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Pneumocystis pneumonia (PcP) is a significant cause of morbidity and mortality in immunocompromised patients. In humans,
PcP is caused by the opportunistic fungal species Pneumocystis jirovecii. Progress in Pneumocystis research has been hampered
by a lack of viable in vitro culture methods, which limits laboratory access to human-derived organisms for drug testing. Conse-
quently, most basic drug discovery research for P. jirovecii is performed using related surrogate organisms such as Pneumocystis
carinii, which is derived from immunosuppressed rodents. While these studies provide useful insights, important questions
arise about interspecies variations and the relative utility of identified anti-Pneumocystis agents against human P. jirovecii. Our
recent work has identified the histone acetyltransferase (HAT) Rtt109 in P. carinii (i.e., PcRtt109) as a potential therapeutic tar-
get for PcP, since Rtt109 HATs are widely conserved in fungi but are absent in humans. To further address the potential utility of
this target in human disease, we now demonstrate the presence of a functional Rtt109 orthologue in the clinically relevant fungal
pathogen P. jirovecii (i.e., PjRtt109). In a fashion similar to that of Pcrtt109, Pjrtt109 restores H3K56 acetylation and genotoxic
resistance in rtt109-null yeast. Recombinant PjRtt109 is an active HAT in vitro, with activity comparable to that of PcRtt109 and
yeast Rtt109. PjRtt109 HAT activity is also enhanced by the histone chaperone Asf1 in vitro. PjRtt109 and PcRtt109 showed simi-
lar low micromolar sensitivities to two reported small-molecule HAT inhibitors in vitro. Together, these results demonstrate
that PjRtt109 is a functional Rtt109 HAT, and they support the development of anti-Pneumocystis agents directed at Rtt109-cata-
lyzed histone acetylation as a novel therapeutic target for human PcP.

Pneumocystis pneumonia (PcP) is a significant cause of morbidity
and mortality among patients with HIV infection or other immu-

nosuppressive conditions (1–4). The incidence of PcP has risen sig-
nificantly among certain non-HIV patients due to the increased use
of immunosuppressive therapies related to the management of organ
transplantation, autoimmune diseases, and cancer (5–7). The re-
ported mortality rates for PcP range between 10 and 30% for AIDS
patients and between 30 and 70% for selected non-HIV-infected pa-
tients with immunosuppression (8–13). Several factors contribute to
poor PcP outcomes, including delayed diagnosis (14, 15) and com-
plex host-pathogen interactions (16–21). Like other opportunistic
fungal pathogens, there is also the emerging threat of Pneumocystis
populations developing resistance to the currently available ther-
apeutic agents (22–24). In humans, PcP is caused by the opportu-
nistic fungal species Pneumocystis jirovecii, which specifically in-
fects human hosts and is not viable in other immunosuppressed
mammalian hosts. Unfortunately, research progress has been hin-
dered by the lack of continuous in vitro propagation methods for
Pneumocystis, which limits ready access to viable organisms for
laboratory research and drug discovery studies (25, 26). As a re-
sult, most drug discovery for PcP has been performed with other
species of Pneumocystis, such as Pneumocystis carinii or Pneumo-
cystis murina generated in rats or mice, respectively (27–29).
However, questions remain regarding whether agents identified as
having anti-Pneumocystis activity against P. carinii possess critical
activity against the causal pathogen in human disease, namely, P.
jirovecii. Validation of anti-P. jirovecii drug activity and funda-
mental target characterization studies represent critical steps in
the process of therapeutic target validation.

In this light, we recently characterized the histone acetyltrans-
ferase (HAT) Rtt109 in P. carinii (30, 31). Rtt109 HATs were first
discovered in Saccharomyces cerevisiae because they catalyze a spe-
cific atypical posttranslational histone modification, i.e., histone
H3 lysine 56 acetylation (H3K56ac) (32–35). Rtt109-catalyzed
H3K56ac occurs during the S phase of the cell cycle and promotes
genotoxic resistance, as it is associated with DNA replication and
DNA repair (34–37). Rtt109 homologues have been found widely
across the fungal kingdom, but no sequence homologies have
been found in humans, making these potentially attractive targets
for antifungal drug development. In humans and other mammals,
H3K56ac is catalyzed by the HATs p300/CREB-binding protein
(CBP) or GCN5 (38, 39). Additional evidence indicates that dele-
tion of rtt109 in the opportunistic fungal pathogen Candida albi-
cans reduces fungal infection burdens in mouse models (40, 41).
On this basis, we postulate that specific inhibitors of fungal
Rtt109-catalyzed histone acetylation may be useful as novel anti-
fungal agents, with minimal mammalian toxicities, and may have
activity against recalcitrant organisms such as P. jirovecii (42,
43). Pneumocystis is challenging to treat with standard antifun-

Received 24 February 2014 Returned for modification 12 March 2014
Accepted 11 April 2014

Published ahead of print 14 April 2014

Address correspondence to Andrew H. Limper, limper.andrew@mayo.edu.

Copyright © 2014, American Society for Microbiology. All Rights Reserved.

doi:10.1128/AAC.02637-14

3650 aac.asm.org Antimicrobial Agents and Chemotherapy p. 3650 –3659 July 2014 Volume 58 Number 7

http://dx.doi.org/10.1128/AAC.02637-14
http://aac.asm.org


gals, and the use of the available agents can be limited by drug-
related toxicities. Accordingly, efficacious anti-Pneumocystis
agents with minimal human toxicities still represent an unmet
clinical need, despite significant efforts over the course of several
decades (44–49).

