-COL was superior (P < 0.01) in treating Escherichia coli, Klebsiella pneumoniae, and Enterobacter infec-
tions, including those with TGC-COL resistance. Clinical studies are needed to determine whether TGC-COL regimens may be a
viable option.

Resistance to antimicrobial agents is an ongoing problem that
consistently undermines our ability to treat bacterial infec-

tions (1). The emergence of multidrug-resistant (MDR) Entero-
bacteriaceae producing extended-spectrum �-lactamases (ESBLs)
has led to the increased use of carbapenems. Carbapenem resis-
tance in Enterobacteriaceae (CRE) may be mediated by mutations
affecting membrane permeability (porin loss), overexpression of
intrinsic �-lactamases (AmpC), and/or broad-spectrum resis-
tance-nodulation-division (RND)-type efflux pumps (2) but also
via the acquisition of carbapenem-hydrolyzing enzymes, includ-
ing members of the KPC, IMP, VIM, OXA-48, and NDM families
(3, 4). Although CRE strains are often reported to be susceptible to
polymyxins (polymyxin B, colistin) and tigecycline (TGC) (5–7),
there are concerns with the use of these drugs for treatment with
debate over how to safely dose colistin (COL) (8) and warnings
over the efficacy of TGC in the treatment of bloodstream and
other serious infections (9). Rapid emergence of resistance has
also been documented with these two agents if either one is used
alone in the treatment of MDR Gram-negative infections (10).
Due to the lack of alternatives, clinicians are increasingly using
antimicrobials in combination. The mechanism of action of COL
is not entirely clear, although it has been previously shown to
disrupt the integrity of the Gram-negative outer membrane (11),
thereby increasing its permeability by drugs that are typically ex-
cluded (12). This may improve the activity of a number of antibi-
otics which would otherwise have little effect (13). This approach
is validated by reports of better clinical outcomes with unortho-
dox therapies for an increasing range of carbapenem-resistant
bacteria (14–16). In this study, we assessed the activity of TGC in
combination with COL against a range of CRE both in vitro and in
vivo by using standard checkerboard and time-kill assays and a
simple invertebrate model (Galleria mellonella) of infection and
therapeutics (17–19) (we do acknowledge that currently the G.
mellonella model lacks the required validation with regard to com-
parability with human therapy).

Enterobacteriaceae isolates used in this study (n � 18) consisted
of susceptible type strains and clinical isolates exhibiting resis-
tance to �-lactams (including carbapenems), TGC, or COL (Table
1). MICs of TGC and COL were determined by Etest (bioMérieux,
France), and mechanisms of resistance were confirmed by genetic
and phenotypic tests as previously described (20).

Synergy testing was conducted in IsoSensitest broth in 96-well

microtiter plates. Assays were set up in checkerboard style with
2-fold-decreasing concentrations of COL (16 to 0 �g/ml) and
TGC (32 to 0 �g/ml) and bacterial inocula of 105 CFU per well.
Plates were read after 24 h of incubation at 37°C. Synergy between
TGC and COL was quantified by calculation of the fractional in-
hibitory concentration index (FICI) and the susceptibility break-
point index (SBPI) (21, 22). A FICI of �0.5 was defined as syn-
ergy, a FICI of 0.5 to �4.0 as indifferent or additive, and values of
�4.0 as antagonistic. An SBPI of �2 was deemed to represent
therapeutically useful synergy. Time-kill assays were performed
for each isolate with a FICI of �0.5 by using starting inocula of 1 �
106 CFU/ml TGC (1 �g/ml) and COL (2 �g/ml) alone and in
combination. Time-kill curves were plotted from serial viable
counts collected over 24 h, and synergy between TGC and COL
was defined as a difference of �2 log10 CFU/ml between single and
combination therapies (23). All isolates for which synergy was
observed in time-kill assays were then used for treatment assays
with G. mellonella.

To establish the optimal inocula (50% lethal dose [LD50]) re-
quired for staggered killing of G. mellonella over 96 h, 10 caterpil-
lars (KJ Reptile Supplies, Nuneaton, United Kingdom) were inoc-
ulated with bacterial suspensions containing final concentrations
of 102 to 105 CFU/larva. Suspensions were injected directly into
the G. mellonella hemocoel, and larvae were incubated at 37°C for
96 h. Treatment assays with TGC and COL alone and in combi-
nation were assessed using 16 animals as previously described
(24). Drug doses were selected to be representative of those used to
treat human infection and consisted of TGC at 1 mg/kg and COL
at 2.5 mg/kg. Phosphate-buffered saline (PBS) injections (10 �l)
were used to control for both inoculation injury and no antimi-
crobial treatment. Survival curves were plotted over 96 h and an-
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alyzed using the log rank test. All in vitro and in vivo experiments
were performed three times on separate occasions to ensure re-
producibility.

The combination of TGC and COL was active against suscep-
tible and resistant strains of Escherichia coli, Klebsiella pneu-
moniae, and Enterobacter spp., with synergy (FICI, �0.5) noted
against 7 of 15 (47%) strains and an indifferent or additive effect
(FICI, �0.5 and �4.0) produced against a further 8 strains (53%).
In contrast, marked antagonism (FICI, �4.0) was observed
against all Serratia marcescens strains (Table 1). Synergy was
largely independent of resistance profiles and was seen against
producers of CTX-M-1 (strain EA2), CTX-M-15 (EC5 and KP51),
NDM-1 (EC204), and OXA-48 (KP52) enzymes and a TGC-resis-
tant efflux mutant (Encl TGC-R). Indifferent or additive effects
seen using the FICI as the definition of synergy contrasted with the
SBPI data for E. coli, K. pneumoniae, and Enterobacter isolates with
carbapenem resistance due to KPC (strains KPC-3 and KP96),
VIM-1 (KP96), hyper-AmpC (EA1), NDM-5 (EC405), and/or
NDM-1 (EC421) production, whereby values of 8.5 to 40 indi-
cated that the interaction may still be clinically relevant.

