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Abstract

Without question, the greatest and most humbling honor of my
scientific career was to learn that I was nominated for the
American Thoracic Society Recognition Award for Scientific
Accomplishments. On the occasion of this award, as I look back on the
progress made in the last 15 years, I am pleased by the scientific
insights; however, I am also saddened that we still have no
internationally recognized efficacious therapy. This perspective will
highlight the areas my laboratory has addressed regarding the

pathogenesis of idiopathic pulmonary fibrosis in hopes of identifying
new therapeutic targets.

Clinical Relevance

This review offers a perspective covering fibrosis research in the
last 15 years, highlighting in particular the role of chemokines,
eicosanoids, viral infections, and matricellular proteins.

CCR2-Binding Chemokines
and Lung Fibrosis: More Than
Just Migration

In 1997, chemokine biology was a rapidly
expanding field (1). Data were
accumulating to show that various
chemokines were elevated in lungs of
patients with idiopathic pulmonary fibrosis
(IPF), suggesting that cellular recruitment
might contribute to the disease (for review,
see Reference 2). However, patients with
IPF had little evidence of inflammation in
the lungs, and anti-inflammatory therapies
had little effect (3). Thus, investigators
began looking for alternative chemokine
functions (for example, CXC chemokines
were shown to be angiogenic; for review, see
Reference 4). Working with the bleomycin
and the FITC animal models of lung
fibrosis, we observed that CCL2 was
elevated in response to fibrogenic injury
(5–7). Patients with interstitial lung disease
also have elevated CCL2 in bronchoalveolar

lavage fluid (BALF) (8–10), and high levels
of CCL2 correlate with nonsurvival (11).
Fibrotic fibroblasts overexpress CCL2
(12–14) and respond to CCR2 stimulation
by increasing sensitivity to transforming
growth factor (TGF)-b and by limiting
apoptosis (15), observations that help
explain aberrant accumulation of activated
fibroblasts in IPF.

We were the first to report that
CCR22/2 mice were protected from
experimental lung fibrosis (7), an
observation that was later confirmed (14,
16, 17). However, CCR22/2 mice did not
show significant inhibition in early
inflammatory cell recruitment. We later
realized that CCR2 was important for
recruiting a minor population of cells called
“fibrocytes” (5, 6, 18–21). Fibrocytes,
classified by dual expression of leukocyte
CD45 and mesenchymal collagen 1,
comprise a small fraction of peripheral
blood cells yet are rapidly recruited to
injured lungs (19). The first observations

regarding fibrocytes in IPF (22) were
followed by studies identifying CXCR4 and
CCR7 as important receptors mediating
their migration (21). Patients with IPF have
elevated numbers of fibrocytes in
circulation, and increased percentages of
fibrocytes predict early mortality (23). Our
studies demonstrated that CCL12 recruited
fibrocytes in mice via CCR2 (6) and that
CCR2 stimulation of fibrocytes increased
expression of collagen 1 (5); these findings
were confirmed in human studies (24).
Taken together, our data show that CCR2-
binding chemokines recruit a novel
profibrotic cell type and play important
roles in cellular activation and
differentiation.

Another theory of IPF pathogenesis
suggested that fibrosis was regulated by
aberrant epithelial cell–fibroblast
interactions (3). Our results demonstrated
that CCR22/2, but not CCR21/1, alveolar
epithelial cells (AECs) were capable of
limiting fibroproliferation in coculture (25).
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The addition of CCL2 to the CCR21/1
AECs prevented synthesis of prostaglandin
(PG)E2 (25) and triggered our interest in
this antifibrotic mediator.

