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Abstract

The diagnosis of bilateral vestibulopathy (BV) is typically established based on bilateral

semicircular canal dysfunction. The degree to which both otolith organs—the saccule and utricle

—are also impaired in BV is not wellestablished, particularly with respect to the etiology and

severity of BV. The aim of this study was to evaluate semicircular canal, saccular and utricular

function in patients with BV due to aminoglycoside ototoxicity and bilateral Menière’s disease,

and with different severities of BV. Caloric and head impulse testing were used as measures of

canal function. Cervical vestibular-evoked myogenic potentials (cVEMP) and ocular VEMPs

(oVEMP) were used as measures of saccular and utricular function, respectively. We enrolled 34

patients with BV and 55 controls in a prospective case–control study. Patients with BV were less

likely to have saccular (61 %) or utricular (64 %) dysfunction relative to canal dysfunction (100

%). Utricular function differed significantly between patients by etiologic group: the poorest

function was found in patients with BV due to aminoglycoside toxicity, and the best function in

Menière’s disease patients. Canal and saccular function did not vary according to etiology.

Further, utricular but not saccular function was significantly correlated with canal function.
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Saccular and utricular function had the strongest association with Dizziness Handicap Inventory

scores relative to canal function. These data suggest that when a patient with BV is identified in a

clinical context, oVEMP testing is the most sensitive test in distinguishing between

aminoglycoside toxicity and bilateral Menière’s disease. Both cVEMP and oVEMP testing may be

considered to evaluate the functional impact on the patient.
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Introduction

Bilateral vestibulopathy (BV) is characterized by impairment or loss of function of the

peripheral vestibular system bilaterally. The disorder typically manifests with chronic

disequilibrium, gait instability and oscillopsia [1, 2]. BV appears to be the final common

manifestation of many different pathophysiologic processes, including aminoglycoside

antibiotic (e.g. gentamicin) toxicity, exposure to other ototoxins (e.g. diuretics,

chemotherapy), bilateral Menière’s disease, infection (e.g. meningitis), aging (presbystasis)

and neuro-degeneration. It is usually diagnosed based on reduced or absent caloric responses

bilaterally, impaired rotational testing bilaterally, and/or abnormal head impulse testing

(HIT) bilaterally [3-5]. Pathologic caloric and rotational testing indicate a low-frequency

deficit of the horizontal semicircular canals. Abnormal HIT indicates a high-frequency

semicircular canal deficit (of the horizontal, anterior and/or posterior canals depending on

the plane of the head rotation stimulus). In addition to the semicircular canals the otolith

organs, i.e. the saccule and the utricle, can also be affected in BV [6, 7]. The degree to

which the semicircular canals and the saccule and utricle may be differentially affected in

BV depending on the degree and etiology of BV is however not known.

Therefore, in this study, the semicircular canal, saccular and utricular deficits associated

with BV were examined in patients with BV due to aminoglycoside ototoxicity and bilateral

Menière’s disease, and with different severities of BV. We used caloric and HIT as

measures of the low- and high-frequency gain of the vestibulo-ocular reflex (VOR) and

thereby semicircular canal function [8]. The sound-evoked cervical vestibular-evoked

myogenic potential (cVEMP) was applied as a measure of saccular function [9], and the

vibration-evoked ocular vestibular-evoked myogenic potential (oVEMP) was used as a

measure of utricular function [10]. Thereby, the sensitivity of the different parts of the

vestibular end-organs to damage by ototoxic drugs and due to Menière’s disease could be

further elucidated. From a clinical standpoint the findings can also have implications for

vestibular rehabilitation, i.e. use of exercises for impaired semicircular and/or otolith

function depending on the type of dysfunction.
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Methods

Subjects

Study subjects were recruited from an outpatient neurology clinic in a tertiary care academic

medical center (German Dizziness Center in Munich). Eligible subjects had a diagnosis of

BV, which was made based on the following criteria: (1) bilaterally diminished [defined as a

mean peak slow phase velocity (SPV) of <5°/s on both sides], or absent caloric responses on

electronystagmography, and/or (2) bilaterally pathologic clinical HIT, consistent with prior

work [2, 8, 11]. The etiology for the BV was ascertained by querying subjects about a

history of exposure to ototoxins (e.g. antibiotics, diuretics, chemotherapeutics), history of

otologic symptoms (e.g. vertigo, hearing loss, tinnitus and aural fullness) and otologic

disorders (e.g. Menière’s disease based on a history of episodic vertigo, fluctuating hearing

loss, tinnitus and aural fullness), and history of other neurologic, auto-immune and

neoplastic conditions. All subjects underwent complete neurologic, neuro-ophthalmologic,

and neuro-otologic examination, including the HIT, and evaluation for spontaneous

nystagmus with Frenzel’s lenses, gaze-evoked nystagmus, smooth pursuit, saccades,

optokinetic nystagmus, visual fixation suppression of the VOR, rebound nystagmus and

head-shaking nystagmus [12]. Subjects were also administered the Dizziness Handicap

Inventory (DHI), and overall as well as subscale (physical, functional and emotional) scores

were computed [13]. This study was approved by the Ludwig-Maximilians University

institutional review board and all participants gave their informed consent prior to their

inclusion in the study.

