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Abstract

Use of granulocyte colony stimulating factor (G-CSF)–mobilized peripheral blood hematopoietic

progenitor cells (HPC) has largely replaced bone marrow (BM) as a source of stem cells for both

autologous and allogeneic cell transplantation. With G-CSF alone, up to 35% of patients are

unable to mobilize sufficient numbers of CD34 cells/kg to ensure successful and consistent multi-

lineage engraftment and sustained hematopoietic recovery. To this end, research is ongoing to

identify new agents or combinations which will lead to the most effective and efficient stem cell

mobilization strategies, especially in those patients who are at risk for mobilization failure. We

describe both established agents and novel strategies at various stages of development. The latter

include but are not limited to drugs that target the SDF-1/CXCR4 axis, S1P agonists, VCAM/

VLA-4 inhibitors, parathyroid hormone, proteosome inhibitors, Groβ, and agents that stabilize

HIF. While none of the novel agents have yet gained an established role in HPC mobilization in

clinical practice, many early studies exploring these new pathways show promising results and

warrant further investigation.
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Introduction

Hematopoietic cell transplantation is an important and often life-saving treatment for many

hematological malignancies and select solid tumors as means of reconstitution of blood cells

following high dose chemotherapy.1-5 Use of granulocyte colony stimulating factor (G-

CSF)-mobilized peripheral blood stem cells (PBSC) has largely replaced bone marrow (BM)

as a source of stem cells for both autologous and allogeneic cell transplantation. In spite of

the increased number of CD34+ stem cells obtained after G-CSF mobilization compared to
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BM harvests, one still needs to obtain a minimum number of CD34/kg (~ ≥2 × 106) to

ensure successful and consistent multi-lineage engraftment and sustained hematopoietic

recovery.

The dose of CD34+ cells infused is an important predictor of both neutrophil and platelet

engraftment. For autologous stem cell transplantation (ASCT), an optimal CD34+ cell dose

which leads to rapid and sustained recovery is thought to be >5 × 106/kg.6,7 On the other

hand, 2 × 106 CD34+ cells/kg is accepted as the minimum threshold below which consistent

and rapid multilineage engraftment, especially of platelets, may not take place.

For allogeneic stem cell transplants (AlloSCT), a CD34+ cell dose ≥4.2 – 4.5×106/kg is

associated with improved overall survival in the matched unrelated donor setting, without

increased risk of acute or chronic graft vs. host disease (GVHD), while higher doses (>8-14

× 106 cells/kg) have been associated with increased risk of GVHD.8,9 Likewise, higher

CD34+ cell doses (>9.1 × 106) have also been associated with increased risk of chronic

GVHD after reduced intensity AlloSCT from HLA-matched siblings. 10

The success of stem cell mobilization is also dependent on both the total dose and the type

of chemotherapy as well as radiation administered prior to autologous stem cell collection

(Table 1). Studies have identified multiple chemotherapeutic agents which increase the risk

of poor stem cell mobilization, including melphalan,11 Lenalidomide,12,13 Fludarabine,14,15

Chlorambucil, 16 Carmustine,17 Hyper-CVAD 18 and DHAP.19

A limited BM reserve as indicated by a low platelet count prior to mobilization,20-23 low

bone marrow cellularity,20 baseline low peripheral blood CD34+ numbers,24 and age 25 are

other risk factors for poor PBSC mobilization. Diabetes mellitus and impaired glucose

tolerance have recently been identified as independent risk factors for poor

mobilization.26-28 The mechanisms underlying these observations remain enigmatic but are

thought to be related to a baseline low peripheral CD34+ cell count in these patients 27 and

direct alteration of the hematopoietic niche via a sympathetic denervation syndrome

associated with diabetes mellitus.28

Bone Marrow Niche

The BM niche is a highly organized microenvironment which anchors HSCs and regulates

their self-renewal, proliferation and trafficking (Figure 1). Structurally, the niche is formed

by supporting cells that engage in direct cell-cell interaction with stem cells and provide

chemical signals that support their survival. 29,30

The niche has been subdivided into vascular and endosteal compartments. Within the

vascular niche, sinusoidal endothelial cells and nestin+ mesenchymal stem cells (MSC)

express adhesion molecules such as vascular cellular adhesion molecule 1 (VCAM-1),

which binds to HSC receptor α4β1, and stem cell factor (SCF), which binds c-kit on HSC

surface. Depletion of nestin+ MSCs increases mobilization of bone marrow HSC toward

extramedullary sites and decreases homing of the PBSC to the BM.31 Nestin+ MSCs within

the vascular niche associate closely with the adrenergic fibers of the sympathetic nervous

system (SNS). Release of SNS neurotransmitters induces metalloproteinase MT1-MMP
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expression and MMP-2 activity,32 which then mediate the cleavage of important tethers