In the current investigation, we show that P. jirovecii expresses
a functional Rtt109 HAT (i.e., P. jirovecii Rtt109 [PjRtt109]). We
confirm the location of the Pjrtt109 gene within the recently se-
quenced P. jirovecii genome. Using heterologous expression, we
demonstrate that Pjrtt109 restores H3K56ac levels and genotoxic
resistance in rtt109-null yeast. PjRtt109 protein exhibits HAT ac-
tivity in vitro, and this activity is enhanced by the addition of the
histone chaperone Asf1. Finally, we demonstrate that PjRtt109
enzymatic activity can be inhibited by reported small-molecule
HAT inhibitors, one of which reduces the viability of Pneumocystis
organisms. Both PjRtt109 and P. carinii Rtt109 (PcRtt109) were
inhibited by low micromolar concentrations of these two com-
pounds in vitro. Together, these results demonstrate that PjRtt109
is a functional Rtt109 HAT, representing an attractive target for
therapeutic development targeting human PcP.

MATERIALS AND METHODS
Generation of full-length Pjrtt109 cDNA and subcloning into expres-
sion vectors. The full-length 1,143-bp Pjrtt109 cDNA was synthesized
commercially (GenScript USA) and subcloned into pUC57. This plasmid
containing the full-length Pjrtt109 cDNA reading frame was then used as
a template in PCRs using Pfu DNA polymerase (Life Technologies). The
cDNA was then cloned into the yeast pYES2.1 TOPO or pGEX-4T1 bac-
terial expression vector. Induction of gene expression in both bacteria and
yeast has been described previously (30).

Verification of Pjrtt109 in P. jirovecii genome. The PCR with the
partial Pjrtt109 DNA sequence was conducted using standard protocols.
Briefly, total genomic DNA from P. jirovecii was recovered from bron-
choalveolar lavage (BAL) fluid specimens from potential positive cases of
Pneumocystis pneumonia. We obtained clinical waste BAL fluid samples
after all clinical diagnostic testing had been performed. We used the entire
residual samples (generally �5 ml) to isolate P. jirovecii organisms, as
described previously (30). The entire P. jirovecii isolate was lysed in toto,
and nucleic acids were extracted. Freshly isolated P. jirovecii genomic
DNA was prepared with the IsoQuick nucleic acid extraction kit (Orca
Research). After isolation, approximately 250 ng of DNA was used in a
PCR utilizing Pfu DNA polymerase with the following Pjrtt109 gene-spe-
cific primers: forward, 5=-TGGTGGGCAAAAGTGTTGG-3=; reverse, 5=-
GTGTCTCAAAATCAGAACGC-3=. To verify that these primers would
not amplify segments of human genomic DNA, the primer set was also
tested against human DNA isolated from healthy lung cells (Amsbio).
Using another set of specific primers, the human glyceraldehyde-3-phos-
phate dehydrogenase (hGAPDH) gene was amplified to verify that this
DNA supply was not degraded. The sequences for the hGAPDH primers
were as follows: forward, 5=-CGGATTTGGTCGTATTGGGC-3=; reverse,
5=-TGGAAGATGGTGATGGGATTTC-3=.

Heterologous expression of Pjrtt109 in yeast. The BY4741 rtt109-
null (YLL002W, MATa his3�0 leu2�0 met15�0 ura3�0 rtt109�) S. cerevi-
siae strain was transformed with either a control vector (pYES2.1/V5-His/
lacZ) or pYES2.1 TOPO containing the in-frame full-length Pjrtt109
cDNA (pYES2.1/Pjrtt109). Expression of downstream Pjrtt109 cDNA was
under the control of the yeast GAL1 promoter, which can be induced with
the addition of 2% galactose to the medium. The parent strain BY4741
(MATa his3�0 leu2�0 met15�0 ura3�0) with pYES2.1/V5-His/lacZ was
used as the wild-type (WT) control. Cells were grown overnight at 30°C in
synthetic complete medium containing 2% glucose and supplemented
with appropriate amino acids but lacking uracil, to select and to maintain
the plasmids. S. cerevisiae strains were then grown overnight in liquid
minimal medium minus uracil and with 2% galactose in place of glucose.

Yeast whole-cell extracts were prepared using standard procedures. For
genotoxic sensitivity assays, yeast extracts were serially diluted to 1 � 106

cells/ml. We then plated 10 �l of serial 10-fold dilutions of the indicated
yeast strains onto solid minimal medium lacking uracil and containing
2% galactose. Alternatively, yeast extracts were plated onto solid minimal
medium lacking uracil and containing 2% galactose plus one of the fol-
lowing DNA-damaging agents: 1 �g/ml camptothecin (CPT), 50 mM
hydroxyurea (HU), or 0.005% methyl methanesulfonate (MMS). Cells
were grown for 72 h at 30°C and then assessed for growth by inspecting the
colony diameters.