PGE2: A Critical Inhibitor of
Myofibroblast Differentiation
and Function

PGE2 is synthesized via cyclooxygenase
(COX)-mediated metabolism of
arachidonic acid. IPF BALF is PGE2
deficient (26), and IPF fibroblasts are COX-
2 deficient, inhibiting their production of
PGE2 (27, 28). This leads to fibroblast
activation because PGE2 normally limits
TGF-b–induced myofibroblast
differentiation (29, 30). Similarly, COX-
2–deficient AECs are impaired in their
ability to limit fibroblast proliferation (31).
Loss of PGE2 synthesis worsens fibrosis, as
demonstrated by the fact that mice treated
with indomethacin have worsened fibrotic
outcomes (32); these results are similar to
mice genetically deficient in COX-2 (33).
Looking forward, therapeutic approaches
have shown that early administration of
PGE2 protects from experimental fibrosis
(34, 35). New understandings highlight
how PGE2 loss and myofibroblast
accumulation occur in IPF. Normally, PGE2
signaling can induce fibroblast apoptosis
(36), but when fibroblasts encounter
stiffened extracellular matrix, their ability to
generate antifibrotic PGE2 is suppressed
(37, 38). This causes up-regulation of
prosurvival molecules (39, 40), leading to
proliferation, contraction, and impaired
fibroblast apoptosis (36–40).

Our work demonstrated that the
antifibrotic effects of plasminogen activation
were linked to plasmin activation of
hepatocyte growth factor, causing induction
of PGE2 (41). This antifibrotic pathway also
explains the beneficial effects of apoptotic
cell instillation in fibrotic lungs (42).
However, if true, why were wild-type mice,
which had the capacity to synthesize
PGE2 and to activate plasminogen, not
protected in experimental models of lung
fibrosis? This question led to our discovery
that E prostanoid (EP)2, an inhibitory
PGE2 receptor, was progressively lost on
fibroblasts from fibrotic mice (43); this
observation was later confirmed in patients
with IPF (44). Now we know that EP2
promoter hypermethylation (45), or loss of
protein kinase A expression, explains why

IPF fibroblasts are nonresponsive to PGE2
(44). Fortunately, stimulation of lung
fibroblasts in the presence of plasmin can
overcome the resistance to PGE2 signaling
by reorganizing protein kinase A signaling
(46). Thus, there may yet be therapeutic
potential for coordinated delivery of
plasmin and PGE2 or phosphodiesterase
inhibitors (47) to combat extracellular
matrix deposition in the setting of lung
fibrosis.

Leukotrienes: Lipids that
Promote Fibrosis

Arachidonic acid can also be metabolized to
form leukotrienes (LTs), and patients with
IPF have increased LTs in BALF (48, 49), as
do animals treated with fibrogenic agents
(50, 51). LTs promote fibroblast migration,
proliferation, and activation (52–54). We
demonstrated that 5-LO2/2 mice were
protected from bleomycin-induced fibrosis
(50) and that cys LTs are important
mediators of IL-13–induced fibrosis post-
FITC challenge (55), an observation that
has been confirmed in other models (56).
Accordingly, cys LT1 receptor–deficient
mice were protected from lung fibrosis (57).
Two other interesting observations were
that latent infection with g herpes virus
could stimulate secretion of cys LTs from
lung AECs (58) and that cys LTs could
mediate the proliferation of fibrocytes (59).

Viral Infections as Cofactors
for Fibrogenesis

An ongoing area of our investigation has
been to understand how viral infections
augment fibrotic responses in the lung.
Treatment of mice with a fibrotic insult
followed by infection with murine g herpes
virus-68 (gHV-68) can recruit fibrocytes
and exacerbate fibrosis (60). Additionally,
gHV-68 latent infection before fibrotic
insult enhances fibrogenesis (58). Ongoing
work suggests that infection with
Pseudomonas aeruginosa cannot exacerbate
experimental lung fibrosis, nor can all viral
infections (data not shown); thus, there
may be unique properties about herpes
viruses that promote fibrogenesis. Growing
evidence suggests that herpes viruses are
uniquely retained in the lungs of patients
with IPF (61–69) and that infection with
herpes viruses augments production of

TGF-b in human and murine AECs (70,
71). In Th2-biased mice, gHV-68–mediated
lung fibrosis is associated with M2
macrophage polarization (72, 73) and
chronic viral reactivation (74). More
recently, we and others have demonstrated
that gHV-68 infection in aged, but not
young, mice induces lung fibrosis (75, 76).
The mechanisms uncovered in aged mice
include induction of endoplasmic reticulum
stress in aged AECs (75) and increased
expression of TGF-b receptors in lung
fibroblasts (76). Our studies also
demonstrate that herpes viral infections
play a role in fibrotic lung disease that
develops after stem cell transplantation
(77). Taken together, these results suggest
that occult viral infections may play
a prominent but underdiagnosed role in
fibrotic lung disease.