(CXCR4, VLA4, VCAM-1, SCF) holding the HSC in the BM niche, thus promoting HSC

egress from the bone marrow.33-35

In addition to these interactions, the binding of stromal derived factor-1 (SDF-1, also known

as CXCL-12) to its receptor (CXCR4) on HSC plays a key role in the HSC retention within

the bone marrow.36 SDF-1 is produced predominantly by reticular cells termed CXCL-12

abundant reticular cells (CAR) 37 but also by nestin+ MSCs and osteoblasts.38

The endosteal niche is located closer to the trabecular or cortical bone and is composed of

osteoblasts and osteoclasts. Osteoblasts produce several factors, including angiopoetin 1

(Ang-1), which promotes tight adhesion of HSCs to the niche,39 and thrombopoietin (TPO),

which has been shown to mediate HSC quiescence.40 Recent studies have also described the

importance of niche macrophages in the expression of various HSC retention factors,

including CXCL-12.41-43

HSC maintenance, proliferation, differentiation, and egress is a balanced process achieved

through tight homeostatic neural and hormonal regulation. The release of progenitor cells

from the bone marrow to the peripheral blood occurs constitutively at a very low level 44 but

is amplified at times of stress.45

Standard Approach to Hematopoietic Stem Cell Mobilization (Table 2)

Granulocyte Colony Stimulating Factor

G-CSF remains the most commonly-used agent for HSC mobilization in the clinic. Several

mechanisms have been proposed to explain how this cytokine affects functional changes

within the bone marrow, resulting in stem cell mobilization. These include the promotion of

granulocyte expansion and both protease-dependent and independent attenuation of adhesion

molecules and disruption of the SDF-1/CXCR4 axis.33,34,46-49 Levesque et al described

release of proteolytic enzymes, neutrophil elastase (NE) and cathepsin G (CG), in mice

following administration of G-CSF. These enzymes have been shown to cleave various

molecules responsible for HSC retention in the bone marrow, including VCAM-1, 34,47

SDF-1 and CXCR4 35,46 and c-Kit.50 G-CSF has also been shown to reduce SDF-1 mRNA

expression and inhibit osteoblast activity, leading to a decrease in the SDF-1 levels. 51

Several studies in the mid 1990’s established the role of G-CSF in HSC mobilization for

autologous stem cell rescue. These studies found that when compared with transplantation of

BM HSCs, transplantation with G-CSF-mobilized PB HSCs resulted in greater stem cell

yields, reduced time to platelet and neutrophil recovery, reduced requirements of post-

transplant platelet transfusions,52,53 and slight reduction in the length of hospitalization.53

Similar to mobilization of autologous HSC, mobilization of allogeneic HSC with G-CSF

resulted in faster neutrophil and platelet engraftment 54-57 which translated to modest

reduction in the overall costs in some reports.55

The most commonly used dose of G-CSF is 10 μg/kg/day given by subcutaneous injection,

with leukapheresis starting on day 5. Both G-CSF and stem cell collection are continued

daily until an adequate HSC count is collected. In patients with plasma cell myeloma and
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non-Hodgkin lymphoma (NHL) who tend to be a heavily pretreated group, mobilization

with G-CSF alone has been reported to result in a mobilization failure rate (defined as

<2×106 cells/kg after 3-5 days of apheresis) of up to 23%. In order to improve the stem cell

yield and reduce the number of apheresis sessions required, both the novel agents and

chemotherapy have been combined with G-CSF in heavily pre-treated patients. Some of this

data will be discussed below.

Granulocyte- Macrophage Colony Stimulating Factor (GM-CSF)

GM-CSF (sargramostim, Leukine, Bayer Healthcare Pharmaceuticals, Seattle, WA, USA)

plays a very limited role in HSC mobilization today. GM-CSF mobilized significantly fewer

CD34+ cells than G-CSF in healthy subjects.58 Moreover, in patients with NHL,

mobilization with GM-CSF resulted in a lower CD34+ cell yield than mobilization with G-

CSF.59 GM-CSF mobilization yields smaller numbers of CD34+ cells but a higher

percentage of CD14+ monocytes, dendritic cells and CD4+ CD25+ regulatory T cells,60

which modulate the immune system and have the potential to lower the rates of acute

GVHD. However, only limited evidence is available suggesting the correlation between

GM-CSF and lower rates of acute GVHD in patients.61

Plerixafor

SDF-1/CXCR4 interaction plays a key role in HSC quiescence and retention within the bone

marrow.62,63 Plerixafor (Mozobil, AMD3100) is a bicyclam molecule which reversibly

inhibits SDF-1 binding to CXCR4, promoting HSC mobilization. Plerixafor is approved to

be used in combination with G-CSF for stem cell mobilization in patients with myeloma and

lymphoma.