Expression and purification of recombinant proteins. Recombinant
Schizosaccharomyces pombe Rtt109 (SpRtt109), PjRtt109, PcRtt109,
REG�, and glutathione S-transferase (GST) proteins were produced using
standard procedures (30, 31). Briefly, full-length cDNAs were amplified
from cDNA using Pfu DNA polymerase. Genes were further cloned into
the pGEX-4T1 vector, sequenced, and transformed into bacterial strain
BL21(DE3)pLys-S. GST-tagged proteins were produced overnight at
18°C by induction with 0.5 mM isopropyl �-D-1-thiogalactopyranoside.
Culture broths (typically 1 to 2 liters) were centrifuged, and cell lysates
were obtained by passing the suspended pellets through a French press in
lysis buffer supplemented with protease inhibitors. The resulting lysates
were sonicated briefly and then centrifuged to remove insoluble debris.
The proteins were collected onto glutathione-Sepharose beads (GE
Healthcare), washed, and then eluted with a standard glutathione gradi-
ent. Eluted proteins were dialyzed overnight at 4°C in protein storage
buffer containing 10% glycerol (vol/vol) and 1 mM dithiothreitol (DTT).
SDS-PAGE, followed by Coomassie brilliant blue (CBB) staining, was
used to verify gross protein purity and the correct molecular weights of the
purified proteins. Drosophila histone tetramers (dH3–H4) were obtained
as previously described (50). Bovine serum albumin (BSA) (Sigma) was
used as a negative protein control in some experiments.

Histone acetyltransferase assays. HAT activity was measured in vitro
as previously reported, but with some minor modifications (34, 51). Re-
actions were performed in triplicate at 30°C for 30 min in 30-�l volumes
containing final concentrations of 50 mM Tris-HCl (pH 8.0), 50 mM KCl,
0.1 mM EDTA, 1 mM DTT, 5 mM phenylmethylsulfonyl fluoride
(PMSF), 5 mM sodium butyrate, 0.01% Triton X-100 (vol/vol), and ap-
proximately 2.5 �M [3H]acetyl-coenzyme A (PerkinElmer). Enzymes
were tested at approximately 800 nM concentrations, while recombinant
dH3–H4 tetramers (1.25 �M) were used as the acetylation substrate. Re-
action mixture aliquots (15 �l) were immediately spotted onto Whatman
P-81 phosphocellulose paper filters (GE Healthcare) and air dried. Filter
papers were washed five times (5 min per cycle) with 50 mM NaHCO3

(pH 9.0), rinsed with acetone, and then allowed to air dry for 30 min.
[3H]Acetate incorporation was then measured with an LS6500 liquid
scintillation counter (Beckman-Coulter). Acetylated proteins were iden-
tified by autoradiography after the resolution of reaction mixture aliquots
on 15% SDS-PAGE gels. The gels were soaked in Amplify fluorographic
reagent (GE Healthcare) for 30 min and then dried under vacuum for 2 h
at 80°C. Films were then exposed to the gels at �80°C, typically for 48 h.
The acetylation status of H3K56 was assessed by Western blotting of re-
action samples as described above but using unlabeled acetyl-CoA (so-
dium salt, 10 �M final concentration; Sigma) from stocks stored in 0.01 M
sodium acetate (pH 5.0). Membranes were imaged with a LI-COR Odys-
sey system, and data were analyzed using Image Studio software (LI-COR
Biosciences). Purified REG� was used as a negative enzymatic control
(30). Purified GST was included as an additional tag control.

Protein complex assays. Protein complexes were assembled using stan-
dard procedures. S. cerevisiae Asf1 (ScAsf1) was produced as described
previously (52). To obtain the ScAsf1-dH3–H4 complex, approximately
equimolar amounts of ScAsf1 and dH3–H4 (as determined by SDS-PAGE
separation and subsequent CBB staining) were incubated overnight at 4°C
and purified by gel filtration chromatography (52). Experiments were
performed as described above, except that enzymes were tested at approx-
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imately 400 nM and HAT reactions were allowed to proceed for up to
30 min.

Compounds and reagents. Garcinol, a natural product with reported
anti-HAT activity in vitro, was purchased as a solid powder (Enzo Life
Sciences) and was used without further purification. Compound 1 (Pub-
Chem compound identification 4785700), which has recently been re-
ported to have selective activity against yeast Rtt109 in vitro, was also
obtained commercially as a solid powder (Enamine) and was used after
standard reverse-phase high-performance liquid chromatography (RP-
HPLC) purification (43). All solids showed greater than 98% purity in
ultra-performance liquid chromatography/mass spectrometry (UPLC/
MS) analyses, and their 1H and 13C NMR spectra were consistent with
their reported chemical structures. Compounds were prepared as 10 mM
stock solutions in dimethyl sulfoxide (DMSO) and were stored at �20°C
under a vacuum seal. The 1H NMR (400 MHz) and 13C NMR (100 MHz)
spectra were recorded on a Bruker Avance spectrometer, while the
UPLC-MS analyses were performed using a Waters Acquity UPLC system
equipped with a ZQ mass spectrometer, a photodiode array, and evapo-
rative light-scattering detectors.

