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Abstract

I am deeply honored to have been awarded an American Thoracic
Society Recognition Award for Scientific Accomplishment for 2014.
Over the last 20 years, it has become clear that the alveolar
epithelium, my area of research focus, is not simply a gas

exchange surface and barrier to leakage of fluid and protein
into the alveoli, but is an active participant in the pathogenesis
of a number of lung diseases, including pulmonary fibrosis.
Recognition by this Award stimulates a review of the
awardee’s contributions to the field, as summarized in this
perspective.

Why Alveolar Epithelium?

My entry into the study of alveolar
epithelial cell (AEC) biology was in many
ways serendipitous when I joined the
laboratory of Dr. Edward Crandall as
a junior faculty member. A specific
research focus was less important to me at
the time than my desire that the area be
relevant to human disease. The laboratory’s
focus on AEC biology and regulation of
alveolar epithelial barrier properties
appealed to me because of its direct
relevance to my clinical interests in acute
lung injury and the acute respiratory
distress syndrome. As the field evolved
over the years, it has become clear that the
alveolar epithelium is far more than “just
a barrier,” and is increasingly appreciated
to play an active and important role in the
pathogenesis of human disease (1, 2).

Regulation of Alveolar
Epithelial Barrier Properties

My early work focused on characterization
of ion transport molecules expressed by

AECs, and elucidation of their
transcriptional regulation to understand
mechanisms regulating alveolar fluid
clearance and alveolar barrier properties
(3–6). The complexity of the distal
lung necessitated the use of simplified
models to characterize these properties.
Many of our studies were conducted
using a model of AECs in primary culture
on semipermeable supports, which
recapitulates many of the properties
of alveolar epithelium in vivo (7, 8),
and in which alveolar type II (AT2)
cells in primary culture undergo
transdifferentiation to a type I (AT1)
cell–like phenotype (9). Using this model,
we established serum-free conditions for
AEC culture (8) and identified factors
(e.g., epidermal growth factor and
keratinocyte growth factor [KGF]) that
up-regulate transport properties through
effects on both Na pumps and channels
(3–5, 10), and members of the claudin
family of tight junction proteins, suggesting
that these factors might be useful for
enhancing fluid clearance after lung
injury.

Type I–Like AEC Monolayers
versus Type I Cells

Our in vitro model of AT2 cells in primary
culture used for studies of AEC physiology
initially encountered skepticism, because it
was thought to represent dedifferentiation
of AT2 cells rather than differentiation
to another interrelated phenotype. With
the advent of new AT1 cell phenotypic
markers, it became clear that AT2
cells in primary culture acquire many
characteristics of AT1 cells over time
(9, 11, 12), recapitulating the process in vivo
where AT2 cells serve as progenitors of
AT1 cells (13). This led to the concept
that AT2 cells in primary culture undergo
transdifferentiation to an “AT1 cell–like”
phenotype. This concept was somewhat
controversial, and I recall having to insert
a caveat into grant proposals indicating
that “while AT1-like cells acquire many but
not all the properties of AT1 cells, they
nevertheless constitute a useful model of
alveolar epithelium, studies of which
provide significant mechanistic insights
into AEC function and biology.” This
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begged the question of how closely AT1-like
cells resembled AT1 cells in vivo, and led
us to develop methods for isolation of
AT1 cells from rat lung (14). Although our
studies of AT1-like cells had suggested
a role for AT1 cells in ion transport in distal
lung, a direct contribution of AT1 cells
to alveolar homeostasis had not yet been
demonstrated. To address this question,
we and others developed techniques for
isolation of highly purified (z95% purity)
populations of AT1 cells from rat lung
(14, 15). We demonstrated that freshly
isolated AT1 cells indeed express subunits
of Na pumps and Na channels, confirming
observations in AT1-like cells and implicating
AT1 cells in ion transport and alveolar
fluid homeostasis. Successful isolation of
these highly purified populations of AT1
cells formed the basis for subsequent
phenotypic characterization of these
important lung cells using one of the early
microarray platforms (which could analyze
expression of only 1,000 genes!) and further
studies of the contributions of AT1 cells
to alveolar and lung biology (16). Many
of our initial observations in AT1-like
cells were subsequently corroborated in
isolated AT1 cells or in vivo, emphasizing
the utility of this now generally accepted
model for functional studies of AT1 cells.