In a phase I study, Devine et al showed that a single subcutaneous injection of Plerixafor

resulted in a 6-fold increase in the circulating CD34+ cells in patients with NHL and

myeloma.64 The first phase II study of Plerixafor compared safety and efficacy of

mobilization with Plerixafor and G-CSF to G-CSF alone.65 G-CSF was administered at 10

μg/kg for 5 days followed by apheresis on day 5. Plerixafor was administered

subcutaneously at 160-240 μg/kg on days 4 or 5, 6 hours prior to apheresis. The study

demonstrated the superiority of the combination regimen, which mobilized up to 50% more

CD34+ cells and reduced the number of apheresis procedures required to reach the

minimum and optimal doses of CD34+ cells compared to G-CSF alone.

Several additional phase II studies established the efficacy of plerixafor in heavily pretreated

patients with NHL, Hodgkin lymphoma (HL) and myeloma.66-69 In one such study,66 22

transplant-eligible patients with HL underwent mobilization with a combination of G-CSF

10 μg/kg daily and plerixafor 240 μg/kg subcutaneously, 10-11 hours prior to apheresis.

Fifteen patients (68%) collected ≥5×106 CD34+ cells/kg while 21 patients (95%) achieved

the minimum threshold of ≥2×106 CD34+ cells in a median of 2 apheresis sessions. These

results were superior to those of 98 consecutive historical controls with HL at the

investigating institution, 22% of whom had failed to achieve a minimum collection of 2×106

CD34+ cells in fewer than 5 apheresis procedures and only 15% of whom had collected

>5×106 CD34+ cells/kg. In another study, a combination of G-CSF and Plerixafor led to
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successful HSC mobilization in 18 of 20 transplant-eligible patients who had failed prior

mobilization attempts.67 Seventeen of these patients required only one apheresis procedure

to collect the adequate numbers of CD34+ cells.

Two phase III, multicenter, randomized, double-blinded, placebo-controlled studies

established the superiority of plerixafor plus G-CSF over G-CSF alone in patients with NHL

and myeloma.70,71 In the NHL trial,70 the primary endpoint of ≥5 × 106 CD34+ cells was

reached in 59% of patients in the combination arm compared with 20% in the G-CSF plus

placebo arm. Likewise, 130/150 (87%) patients in the combination arm achieved the

secondary end-point of ≥2 × 106 CD34+ cell compared with only 70/148 (47%) in the G-

CSF plus placebo arm (p < 0.001). Median time to engraftment was similar in both groups

and the combination was well tolerated. In the myeloma trial,71 71.6% (106/148) of patients

in the plerixafor plus G-CSF group met the primary endpoint of collecting ≥6 × 106 CD34+

cells/kg in ≤2 aphereses. Primary endpoint was met in only 34.4% (53/154) of patients in the

G-CSF-alone group.

Allogeneic Stem Cell Transplantation—Plerixafor was also tested in healthy sibling

donors in the setting of allogeneic stem cell transplantation.72 A single injection of

Plerixafor 240 μg/kg subcutaneously followed by leukapheresis 4 hours later. yielded a

minimum goal of 2 × 106 CD34+ cells/kg of recipient body weight in 66% (17/25) after a

single 20 liter apheresis. The goal number of CD34+ cells was collected in 91% (22/24) of

donors after 2 leukapheresis sessions. Engraftment was multilineage and stable without any

episodes of primary or late graft failure. Actuarial rates of acute and chronic GVHD were

also acceptable and slightly lower but not statistically lower than matched sibs receiving G-

CSF-mobilized allografts. Several recent trials have been initiated at Washington University

and through the Center for International Blood and Marrow Transplant Research (CIBMTR)

to assess the toxicities and efficacy of intravenous Plerixafor for mobilization of normal

donors for allogeneic stem cell transplantation. The results of the trial at Washington

University were recently presented and suggest similar kinetics and magnitude of stem cell

mobilization by intravenous vs. subcutaneous Plerixafor.73

Timing of Apheresis with Plerixafor—Initial pharmacokinetic studies in healthy

volunteers demonstrated peak PB CD34+ counts 9 hours following subcutaneous Plerixafor

240 μg/kg.74,75 Peak effect of Plerixafor occurred at 10 hours when administered in

combination with G-CSF in healthy volunteers.76 Further studies in patients with lymphoma

and myeloma revealed similar results when plerixafor was combined with G-CSF.77 A

recent study examined the optimal timing of leukapheresis in patients who had failed at least

two prior HSC mobilizations without Plerixafor. These patients were treated with daily G-