Anti-HAT activity dose-response analyses. Garcinol and compound
1 were tested at up to 10 concentrations (final compound concentrations
of 20 nM to 250 �M) using the aforementioned [3H]acetyl-CoA in vitro
HAT assay, with some minor modifications (42). Briefly, test compounds
were allowed to preequilibrate with the enzyme (approximately 400 nM)
and histone substrate for 5 min at 30°C before the HAT reaction was
initiated with the addition of [3H]acetyl-CoA. Reactions were performed
in 60-�l total volumes. The DMSO content was kept constant at 3%
(vol/vol), and protease inhibitors were omitted from the reaction mix-
tures. The HAT reactions were allowed to proceed for 10 min, after which
reaction mixture aliquots were immediately spotted onto P-81 filter paper
and worked up as described above. Percent inhibition was calculated as a
percentage of the DMSO control value minus the background value.
Dose-response curves were generated in GraphPad Prism 6.0, using the
sigmoidal dose-response variable-slope four-parameter equation.

Effects of reported HAT inhibitors on Pneumocystis viability. Com-
pound 1 and garcinol were incubated with freshly isolated P. carinii organ-
isms maintained ex vivo in viability medium for 72 h. Relative viability was
assessed by measuring the ATP contents of the organisms using an ATP
bioluminescent assay, as described previously (53). The ATP assay mea-
sures the viability of mixed isolates of Pneumocystis trophic forms and
cysts. Approximately 5 � 107 organisms were tested under each condi-
tion, in RPMI 1640 medium containing 20% fetal bovine serum to pro-
mote viability. Each compound was tested in triplicate, and a total of three
independent experiments were performed using three separate isolations
of P. carinii organisms. As controls, P. carinii organisms were also main-
tained in medium alone, in medium containing 10 �g/ml ampicillin
(Sigma), or in medium containing the amount of DMSO diluent required
to solubilize the test agents. In addition, pentamidine isethionate (Sigma)
was tested at 1 �g/ml as a positive-control compound for anti-Pneumo-
cystis activity. The organisms were incubated at 37°C with 5% CO2 in
standard 24-well plates. After 72 h, equal volumes (50 �l) were removed
from each well, and the ATP levels were quantified using an ATPLite-M
kit (PerkinElmer).

Statistical analyses. All data are expressed as mean 	 standard devia-
tion. Differences between groups were determined using one-way analysis of
variance (ANOVA) and multiple-comparison tests. Graphing and statistical
testing were performed using GraphPad Prism, with statistical differences
considered significant at P values of �0.05, �0.01, and �0.001.

RESULTS
P. jirovecii expresses an Rtt109 gene orthologue. To address
whether P. jirovecii contains a potential Rtt109 HAT, we per-
formed an in silico search of the recently reported P. jirovecii ge-
nome (54, 55). A putative Pjrtt109 orthologue (GenBank acces-
sion number CCJ28444) was identified in a pairwise alignment

with PcRtt109 (GenBank accession number ACR39370.1), show-
ing 61% primary sequence conservation (Fig. 1, top). The moder-
ate divergence between these two closely related species is not unex-
pected, as several features in the mitochondrial DNA of P. murina and
P. carinii diverge from those of P. jirovecii (56), and this pattern of
sequence similarity has also been observed between P. carinii and
P. jirovecii dihydrofolate reductases (47, 57). In addition, there
appears to be significant genetic diversity at several regions among
P. jirovecii isolates, based on genetic analyses (58–61). The putative
PjRtt109 sequence showed several conserved regions in comparison
with other previously characterized fungal Rtt109 proteins, such as
those of Saccharomyces cerevisiae (GenBank accession number
Q07794), Schizosaccharomyces pombe (GenBank accession num-
ber Q9Y7Y5), and Candida albicans (GenBank accession number
Q5AAJ8) (Fig. 1, bottom). These regions included the aspartic
acid at amino acid position 84 in the conserved SKAD motif. Mu-
tations of this specific residue result in nearly complete abolish-
ment of in vitro H3 histone acetylation at the K56 position for both
PcRtt109 and S. cerevisiae Rtt109 (ScRtt109) (30, 34). As with
PcRtt109, the Pjrtt109 gene encodes a conserved lysine residue at
amino acid position 221, which is analogous to the site for auto-
acetylation in yeast Rtt109 (62, 63). Furthermore, P. murina
Rtt109 (GenBank accession number EMR10273) showed signifi-
cant homology to both PjRtt109 and PcRtt109 (data not shown).

Despite difficulties associated with studying Pneumocystis organ-
isms in the laboratory, additional evidence supports the idea that
Pjrtt109 is expressed by P. jirovecii. P. jirovecii organisms were
obtained from a BAL fluid sample from a patient with PcP, and
total RNA was extracted and amplified nonspecifically prior to
sequencing (54). A total of 56 RNA-sequencing reads mapped
unambiguously to the putative Pjrtt109 gene (http://www.ebi.ac
.uk/ena/data/view/ERP001479). Additionally, the Pjrtt109 gene
was present in the transcriptome assembly (HAAA01000299)
(http://www.ebi.ac.uk/ena/data/view/HAAA01000299), which was as-
sembled de novo using RNA-sequencing reads (O. Cissé, personal com-
munication).