Plasticity of AEC Phenotype

Using this in vitro model of AEC
transdifferentiation, we made the important
observation that the phenotype of AECs
in primary culture could be significantly
modulated by exogenous soluble factors or
interactions with substratum (17–20). It
had been believed that, over time, AT2 cells
in primary culture invariably default to
an AT1 cell phenotype. Whether or not
this transition could be modulated was
unknown. Using a number of AT1 cell
phenotypic markers, we demonstrated that
AECs that had already acquired AT1 cell
characteristics in culture could be induced to
revert to an AT2 cell phenotype through
exposure to KGF or changes in cell shape,
indicating that AEC phenotype is actively
regulated. Effects of KGF were subsequently
shown to be mediated by c-Jun N-terminal
kinase signaling (21). The demonstration
of reversible AEC phenotypic transitions
challenges the widely held belief that AT1
cells are terminally differentiated. Although
still to be demonstrated by lineage tagging

in vivo using mice that we have developed
with AT1 cell–specific reporter expression
(22), the notion that AT1 cells may not
be terminally differentiated is supported
by observations of others that isolated
AT1 cells can proliferate in culture (23, 24).
It also suggests greater plasticity of AEC
phenotype than previously appreciated,
a concept that is becoming more widely
accepted with recent demonstrations of
stem cell plasticity/reprogramming.

To elucidate mechanisms regulating
AEC phenotype and further characterize
interrelationships between AT2 and AT1
cells, we characterized the promoter of
the water channel, aquaporin-5, which,
within distal lung epithelium, is selectively
expressed in AT1 cells (25, 26). We used
Aqp5 as a prototype AT1 cell gene with
which to elucidate molecular mechanisms
that regulate phenotype transitions between
AT2 and AT1 cells by transcriptional
activators (e.g., GATA-binding factor 6 (27)
and repressors (e.g., Forkhead box p2 and
A1 Foxp2 and FoxA1 (28, 29) that are also
implicated in lung development through
their interactions with other lung-enriched
transcription factors (TFs). Extending our
studies of single genes and TFs, we recently
undertook a genome-wide analysis of
transcriptomic and epigenetic changes
accompanying AEC differentiation in vitro.
Integration of transcriptional changes with
surrounding chromatin modifications
enabled characterization of molecular
signaling events that were activated or
repressed during adult AEC differentiation
and identification of putative novel regulators
(e.g., hepatocyte nuclear factor 4a) and
signaling pathways (e.g., retinoid X receptor
pathway) involved in this process (30).
The demonstration that AEC phenotype
is actively regulated and elucidation of
underlying regulatory pathways are of
particular relevance when considering
strategies to modulate AEC differentiation to
enhance alveolar epithelial repair.

Central Role of Alveolar
Epithelium in Pulmonary
Fibrosis: Apoptosis,
Epithelial–Mesenchymal
Transition, and
Epithelial–Fibroblast
Cross-Talk

Our observations of AEC plasticity raised
the question of whether AECs could

also give rise to other (nonepithelial)
cell types. We showed that AECs exposed
to transforming growth factor (TGF)-b
undergo epithelial–mesenchymal transition
(EMT) in vitro, as evidenced by loss of
epithelial and acquisition of mesenchymal
markers (31, 32). We further demonstrated
colocalization of epithelial and mesenchymal
markers in up to 80% of hyperplastic
AECs in lung biopsies of patients with
idiopathic pulmonary fibrosis (IPF),
suggesting that EMT may contribute to
the pathogenesis of fibrosis in vivo. Subsequent
demonstration that endoplasmic reticulum
(ER) stress (either chemically induced or
in response to accumulation of misfolded
mutant surfactant protein) induces EMT
in AECs in a dose-dependent manner (with
lower levels of ER stress inducing EMT
and higher levels inducing apoptosis)
suggests that expression of mesenchymal
markers may represent an adaptive
response of AECs to injury, which, when
overwhelmed, leads to cell death (33, 34).
Lineage tracing studies have since raised
questions about the precise role of EMT in
fibrogenesis (because the number of EMT-
derived fibroblasts has been variable among
different studies, and sometimes low to
absent) (35–38). Nevertheless, a number
of studies in addition to our own have
shown that AECs in IPF are abnormal
and express mesenchymal markers (37,
39, 40), leading to a major paradigm shift
that suggests a central role of alveolar
epithelium in IPF pathogenesis (2, 41).
The demonstration that deletion of the
TGF-b type II receptor specifically in
lung epithelium protects mice from
bleomycin-induced pulmonary fibrosis
(42, 43) further supports a central role
for alveolar epithelium in fibrogenesis,
even if indirectly, as a result of aberrant
epithelial–mesenchymal interactions (44).
Evidence of AEC abnormalities (including
morphologic changes, apoptosis [45], EMT,
up-regulation of TGF-b [46] and other
cytokines [47], and evidence of ER stress
[33, 48]) in IPF lung, and of fibrosis in
association with genetic abnormalities (e.g.,
surfactant and telomerase mutations) that
affect the alveolar epithelium, strongly
support the evolving notion that epithelial
abnormalities as a result of injury (as yet
of unknown cause) and aberrant repair
contribute to IPF pathogenesis (41).
Demonstration that the injured alveolar
epithelium is abnormal or “reprogrammed”
in IPF has identified new areas of
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investigation aimed at understanding
how the abnormal epithelium contributes
to fibrosis and elucidating genetic and other
mechanisms underlying epithelial injury.