CSF 10 μg/kg/day for 5 days, followed by a single subcutaneous injection of plerixafor 240

μg/kg on day 5. Serial PB CD34+ cell counts were obtained every 3 hours, and apheresis

was initiated when the CD34+ cell count reached 10 × 106 CD34+ cells/kg. The goal

number of PB CD34+ cells was reached as early as at 3 hours following Plerixafor dose and

began to decline at 8-12 hours, suggesting the need for earlier monitoring of PB CD34+

cells in poor mobilizers.78
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Cost—High cost associated with plerixafor has restricted its universal use. Several

institutions have developed risk-adapted algorithms for optimal utilization of the drug, in

which plerixafor is administered only to those patients who are at high risk for mobilization

failure.79-84 The latter has been defined by a predetermined PB CD34+ count threshold,

below which continuation of G-CSF-only mobilization is unlikely to yield adequate CD34+

cell numbers. In general, PB CD34+ count of <10-15 × 106/L of blood following at least 4-5

days of mobilization with G-CSF alone has been used.

Maziarz and colleagues performed a post hoc retrospective analysis of the landmark phase

III study which established superiority of mobilization with Plerixafor and G-CSF over G-

CSF alone in patients with NHL.70 They examined mobilization outcomes in the two

treatment arms in patients stratified by PB CD34+ cell count (<5, 5-9, 10-14, 15-19 or ≥20

CD34+ cells/μL) as measured following 4 days of mobilization with G-CSF alone. The

probability of transplantation without a rescue mobilization in plerixafor-treated patients

was the greatest in groups with PB CD34+ cell counts of <5, 5-9, and 10-14.84

Such just-in-time approaches have been shown to increase minimum and optimal CD34+

yield, decrease mobilization failures and the number of apheresis days and limit costs

associated with repeat mobilizations. In addition, such strategies enhance engraftment and

decrease transfusions in poor mobilizers.

Stem Cell Factor

Stem cell factor is a hematopoietic growth factor also known as c-kit ligand (KITL), which

is produced by endothelial cells and perivascular stromal cells in the bone marrow niche.

Differential splicing of SCF leads to the soluble and membrane-bound forms of the protein,

the latter of which is important in HSC maintenance.85 Membrane-bound SCF exerts its

action by binding to c-kit, a tyrosine kinase receptor expressed on normal hematopoietic

cells.86 This interaction activates multiple downstream signals, including VLA-4-mediated

BM HSC adhesion in humans.87 C-Kit receptor may be proteolytically cleaved from the

surface of hematopoietic cells and circulate as s-Kit in normal human plasma. Binding of

circulating s-Kit to SCF on HSC surface blocks c-Kit/SCF interaction,88 which may be

exploited in stem cell mobilization.

A recombinant human SCF (Ancestim: Stemgen, Amgen INC, Thousand Oaks, CA, USA)

used in combination with G-CSF has been shown to increase stem cell yield in poor

mobilizers.89-97 More recently, a retrospective analysis from France examined a cohort of

550 patients who had failed prior mobilization with G-CSF or a combination of G-CSF and

chemotherapy. The group consisted of myeloma, non-Hodgkin and Hodgkin lymphoma,

refractory chronic lymphocytic leukemia and select solid tumor patients. Ancestim

administered in combination with G-CSF with or without chemotherapy led to reaching a

target threshold of >2 × 106 CD34+ cells/kg in 31% of patients.98 Injection site reactions

due to Ancestim have been observed in vast majority of patients across studies. More severe

reactions resulting from widespread mast cell degranulation are rare but have limited the use

of this agent. Acestim is approved for use in Canada and New Zealand but is not currently

available in the United States.
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Chemotherapy

Chemotherapy is commonly used for stem cell mobilization in autologous stem cell

transplantation. Specific agents chosen are generally disease-specific, used to both reduce

the tumor burden and enhance mobilization.

Cyclophosphamide (CY) is the most commonly used chemotherapeutic agent and has been

tested at various doses. In myeloma patients treated with conventional chemotherapy,

mobilization with high dose CY (7 g/m2) led to greater toxicity without clear evidence of

superiority when compared with intermediate (3-4 g/m2) and low doses (1-2 g/m2). 99,100

Comparison of low and intermediate doses has yielded conflicting results. In one study,

these two regimens produced a similar PB HSC yield when combined with G-CSF, but the

intermediate dose was associated with higher toxicity.101 However, in patients in whom

tandem transplantation was planned, intermediate dose CY mobilized more effectively and

in fewer apheresis sessions than the low dose.102 One retrospective analysis comparing the

two regimens in patients treated with novel induction therapies (immunomodulatory agents

and proteasome inhibitors) found more mobilization failures with the low-dose regimen.103

In lymphoma, combination chemotherapy is commonly used for stem cell mobilization in

autologous stem cell transplantation setting. Regimens include DHAP,104 ESHAP,105-107

combination of CY, G-CSF, and etoposide 108 and a combination of ifosphamide, epirubicin

and etoposide,109 among others.