With this information, we next sought to confirm the presence
of the putative Pjrtt109 gene in P. jirovecii organisms in vivo. To
accomplish this, we extracted P. jirovecii genomic DNA from BAL
fluid samples obtained from patients with confirmed cases of PcP
at the Mayo Medical Center. These Pneumocystis infections were
confirmed with our recently published single-copy nonnested
PCR assay that distinguishes active PcP from simple Pneumocystis
colonization (64). Primers based on the cDNA sequence of
Pjrtt109 were mixed with either P. jirovecii genomic DNA or hu-
man genomic DNA isolated from healthy human lung cells. As
expected, the Pjrtt109 primer set amplified a specific amplicon of
the expected size with P. jirovecii genomic DNA as the template
but not with human genomic DNA as the template (Fig. 2). As a
positive control for human DNA quality, we also included a
primer set based on the hGAPDH gene, which amplified an ex-
pected amplicon using human genomic DNA but not P. jirovecii
genomic DNA (Fig. 2). These results strongly support the idea that
P. jirovecii contains the Pjrtt109 gene and this gene is specifically
represented in the P. jirovecii genome.

Pjrtt109 restores H3K56ac levels and genotoxic resistance in
rtt109-null yeast. In S. cerevisiae, Rtt109 is required for H3K56ac
and is associated with genotoxic resistance due to its role in repli-
cation-coupled nucleosome assembly (34). Pneumocystis species
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cannot be maintained using in vitro culture methods and cannot
yet be manipulated genetically. To circumvent these issues, our
group assesses Pneumocystis gene function using heterologous ex-
pression and complementation in other fungi such as S. cerevisiae
(65, 66). In this manner, we evaluated the potential activities of
Pjrtt109 in complementing the H3K56 acetylation defect in
rtt109-null yeast by transforming this strain with either pYES2.1/
V5-His/lacZ alone or the same vector containing full-length
Pjrtt109. Western blots of yeast whole-cell extracts demonstrated that
rtt109-null yeast cells were unable to acetylate H3K56. In contrast,
Pjrtt109 cDNA complementation efficiently restored H3K56ac levels in
rtt109-null yeast to levels seen in WT yeast (Fig. 3A).

In addition, rtt109-null yeast demonstrated increased sensitiv-

FIG 2 Pjrtt109 primer set amplifies a specific amplicon from P. jirovecii (Pj)
genomic DNA but not human genomic DNA. hGAPDH, human glyceralde-
hyde-3-phosphate dehydrogenase.

FIG 1 PjRtt109 is an orthologue of PcRtt109 and is homologous to yeast and other fungal Rtt109 proteins involved in H3K56 acetylation. (Top) Pairwise
sequence alignment of PjRtt109 and PcRtt109. (Bottom) Multiple-sequence alignment of fungal Rtt109 histone acetyltransferases. Alignments were performed
using default CLUSTALW settings (MacVector 12.5.1). PNJIR, Pneumocystis jirovecii; PNCAR, Pneumocystis carinii; SCPOM, Schizosaccharomyces pombe;
SACER, Saccharomyces cerevisiae; CAALB, Candida albicans. Dark shading indicates identical residues, and light shading indicates similar residues; asterisks
denote similar residues in the consensus sequence.
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ity to genotoxins such as MMS, CPT, and HU (34, 35). As antici-
pated for a putative Rtt109 HAT, Pjrtt109 complementation re-
stored genotoxin resistance in rtt109-null yeast to the level in WT
yeast (Fig. 3B). Taken together, these data strongly indicate that
Pneumocystis-derived Pjrtt109 can function in promoting
H3K56ac and genotoxin resistance in budding yeast, supporting
the notion that PjRtt109 may perform similar functions in P. ji-
rovecii in vivo.

PjRtt109 is an active HAT in vitro. Based on the heterologous

expression experiments that demonstrated Pjrtt109 functionality
in vivo, we next sought to confirm the HAT activity of expressed
PjRtt109 protein in vitro. Purified PjRtt109 protein demonstrated
HAT activity comparable to that of its orthologue PcRtt109 in an
in vitro [3H]acetyl-CoA HAT assay that quantified the amount of
[3H]acetate incorporated into histone substrates (Fig. 4A). Auto-
radiographs of the reaction mixtures demonstrated that histone
acetylation was confined to histone H3 and not histone H4, con-
sistent with the known substrate profiles of previously character-

FIG 3 Heterologous expression of Pjrtt109 restores H3K56ac levels and genotoxic resistance in rtt109-null yeast. (A) Complementation of rtt109-null yeast with
Pjrtt109 restores H3K56ac, as assessed by Western blots of yeast whole-cell extracts. WT, wild-type strain plus control vector; �, rtt109-null strain plus control
vector; PJ, rtt109-null strain plus Pjrtt109 cDNA. (B) Complementation of rtt109-null yeast with Pjrtt109 restores genotoxic resistance, as assessed by the growth
of yeast on solid medium. Tenfold serial dilutions of S. cerevisiae were spotted on minimal medium (with 2% galactose minus uracil [�URA]) alone or with the
addition of MMS, CPT, or HU.