Synergy in checkerboard analysis was confirmed in time-kill
assays for all isolates except K. pneumoniae NCTC 9633 (Fig. 1; see

also Fig. S1 in the supplemental material). TGC alone was bacte-
riostatic against all 7 strains, as expected for a glycylcycline. Al-
though COL was initially bactericidal, regrowth was observed with
COL at 2 �g/ml against isolates NCTC 12241, EC5, NCTC 9633,
KP51, KP52, and Enterobacter cloacae TGC-R. Previous studies
have shown that regrowth after COL exposure can occur at con-
centrations many times above the MIC and may be indicative of a
heteroresistant phenotype, detectable when investigated by pop-
ulation analysis profiling (25). MICs of colistin sulfate can also be
overestimated due to its affinity to bind to laboratory plastic and
glassware used in in vitro susceptibility tests (26). Although re-
growth with the TGC-COL combination was also seen with 5 iso-
lates, TGC-COL was still significantly more effective than either
agent alone (�3 log different from the control), supporting other
reports of sustained bactericidal synergy with the TGC-COL com-
bination in vitro (27, 28).

Of interest, TGC-COL was not effective against S. marcescens,
with marked antagonism of the combination observed against all
the strains tested. The mechanism of synergy between the two
antibiotics against other species tested is likely to be linked to
COL-mediated membrane permeabilization, allowing entry of
TGC into bacterial cells. The intrinsic colistin resistance of S.

FIG 1 Time-kill graphs showing antimicrobial synergy between TGC and COL against MDR isolates of Enterobacteriaceae, namely EC204 (a), EC5 (b), KP51 (c),
KP52 (d), EA2 (e), and Encl TGC-R (f).
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marcescens indicates that its membrane is not permeabilized in
this fashion. The mechanism of antagonism in S. marcescens re-
mains to be elucidated, although it was not abolished by the
addition of broad-spectrum inhibitors of resistance-nodulation-
division (RND) pumps (para-aminobenzoic acid [Pa�A]) (un-
published data), suggesting that dysregulation of antibiotic efflux
is unlikely to be involved.

All of the isolates tested were pathogenic to G. mellonella when
inocula of �102 CFU/larva were used (Fig. 2). The optimal inoc-
ulum able to promote staggered killing of �50% of larvae over 96
h for use in treatment assays varied from 103 to 104 CFU/larva
(Fig. 3). Monotherapy with TGC was superior to COL in the treat-
ment of EC204, EC5, EA2, and K. pneumoniae (KP52) infections
(P � 0.01) but not against K. pneumoniae (KP51). TGC mono-
therapy of caterpillars infected with the E. cloacae TGC-R strain
was ineffective, as predicted from in vitro susceptibility tests
(Fig. 3).

Overall, the TGC-COL combination was significantly more
effective (P � 0.01) than monotherapy against all of the CRE
isolates studied in vivo. Treatment with TGC-COL resulted in sur-
vival of 99% (�1 percentage point [pp]) and 96% of EC204- and
EC5-infected larvae (Fig. 3a and b), respectively, and was signifi-
cantly more effective than TGC alone (P � 0.01). The TGC-COL

combination was also significantly (P � 0.01) more effective
against K. pneumoniae KP51 (67% survival � 33 pp), KP52 (81%
survival � 19 pp) (Fig. 3c and d), E. aerogenes EA2 (88% �13 pp),
and the E. cloacae (85% � 4 pp) TGC-R strain than either agent
given as monotherapy (P � 0.01) (Fig. 3e and f).

In vitro data on the potential for TGC-COL regimens to be
beneficial in treatment were correlated by the in vivo studies using
G. mellonella larvae. In Galleria organisms, TGC and COL given
together at humanized doses significantly improved survival
against infections with E. coli, K. pneumoniae, and E. cloacae, in-
cluding those producing KPC and NDM-1 carbapenemases. Al-
though the relevance of an invertebrate model to human thera-
peutics can be questioned, there is increasing evidence that
virulence, therapeutic outcomes, and pharmacokinetic parame-
ters (29) can be predicted in this system. However, it should be
noted that recent studies using murine models of sepsis (30),
pneumonia (31), and soft tissue infection (32) have not found
TGC-COL combination treatment to be consistently superior to
treatment with either drug alone against carbapenemase-produc-
ing K. pneumoniae and A. baumannii isolates.

In summary, a synergistic or additive effect between TGC and
COL was observed in vitro and in vivo against a number of MDR
Enterobacteriaceae isolates, although not against S. marcescens. For

FIG 2 Kill kinetics of strains EC204 (a), EC5 (b), KP51 (c), KP52 (d), EA2 (e), and Encl TGC-R (f) at various numbers of CFU/ml in G. mellonella over 96 h.
Curves were plotted from single experiments using 10 insect larvae.
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TGC-COL combination therapy to be employed effectively and
safely, further work on the pharmacokinetic parameters of TGC-
COL in vivo and its effects on clinical outcomes from MDR Gram-
negative infections will be needed.
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