Novel or Experimental Agents (Table 3)

Alternative drugs that target the SDF-1/CXCR4 axis

As reviewed by Rettig et al, alternative drugs that modulate the SDF-1/CXCR4 axis have

shown promising results in early human studies.110 POL6326 (Polyphor, Allschwil,

Switzerland) is a synthetic cyclic peptide which reversibly inhibits CXCR4. In a phase I

study in healthy volunteers, this agent was well-tolerated and effective. Early results of an

ongoing phase II study in newly diagnosed myeloma patients indicate sufficient stem cell

mobilization in 66% of patients in 1 or 2 apheresis sessions. The drug was well tolerated at

all doses tested, up to 1200 μg/kg delivered over 2 hours, with adverse events limited to

minor infusion site reactions.111 This drug is also being tested to mobilize normal donors for

allogeneic stem cell transplant in the United States.

BKT 140 (4F-benzoyl-TN14003; Biokine Therapeutics, Rehovit, Israel) (T-140) is a highly

selective CXCR4 antagonist, originally designed to inhibit binding of the human

immunodeficiency virus (HIV) to CXCR4. In mice, this agent induced up to a 10-fold

increase in PB progenitor cells, which peaked at 1-2 hours following the administration of

the dose. BKT 140 synergized with G-CSF, leading to a 78-fold increase in PB progenitor

cells over controls, higher than seen with a combination of Plerixafor and G-CSF,112 In a

phase I/IIA dose-escalation trial in myeloma patients, BTK 140 was well-tolerated and

resulted in a dose-dependent increase in the mean absolute PB CD34+ cells. The highest

dose tested (900 μg/kg) resulted in a mean PB CD34+ count of 20.6 × 106/kg, reducing the

number of apheresis sessions required from 2.25 with lower doses to 1.113
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In a phase I study, TG-0054 (Taigen Biotechnology, Taipei, Taiwan) resulted in a 3-14 fold

increase in the PB CD34+ cell counts starting at 2 hours and peaking 4-6 hours following

administration of the agent, followed by a gradual decline to baseline at 24 hours. Maximum

tolerated dose was not reached (MTD) although a plateau in CD34+ mobilization was

observed with the higher doses.114 A Phase II study evaluating safety, pharmacokinetics,

and hematopoietic stem cell mobilization in patients with myeloma, NHL and HL was

completed in October 2011.

NOX-A12 (NOXXON Pharma, Berlin, Germany) binds to SDF-1, inhibiting its binding to

CXCR4. In a mouse model, this agent induced reversible mobilization of HSCs and

synergized with G-CSF to yield long-term repopulating HSC that successfully engrafted

primary and secondary lethally-irradiated recipients.115 A single center dose escalation

study of NOX-A12 in 48 healthy subjects was completed in May 2010. A phase I study of

NOX-A12 alone and in combination of G-CSF was also completed in January 2011. NOX-

A12 is currently being studied for its role in sensitizing malignant cells to chemotherapy in

chronic lymphocytic leukemia (CLL).116-118 It’s effect in inhibiting myeloma cell

dissemination to distant BM niches in early plasma cell dyscrasias is also being explored.119

Sphingosine-1-phosphate (S1P) agonists

Sphingosine-1-phosphate is a bioactive phospholipid stored and released into peripheral

blood mainly by erythrocytes,120,121 S1P acts as a ligand to five G-protein-coupled receptors

(S1PR1 –S1PR5)122 and plays a key role in immune surveillance and differentiation. While

plasma S1P levels remain high, most tissue S1P is quickly degraded and dephosphorylated

by tissue-resident enzymes,123 resulting in a gradient which is important in lymphocyte

egress from lymphoid organs.124 HSCs also express S1P receptors, signaling through which

has been shown to enhance their mobilization from non-lymphoid peripheral tissues to

draining lymphatics.125 Steady level of S1P in the plasma creates a gradient which

continuously attracts BM HSCs and is counteracted by HSC interactions within the BM

niche. It has been proposed that mechanisms that either weaken the effect of the niche on

HSC retention or those that increase HSC attraction to the plasma will lead to HSC

mobilization into the peripheral blood.126

Increasing evidence shows the importance of the complement cascade in HSC mobilization.