FIG 4 PjRtt109 is an active HAT in vitro. (A) PjRtt109, expressed as a GST-fusion protein, shows in vitro HAT activity comparable to that of PcRtt109.
���, P � 0.001, compared with the REG� negative control. Shown are representative results from a single experiment, with similar results being obtained
in at least two other independent experiments. (B) Reaction mixture aliquots, as shown in panel A, were resolved by SDS-PAGE and stained with CBB to
demonstrate equal substrate and enzyme contents. Autoradiographs (AR) reveal that Rtt109-catalyzed histone acetylation is detected only on H3 and not
on H4. (C) Western blot analysis of reaction mixture aliquots shows that PjRtt109, like PcRtt109, catalyzes H3K56ac in vitro. Equal substrate contents
were verified with Ponceau S staining and Western blotting for H3. (D) PjRtt109 and SpRtt109 have similar HAT activities in vitro. (E) SDS-PAGE and
CBB staining of reaction mixture aliquots, as shown in panel D, show equal protein contents. Autoradiographs show that PjRtt109 and PcRtt109 similarly
catalyze the acetylation of H3, and H4 acetylation was not detected. (F) PjRtt109 and SpRtt109 both catalyze H3K56ac in vitro, as assessed by Western
blotting. Equal substrate contents were verified with Ponceau S staining and anti-H3 Western blotting. (G) An extended-exposure autoradiograph using
reaction mixture aliquots as shown in panel A demonstrates low levels of PjRtt109 autoacetylation (arrow).
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ized Rtt109 enzymes (Fig. 4B). Western blots verified that
PjRtt109 catalyzed H3K56ac in vitro (Fig. 4C). To show that
PjRtt109 was homologous to fungal Rtt109 HATs outside the
Pneumocystis genus, the HAT activities of Pneumocystis jirovecii
Rtt109 and Schizosaccharomyces pombe Rtt109 were also com-
pared in vitro (30, 52, 67). The recombinant enzymes demon-
strated comparable HAT activities (Fig. 4D). Autoradiographs
(Fig. 4E) and Western blots (Fig. 4F) showed that both Rtt109
proteins catalyzed acetylation on histone H3 and both proteins
were capable of acetylating H3K56 in vitro. Autoacetylation is an
important regulatory element in ScRtt109 (62, 63), and low-level
autoacetylation has been observed for PcRtt109 (30). As expected,
we observed a band consistent with PjRtt109 autoacetylation us-
ing extended-exposure autoradiographs, demonstrating that au-
toacetylation is likely a conserved feature of Rtt109 HATs (Fig.
4G). These results demonstrate that PjRtt109 possesses functional
Rtt109 HAT activity in vitro and that this activity is comparable to
that of other fungal Rtt109 HATs. Such information is vital for the
eventual development of Rtt109 inhibitors with the potential for
therapeutic activity across a variety of clinically relevant fungal
species that infect humans, such as P. jirovecii.

PjRtt109 HAT activity is enhanced by the histone chaperone
Asf1 in vitro. Rtt109 is subject to complex regulation by histone
chaperones both in vitro and in vivo. One such chaperone, Asf1,
enhances the in vitro HAT activity of Rtt109 in both yeast and P.
carinii (30, 31, 52, 68) and is required for H3K56ac in vivo (35).
The addition of recombinant ScAsf1 to dH3–H4 tetramers signif-
icantly enhanced PjRtt109-catalyzed HAT activity in vitro (Fig.
5A). As expected, autoradiography confirmed that the enhanced
acetylation was confined to histone H3 and not ScAsf1 or histone
H4 (Fig. 5B). Western blots confirmed that this ScAsf1-mediated
increase in PjRtt109-catalyzed histone acetylation in vitro led to an
increase in H3K56ac (Fig. 5C). These results demonstrate that,
like previously characterized Rtt109 HATs, PjRtt109 HAT activity
in vitro is enhanced by the histone chaperone Asf1.

PjRtt109 HAT activity is inhibited by small molecules in
vitro. Currently, there are no reports of small molecules that specif-
ically inhibit PjRtt109 or PcRtt109 activity. In the absence of such
compounds, we examined the effects of several previously reported
HAT inhibitors on PjRtt109 enzymatic activity in vitro. Garcinol is a
polyisoprenylated benzophenone natural product that is reported to
inhibit several HATs, including p300/CBP-associated factor (PCAF)
and p300, in the low micromolar range in vitro (69, 70). We recently
showed that garcinol inhibits PcRtt109 HAT activity and yeast
Rtt109-Vps75 in vitro at low micromolar concentrations (31, 42). Of
note, we observed that garcinol inhibited PjRtt109 HAT activity in
vitro in a dose-dependent manner (IC50, 2.7 	 0.72 �M) (Fig. 6A and
B). Compound 1 has been recently reported as a low-nanomolar
inhibitor of yeast Rtt109 in vitro and does not inhibit the HATs p300
and GCN5 in vitro (43). Like garcinol, compound 1 showed dose-
dependent inhibition of PjRtt109 HAT activity in vitro (IC50, 4.3 	
3.9 �M) (Fig. 6A and B). Fluconazole, an inhibitor of fungal cyto-
chrome 14�-demethylase with no reported activity against HATs,
was used as a negative-control compound. Both garcinol and com-
pound 1 inhibited PjRtt109 and PcRtt109 at low micromolar concen-
trations (Fig. 6B). Using the reaction mixtures for garcinol, we con-
firmed dose-dependent decreases in histone acetylation via
autoradiography (Fig. 6C) and Western blotting for both H3K56ac
and H3K27ac (Fig. 6D). These results demonstrate that PjRtt109 is
capable of in vitro enzymatic inhibition by small molecules at low

micromolar concentrations and that PjRtt109 and PcRtt109 are in-
hibited at similar compound concentrations under the conditions
tested.