Translational Aspects

Aberrant wngless-related MMTV
integration site/b-catenin signaling in
alveolar epithelium has been implicated
in the pathogenesis of IPF as a result of
epithelial hyperplasia, altered AEC
differentiation, and altered epithelial–
mesenchymal cross-talk (49, 50). Interactions of
b-catenin with the homologous transcriptional
coactivators, cAMP response element–
binding protein–binding protein (CBP)
and p300, have been shown to differentially
regulate subsets of target genes, leading
to different functional outcomes (51).
We have shown that interactions between
b-catenin and TGF-b pathways are
implicated in EMT, and are dependent
on specific interactions of b-catenin with the
transcriptional coactivator, CBP (52).
Importantly, treatment with ICG-001,
a selective small-molecule inhibitor of
b-catenin–CBP interactions, both prevents
and reverses bleomycin-induced fibrosis
while preserving epithelial integrity,
suggesting a potential novel therapeutic
approach to pulmonary fibrosis (53). We also
recently demonstrated that the peroxisome
proliferator–activated receptor g agonist
troglitazone ameliorates TGF-b–induced

EMT in a peroxisome proliferator–activated
receptor g–independent manner in AECs,
likely through inhibition
of b-catenin–dependent signaling
downstream of TGF-b. Understanding
the contribution(s) of alveolar epithelium
to fibrogenesis may offer unique
opportunities for development of new
therapeutic interventions in IPF.

Beyond the Barrier

Research in AEC biology, as with other
fields, has, to a large extent, been driven
by technological advances and feasibility.
In my case, what began as physiologic
measurements in simplified cell culture
models (3, 4, 54), and subsequently highly
purified populations of isolated AECs (14),
evolved to elucidation of the molecular bases
of AEC function and phenotype. From initial
analyses of expression of selected genes and
TFs of interest at baseline and after injury (5,
6, 25), and subsequent generation of mice
with the capacity for modulation of genes of
interest in AT1 cells in vivo (22), our studies
have culminated recently in genome-wide
analyses leading to insights into
transcriptomic and epigenetic changes that
accompany AEC differentiation (30). We have
come full circle, with the field now being
poised for the study of cellular heterogeneity
with advances in technology for single-cell
RNA-Seq and generation of differentiated

AT2 cells through direct cellular
reprogramming.

Going Forward

When starting my research career, I remember
beingworried that I would run out of questions
to ask. After more than 20 years, I know now
that the opposite is true: the questions are
infinite, and each result leads to more
questions. It has been exciting to be working in
such a rapidly advancing field, where
the importance of alveolar epithelium in both
acute and chronic lung disease has become
much better appreciated. Rather than a passive
bystander, the epithelium is actively involved
in human disease pathogenesis. Building on
our initial in vitro studies, we plan to further
investigate differential contributions of AT2
and AT1 cells to alveolar function,
fibrogenesis, and repair in vivo and, applying
genome-wide approaches to our in vitro
model and purified AEC populations,
elucidate signaling pathways that are
aberrantly activated in AECs in the fibrotic
lung. We hope to apply knowledge gained
from elucidation of pathways regulating
normal and aberrant AEC differentiation to
enhance epithelial repair mechanisms, with
the ultimate goal of ameliorating fibrotic
lung disease. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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