Specifically, Lee et al described C5-mediated increase in bone marrow proteolysis, leading

to HSC egress into the peripheral blood.127 In addition, it has been proposed that membrane-

attack complex (MAC) generated during the terminal steps of the complement cascade leads

to erythrocyte lysis and subsequent increase in plasma S1P levels, which enhances HSC

egress from the bone marrow.126

Recently, Mierzejewska and colleagues found that phenylhydrazine-induced hemolysis in

mice together with AMD3100 was able to mobilize twice as many HSC as AMD3100 alone.

They attributed this difference in part to an elevated plasma S1P level resulting from

hemolysis, which acts as a critical chemoattractant to the bone marrow HSCs. In addition,

they report direct correlation between mobilization of HSCs and the level of complement

activation (measured by MAC level), which is thought to counteract CXCR4-related bone

marrow HSC retention.128
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Juarez and colleagues demonstrated that while an elevation in the plasma S1P level was not

required for mobilization, administration of a SIP1 agonist SEW2871 one hour before

AMD3100 resulted in dose-dependent mobilization of HSCs, which was further enhanced

by co-administration of G-CSF. Mobilization did not increase significantly with SEW2871

alone or in combination with G-CSF, in the absence of AMD3100.129

VCAM/VLA4 inhibitors

Integrins are a structurally and functionally diverse family of transmembrane glycoproteins

that mediate cell-cell and cell-matrix interactions in a wide range of biological contexts.

Eighteen different α and eight different β subunits exist in vertebrates, giving rise to 24

different non-covalently-bound αβ heterodimers 130,131 which are able to bind a wide

variety of ligands.132 One such heterodimer expressed in hematopoietic stem cells, α4β1,

termed very late antigen 4(VLA-4), mediates HSC adhesion to vascular cell adhesion

molecule-1 (VCAM-1) within the bone marrow stroma.133 In preclinical studies,

administration of anti-VLA-4 antibodies resulted in mobilization of HSC progenitors into

the bloodstream.134,135

Natalizumab, a recombinant humanized monoclonal antibody against α4 subunit of VLA-4,

approved for treatment of multiple sclerosis (MS) and Crohn’s disease, has been found to

increase peripheral blood CD34+ cells in patients with relapsing-remitting MS.136-138 Zohen

et al showed a gradual increase in the circulating CD34+ cells in MS patients, with a

maximal concentration of 10.4 CD34+ cells/μL 72 hours following administration of

Natalizumab.137 Jing et al demonstrated a 7-fold increase in PB CD34+ cells and a 7-fold,

dose-dependent increase in BM CD34+ cells in patients with MS treated with Natalizumab,

with a maximum absolute count reached on day 4 following treatment.136 Moreover,

concurrent VLA-4 and CXCR4 blockade has been shown to have a greater than an additive

effect in stem cell mobilization in primates, when compared with either agent alone.139

Unfortunately, Natalizumab-induced elevation in PB CD34+ cells persists at least 1 month

following administration of the drug, which limits its use in healthy donors.136-138

BIO5192, small molecule inhibitor of VLA-4, resulted in a rapid 30-fold increase in PB

HSC in mice, which peaked within 30-60 minutes of the BIO5192 dose. Additive effect on

PB HSC mobilization was noted when BIO5192 was combined with plerixafor or plerixafor

plus G-CSF.140 This molecule has not been studied in humans but warrants further

investigation.

As reviewed by Rettig et al, several other small molecule inhibitors of VLA-4 are being

studied in clinical trials for their efficacy in diseases such as MS, asthma, and inflammatory

bowel disease.110 While no data has been published on the effect of these drugs on stem cell

mobilization, further studies may reveal benefit.

Parathyroid hormone (PTH)

Over the past several decades, studies have shown the important regulatory effects of PTH

on bone. Brunner et al demonstrated a positive correlation between PTH levels in patients

with pituitary adenomas and a number of circulating HSCs, which decreased to a normal
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level following resection of the adenoma.141 In subsequent studies, Brunner et al compared

the effects of PTH and G-CSF on HSC mobilization in mice. Stimulation with PTH showed

a 1.5-9.8 fold increase in PB HSC, compatible with that produced by G-CSF. However,

unlike G-CSF, PTH resulted in a constant level of CD34+ stem cells.142 In a Phase I study,

patients who had failed one or two mobilization attempts for autologous stem cell

transplantation were treated with escalating doses of PTH over 14 days, followed by

filgrastim 10μg/kg on days 10-14. PTH was well-tolerated and resulted in adequate

mobilization in 47% of patients who had failed 1 prior mobilization and 40% of patients

who had failed 2 prior mobilization attempts.143 Further studies are necessary to establish

the role of PTH in stem cell mobilization.