Effects of small-molecule inhibitors of HAT activity on
Pneumocystis viability. Finally, as support of the concept, we
sought to investigate whether these reported small-molecule inhibi-
tors of HAT activity might also alter Pneumocystis viability in vivo,
using a previously described ATP-based viability assay (53). To
investigate, we utilized freshly isolated P. carinii organisms, since
these are readily available in the laboratory and because our prior
experiments demonstrated comparable activities of the tested
HAT inhibitors against PcRtt109 and PjRtt109 in vitro. Interest-
ingly, the general HAT inhibitor garcinol demonstrated dose-de-
pendent suppression of P. carinii viability, as measured by ATP

FIG 5 PjRtt109 HAT activity is enhanced by the histone chaperone Asf1 in
vitro. (A) PjRtt109 HAT activity in vitro is enhanced by the addition of ScAsf1.
���, P � 0.001, pairwise comparisons between the dH3–H4 and ScAsf1-
dH3–H4 substrates for each enzyme or pairwise comparisons with the REG�
negative controls. Shown are representative results from a single experiment,
with similar results being obtained in at least two other independent experi-
ments. (B) Autoradiography of reaction mixture aliquots, as shown in panel A,
demonstrates that acetylation is detected only on H3 and not on H4 or ScAsf1.
Equal substrate histone contents were verified by CBB staining. (C) Western
blotting of reaction mixture aliquots analogous to those shown in panel B
versus H3K56ac, using nonradiolabeled acetyl-CoA as the substrate, was per-
formed. Equal histone substrate contents were verified by Ponceau S staining
and Western blotting.
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contents (Fig. 7). In contrast, the recently reported yeast Rtt109
inhibitor compound 1 failed to induce any reductions of P. carinii
viability under the conditions tested. Pentamidine and ampicillin
served as positive- and negative-control compounds, respectively.
The lack of observed activity for compound 1 is consistent with its
lack of activity against C. albicans in vivo (43). However, the activ-
ity of the reported HAT inhibitor garcinol to suppress Pneumo-
cystis viability does support the further investigation of this class of
agents, as well as novel small molecules with more drug-like char-
acteristics, potency, and target specificity, as potential antifungal
antimicrobials with activity against Pneumocystis species.

DISCUSSION

In the current study, we demonstrate that P. jirovecii contains a func-
tional Rtt109 orthologue with functions parallel to those exhibited by

PcRtt109, which is an important early characterization step in the
drug discovery process. We first identified the putative PjRtt109 or-
thologue by using a recently published P. jirovecii genome. We then
showed that a Pjrtt109-specific primer set specifically amplified a
product of the expected size when P. jirovecii genomic DNA was used
as the template but not when human genomic DNA was used, which
demonstrates that this gene is contained within the P. jirovecii ge-
nome. Because P. jirovecii cannot be cultured in vitro, we utilized
heterologous expression to show that Pjrtt109 restores genotoxin re-
sistance and H3K56ac in rtt109-null yeast, which demonstrates its
functional importance as an Rtt109 HAT in this surrogate in vivo
system. We were further able to synthesize full-length Pjrtt109 cDNA
to study the function of recombinantly expressed PcRtt109 protein.
We verified that PjRtt109 has HAT activity in vitro, comparable to
that of its orthologue PcRtt109 and another fungal Rtt109, namely,
SpRtt109. As in previous reports describing PcRtt109, the HAT activ-
ity of PjRtt109 was enhanced by the addition of the yeast histone
chaperone Asf1, a salient feature of the well-characterized Rtt109-
Vps75-Asf1 system in yeast. Finally, since small-molecule inhibition
of Rtt109-catalyzed histone acetylation is hypothesized to be a poten-
tial novel epigenetically based antifungal therapy, we showed that the
reported HAT inhibitors garcinol and compound 1 can inhibit
PjRtt109 activity in vitro and these compounds inhibited PcRtt109
and PjRtt109 HAT activity comparably in vitro. Interestingly, gar-
cinol, but not compound 1, also suppressed the viability of Pneumo-
cystis organisms maintained ex vivo in viability medium.

Our observation that garcinol inhibits PjRtt109 and PcRtt109 as
well as other HATs raises interesting follow-up questions about the
target specificity of this natural product, its mechanism(s) of enzy-
matic inhibition, and its utility for additional in vivo studies. Garcinol
has been reported to inhibit Pneumocystis and yeast Rtt109, as well
as the HATs p300, PCAF, and GCN5, at low micromolar concen-
trations in vitro. It has also been reported to inhibit completely
unrelated enzymes in vitro (71). This behavior may be explained
by the chemical structure of garcinol, which contains an ortho-
catechol group that has the potential to oxidize to form a thiol-

FIG 6 Reported small-molecule HAT inhibitors can inhibit PjRtt109 activity
in vitro. (A) Inhibition of PjRtt109 activity by the reported HAT inhibitors
garcinol (IC50, 5.9 �M) and compound 1 (IC50, 1.7 �M). Shown are represen-
tative results from a single experiment. (B) Comparison of IC50s for the com-
pounds from panel A versus PjRtt109 and PcRtt109, tested under similar con-
ditions. Values represent the average and standard deviation of three
independent experiments. (C) Autoradiography of reaction mixture aliquots
from panel A, confirming dose-dependent inhibition by garcinol of PjRtt109-
catalyzed histone acetylation in vitro. Equal histone substrate contents were
verified by CBB staining. (D) Western blot confirmation of dose-dependent
inhibition by garcinol of PjRtt019-catalyzed H3K56ac and H3K27ac in vitro.
Reaction mixture aliquots are analogous to those shown in panel C except that
nonradiolabeled acetyl-CoA was used as the substrate. Equal histone substrate
contents were verified by Ponceau S staining (representative membrane
shown).