Periostin Promotes Lung
Fibrosis and Predicts
Progression in IPF

As mentioned, aged lungs may be
predisposed to fibrosis. We found that
periostin, a matricellular protein that cross-
links collagen and promotes cellular
signaling (78–82), was increased in
fibroblasts from old mice (15–18 mo old)
compared with young mice (4 mo old; data
not shown). Initial studies in patients with
IPF demonstrated periostin in areas of
fibrotic lung pathology and in serum where
it correlated with reductions in lung
function (80). We confirmed that levels of
periostin were elevated in patients with
IPF and could predict disease progression
(79). When animal models were initiated,
studies in Balb/c mice suggested that
periostin influenced chemokine secretion to
promote inflammation and/or cellular
migration (83). In our studies in C57Bl/6
mice, periostin up-regulated mesenchymal
cell proliferation, migration, and
extracellular matrix production (79).
Interestingly, bone marrow chimeras
revealed an important role for periostin
production in circulating hematopoietic
cells. We found circulating fibrocytes
from patients with IPF express abundant
periostin mRNA, whereas fibrocytes
isolated from control subjects had
undetectable levels (79). This suggested that
fibrocytes might regulate fibrosis via
paracrine secretion of profibrotic mediators
rather than via differentiation into
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fibroblasts and myofibroblasts (84). Further
support for this hypothesis comes from
studies of another matricellular protein
known as SPARC (secreted protein acidic
and rich in cysteine), which also regulates
fibrocyte function to promote collagen
secretion (85). Taken together, these
studies may explain how our adoptive
transfer of small numbers of fibrocytes had
the ability to increase lung fibrosis (6).
Because matricellular proteins may act to
increase matrix stiffness, fibroblast
activation, and cellular survival (37, 38, 79,
80, 83, 85–88), matricellular proteins may
be important therapeutic targets. In fact,
our studies demonstrate that treatment of
mice with a neutralizing antibody that
blocks interaction of periostin with
particular cellular integrins can halt
progression of established lung fibrosis
(79).

Final Thoughts

When reflecting on work from our
laboratory and the many other studies I was

unable to mention in this perspective, I am
encouraged by the rapid accumulation of
new knowledge. Molecules like chemokines
and matricellular proteins; processes like
infection, epithelial cell stress, and matrix
stiffening; and cell types like fibrocytes that
were essentially unstudied or unknown in
this field are now common in our lexicon of
fibrotic pathogenesis. Progress in these
areas has required critical observation of
patients with lung fibrosis and their tissues
coupled with careful interpretation of
mechanistic studies in animal models.
Although some may argue that our animal
models do not recapitulate the phenotype
of progressive fibrosis seen in patients with
IPF, I still believe there is an imperative role
for animal models in addressing targeted
mechanistic questions (89). I am also
reminded that the study of lung fibrosis is
a collaborative effort. The ability to test new
therapies and to obtain biological samples
for further study requires collaborative
networks, such as the IPF clinical research
network (www.ipfnet.org). Translational
research is also benefitted when basic

scientists and clinicians partner together to
contribute their respective expertise to cross-
fertilize and enhance the research and
clinical missions. Progress also takes
patients, and I am indebted to many for
their willingness to participate in research
studies. Finally, progress will take resources.
The single biggest threat to our ability to
understand and treat fibrotic lung diseases
will come from a lack of funding.
Competition for limited federal funding for
scientific research is fierce, and too many
deserving studies are going unfunded. Too
many talented investigators will be forced to
abandon research projects or, even worse, to
abandon research altogether. It will be
important for researchers to partner with
patient advocacy groups to raise awareness
and to raise research dollars from multiple
sources. If we can do all of this, my hope
is that there will be an opportunity in the
very near future for another researcher to
write a perspective on how we collectively
learned to treat pulmonary fibrosis. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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