Proteosome inhibitors

Proteosome inhibitors have emerged as leading agents in the treatment of plasma cell

myeloma. One of these agents, Bortezomib, has also been noted to have efficacy in stem cell

mobilization. In one study, bortezomib resulted in a 6.8-fold increase in the peripheral blood

CFU-Cs in mice, which was significantly higher than 0.8-fold increase seen with placebo.

However, no statistically significant difference was seen in the number of mobilized HSPC

with bortezomib vs. placebo when the same experiment was carried out in VLA-4 knockout

mice. This led the authors to conclude that bortezomib mobilization probably involves the

VLA-4/VCAM-1 axis. The study also showed that combining bortezomib with G-CSF or

AMD3100 in mice resulted in the mobilization of significantly higher number of CFU-Cs

than produced by G-CSF or AMD3100 alone.144

A recent phase II study evaluated the role of bortezomib induction and stem cell

mobilization in 38 myeloma patients who had an incomplete response to or relapse

following previous immunomodulatory drug-based induction. The study unexpectedly found

enhanced CD34+ stem cell yield with the addition of bortezomib to cyclophosphamide and

filgrastim. Twenty-three of the 27 (85%) patients treated with a bortezomib-based induction

regimen were able to collect a median of 23.2 × 106 cells/kg (range 6.8 × 106 to 294 × 106)

within a median of 1 collection day (range 1-5).145

Groβ

Groβ is a member of CXC chemokine family which stimulates chemotaxis and activation of

neutrophils by binding to the CXCR2 receptor.146 In preclinical studies, SB-251353,

recombinant N-terminal 4–amino acid truncated form of the human chemokine Groβ,

mobilized HSC within 15 minutes following administration. Moreover, one day of G-CSF

treatment followed by a single dose of SB-251353 resulted in PB HSC numbers equal to that

produced by 4 days of G-CSF treatment. When compared with transplantation with HSCs

mobilized by G-CSF, SB-251353-mobilized HSCs resulted in faster neutrophil and platelet

recovery in mice.147 Fukuda et al showed that PB HSCs mobilized by SB-251353 alone or

in combination with G-CSF contained significantly more primitive hematopoietic cells with

enhanced engraftment and repopulation activity. These cells adhered better to VCAM-1+

endothelial cells and homed more efficiently to the marrow in vivo.148 Further research is

necessary to determine the efficacy and potential toxicities of this agent in humans.
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Stabilization of Hypoxia-inducible Factor (HIF)

In addition to stromal cells and their chemical signals which support HSCs within the bone

marrow niche, hypoxia is emerging as an important factor for BM HSC quiescence and self-

renewal. HSCs with long-term reconstitution ability have been reported to reside in the

poorly-perfused, most hypoxic areas of the bone marrow,149,150 where their quiescence is

supported by the expression of hypoxia-inducible factor. HIF is a heterodimeric

transcription factor composed of an O2-labile α subunit and stable β subunit.151 In HSCs,

HIF-1α subunit is expressed in hypoxic conditions and associates with the β subunit,

forming a heterodimer, which then translocates to the nucleus and activates transcription of

many important genes. When the O2 concentration rises above 2%, the HIF-1α subunit is

quickly degraded by ubiquitination, preventing the formation of an active transcription

factor.152,153

HIF has been noted to play a key role in neutrophil function 154and induction of expression

of SDF-1 155 and VEGF-A.156-158 HSC mobilization with G-CSF and cyclophosphamide in

mice has been noted to promote expansion of hypoxia within the BM microenvironment,

which leads to stabilization of HIF-1α. HIF-1α in turn induces expression of vascular

endothelial growth factor (VEGF) A in the BM sinusoids, leading to vasodilation and

enhancement in HSC mobilization.156 A recent study found that stabilization of HIF-1α

with FG-4497, when combined with G-CSF and Plerixafor, led to a 6-fold increase in

mobilization of HSCs in mice when compared with a combination of G-CSF and Plerixafor

alone. FG-4497 inhibits propyl hydroxylases (PHD) which usually hydroxylate HIF-1α in

normoxic conditions, leading to its ubiquitination and eventually degradation.159 Therefore,

PHD inhibitors may represent a novel therapeutic strategy to increase HSC yield in poor

mobilizers.

Conclusion

Use of G-CSF-mobilized PBSC has largely replaced BM as a source of stem cells for both

autologous and allogeneic stem cell transplantation. Research is ongoing to identify new

agents or combinations which will lead to the most effective and efficient stem cell

mobilization strategies, especially in those patients who are at risk for mobilization failure.