FIG 7 Effects of HAT inhibitors on Pneumocystis viability. Freshly isolated P.
carinii organisms were maintained ex vivo for 72 h in test medium, and organ-
ism viability was determined by relative ATP contents. Ampicillin (10 �g/ml)
and pentamidine (1 �l/ml) were included as relevant negative- and positive-
control compounds. The reported pan-HAT inhibitor garcinol exhibited a
significant dose-dependent reduction in P. carinii viability. In contrast, the
recently described Rtt109 inhibitor compound 1 failed to alter P. carinii via-
bility under the conditions tested. A DMSO diluent control was also used.
Shown are the results of three independent experiments. �, P � 0.05, com-
pared with control ATP levels without test agent.
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reactive ortho-quinone (72). Being aware of this possibility, we
have so far been unable to detect the presence of glutathione-
garcinol adducts by UPLC-MS, although we admit that this does
not definitively exclude the possible formation of these adducts
(data not shown). Garcinol also can induce apoptosis, inhibit can-
cer cell growth, and modulate several important signaling path-
ways and has been shown to exert some protective effects (73–78).
With regard to potential mammalian toxicity, garcinol has been
studied in several animal experiments, in which it showed certain
chemoprotective effects and was relatively well-tolerated by ro-
dents (79–81). The overall in vitro data are consistent with gar-
cinol being a relatively nonselective inhibitor, and this property
may coincide with its ability to inhibit cancer cell growth in vitro.
Given its in vitro activity profile and the relatively high concentra-
tions used in our fungal viability assays, we cannot exclude the
possibility of off-target effects contributing to the reduced viabil-
ity of Pneumocystis upon exposure to garcinol. Therefore, we
think that garcinol is not ideal for further in vivo experiments in its
present form, because of its potential for off-target effects and the
need for more-definitive mechanistic studies. More specific and
potent chemical probes for HATs like Pneumocystis Rtt109 would
be useful to better assess our therapeutic hypothesis in a cellular
setting.

This demonstration that both PjRtt109 and PcRtt109 are func-
tional HAT orthologues is significant for early Rtt109 drug discov-
ery efforts for several reasons. First, it demonstrates that func-
tional Rtt109 HATs are conserved across fungi. Second, it verifies
that, in the absence of P. jirovecii culture systems, P. carinii may
serve as an entirely suitable surrogate model for studying the
Rtt109 system in the laboratory setting. In addition, the observa-
tion that reported small-molecule HAT inhibitors can disrupt
PjRtt109 activity in vitro suggests that inhibitors developed for one
species of Rtt109 may inhibit homologues across a variety of other
fungal species, indicating that such a strategy may benefit a wide
range of fungal infections. The discovery and development of
more-potent small molecules targeting Rtt109 HATs will be useful
to more rigorously address this speculation. Finally, our findings
support further target characterization and drug development ef-
forts with respect to PjRtt109, a potential epigenetic therapeutic
target with clinical relevance as the specific cause of human PcP.

This study strongly validates the use of the P. carinii system for
preclinical work of relevance for drug development eventually tar-
geting human disease caused by P. jirovecii. We recently charac-
terized the Rtt109-Vps75-Asf1 system in P. carinii, showing that
PcRtt109 restores genotoxic resistance and H3K56ac levels in
rtt109-null yeast. This system verifies many of the features found
in the well-characterized S. cerevisiae and S. pombe Rtt109-Vps75-
Asf1 systems in vitro, such as HAT activity being enhanced by the
histone chaperone Asf1. As Rtt109 is conserved in fungi but not in
mammals, specific inhibitors of Rtt109-catalyzed histone acetyla-
tion may eventually prove useful as novel antifungal targets across
a number of relevant infections, including P. jirovecii-related
pneumonia.

It is noteworthy that the general HAT inhibitor garcinol also
reduced the in vitro viability of Pneumocystis organisms. Inter-
estingly, the recently reported specific Rtt109 inhibitor compound
1 did not exhibit any suppression of Pneumocystis viability. Similar
findings were noted when this compound was tested previously
against C. albicans (43). There are several possible reasons for our
observations, including possibly poor penetration of compound 1

into the fungal cytoplasm, the presence of active rapid export pro-
teins that may limit internal accumulation of this agent, or com-
pound instability under the testing conditions. Nonetheless, the
wide presence of Rtt109 proteins across pathogenic fungi, the di-
vergence from mammalian host HAT proteins, and our initial
results on such agents reducing Pneumocystis viability continue to
support additional searches for more-selective anti-Rtt109 agents
that may be of therapeutic benefit for fungal infections in humans,
including P. jirovecii pneumonia.
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