G-CSF remains the most commonly-used agent for HSC mobilization in the clinic, with

Plerixafor added to G-CSF in patients who are at high risk for poor mobilization. This

review describes several novel pathways and therapeutic agents in HSC mobilization which

are currently being explored in animal and early human studies. These include but are not

limited to alternative drugs that target the SDF-1/CXCR4 axis, S1P agonists, VCAM/VLA-4

inhibitors, parathyroid hormone, proteosome inhibitors, Groβ, and agents that stabilize HIF.

While none of the novel agents described above have yet gained an established role in stem

cell mobilization in clinical practice, many early studies exploring these new pathways show

promising results and warrant further investigation.
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Figure 1. Bone Marrow Niche
Abbreviations: CAR: CXCL12 abundant reticular cells; HSC: hematopoietic stem cell;

MSC: menenchymal stem cell; SCF: stem cell factor; SNS: sympathetic nervous system; V-

CAM1: vascular cellular adhesion molecule 1; VLA-4: very late antigen-4.
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Table 1

Clinical Factors that Hinder Stem Cell Mobilization

Risk Factor Postulated Mechanism Reference

Increasing age Age-related reduced HSC reserve [20, 25]

Low BM cellularity Reflects low HSC reserve [20]

Low baseline platelet count Reflects low HSC reserve [20-23]

Prior chemotherapy Direct toxicity to HSCs and BM niche [12-19]

Prior radiation therapy Direct toxicity to HSCs and BM niche [11]

Diabetes mellitus/Impaired glucose
tolerance

Possible direct alteration of the hematopoietic niche via sympathetic denervation;
Baseline low peripheral CD34+ cell count.

[26-28]

Abbreviations: HSC, hematopoietic stem cell; BM, bone marrow.
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Table 2

Approved Agents for Hematopoietic Progenitor Cell Mobilization

Drugs Mechanism of Action Name Side Effects Clinical Trial Status

G-CSF Down regulation of CXCL12 in
BM osteoblasts; release of
proteases

Filgrastim Bone pain, fever, elevation in
alk phos, nausea

Approved for HPC mobilization

GM-CSF Possible alterations in adhesion
molecules on HPC surface

Sargramostim Fever, hypertension, headache,
rash, malaise, diarrhea, nausea

Approved for HPC mobilization

Plerixafor Reversible inhibition of CXCR4 Injection site reactions,
diarrhea, nausea, fatigue,
headache, muscle/joint pain

Approved for HPC mobilization in
combination with G-CSF in NHL and
myeloma

SCF Down-regulation of c-kit on HPC
surface

Ancestim Injection site reactions, diffuse
erythema, bone pain, flu-like
symptoms, rare mast-cell
mediated systemic toxicity

Approved for use in Canada and New
Zealand but not currently available in
the United States

Abbreviations: G-CSF, granulocyte colony stimulating factor; BM, bone marrow; Alk phos, alkaline phosphatase; GM-CSF, Granulocyte-
Macrophage Colony Stimulating Factor; HPC, hematopietic progenitor cell; NHL, non-Hodgkin Lymphoma; SCF, Stem Cell Factor.
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Table 3

Novel Agents Currently Being Tested for Hematopoietic Progenitor Cell Mobilization

Drugs/Pathways Mechanism of Action Specific Agents Clinical Trial Status in HPC
Mobilization

CXCL12/CXCR4 modulators CXCR4 antagonists POL6326 Phase I, II in progress

BKT-140 Phase I/IIA completed

TG-0054 Phase II in progress

Neutralization of CXCL12 NOX-A12 Phase II in progress

S1P Agonists Alteration of S1P gradient between PB and BM,
which may counteract HSC retention in the BM

SEW2871 Animal Studies

VCAM/VLA-4 Inhibitors Inhibition of VLA-4 mediated HSC adhesion to
VCAM-1 within the bone marrow stroma

BIO 5192 Animal studies

Parathyroid Hormone Stimulation of niche osteoblasts which in turn
release endogenous G-CSF

Phase I completed

Proteosome Inhibitors Possible alteration of the VLA-4/VCAM-1 pathway Bortezomib Phase III in progress

Groβ Release of proteases that alter HSC adhesion to the
BM niche

SB-251353 Animal Studies

Stabilization of HIF Expression of VEGF A in the BM sinusoids, leading
to vasodilatation

FG-4497 Animal Studies

Abbreviations: S1P, Sphingosine-1-phosphate; PB, peripheral blood; VCAM/VLA-4, vascular cell adhesion molecule-1/Very Late Antigen 4;
MS, multiple sclerosis; HIF, hypoxia inducible factor.
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