Vestibular physiologic testing

All patients underwent comprehensive vestibular physiologic testing, including caloric

testing, and cervical and ocular VEMP testing.

Caloric testing

Bithermal caloric testing (30 and 44 °C) was performed in all patients on the left and right

sides to determine peak SPV using Igor Pro Wave Metric Software (version 3.13).

Cervical VEMP testing

Participants were positioned supine with their upper bodies elevated at a 30° angle from

horizontal. The neck was actively flexed by the participant during cVEMP stimulation and

recording to provide tonic background muscle activity. Air-conducted 500-Hz, 125-dB SPL

tone bursts were delivered monaurally via intra-auricular speakers. An air-conducted

stimulus was used given electrophysiological evidence in animal studies that saccular

afferents are responsive to air-conducted sounds [14, 15], and given that air conduction

sound-evoked cVEMPs are thought to represent the best-characterized measure of saccular

responses [16]. Cervical VEMPs were recorded from an electrode montage consisting of a

non-inverting electrode placed at the midpoint of the ipsilateral sternocleidomastoid muscle

belly, an inverting electrode placed on the manubrium sterni, and a ground electrode placed

on the forehead. We found previously that prestimulus EMG activity did not differ between

controls and BV patients [6]. EMG activity was recorded (Nicolet Biomedical Inc, Madison
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WI, USA), amplified and bandpass filtered, and the responses to 50–100 stimuli were

averaged. The first positive and negative peaks that occurred between 13 and 23 ms after

stimulus onset were designated p13 and n23, respectively. The peak-to-peak amplitude,

calculated as the sum of the p13 and the n23 amplitudes, was evaluated given prior data

demonstrating a high inter-rater reliability of this measure [17].

Ocular VEMP testing

Participants were positioned supine with their upper bodies elevated at a 30° angle from

horizontal. Maximum upgaze was maintained during oVEMP stimulation and recording.

“Mini taps,” as described by Iwasaki et al. [18], were delivered with a Bruel and Kjaer Mini-

Shaker Type 4810 (1-ms clicks of positive polarity, with a repetition rate of five per second)

at the Fz cranial site (in the midline at the hairline, 30 % of the distance between the inion

and nasion). Fz taps have been shown to provide an acceleration wave that propagates

through the cranium to the mastoid on either side, predominantly causing an outward linear

acceleration of the utricles bilaterally [19]. A bone conducted vibration stimulus was used

based on studies in guinea pigs which showed a low threshold for stimulation of utricular

afferents by bone-conducted vibration [20], and a generally accepted understanding that

bone vibration-evoked oVEMPs are the best-characterized measure of utricular responses

[16]. Ocular VEMPs were recorded from an electrode montage consisting of a non-inverting

electrode placed over the contralateral inferior oblique muscle approximately 3 mm below

the eye and centered beneath the pupil, an inverting electrode on the chin, and a ground

electrode placed under the chin. The responses to 50–100 stimuli were averaged. The first

negative and positive peaks of the oVEMP response that occurred between 10 and 20 ms

after stimulus onset were designated n1 and p1, respectively. The oVEMP n1 amplitude was

evaluated, given that this is the portion of the response that is most clearly vestibular and

previous data demonstrating a high inter-rater reliability of this measure [17, 21]. Sample

oVEMP traces from a control subject and a patient are presented (Fig. 1).

Statistical analysis

Cervical and ocular VEMP testing results were compared between the study subjects with

BV and normative data generated in our laboratory from a control group of 55 subjects

[mean (SD) age 33.7 (15.1), range 15–72 years; 20 % male]. Left and right cervical and

ocular VEMP values were averaged together, given that these were patients with BV.

Among the normal controls, age was significantly correlated with lower cVEMP amplitude

(r = −0.47, p = 0.0004) in Spearman rank correlation analyses; age was also correlated with

lower oVEMP amplitude although this association was not statistically significant (r =

−0.18, p = 0.1807). For cervical VEMP testing, we defined abnormal as a peak-to-peak

amplitude below the fifth percentile from control data. For ocular VEMP testing, we defined

abnormal as an n1 amplitude below the fifth percentile from control data. Given that the

VEMP data were not normally distributed, the non-parametric Wilcoxon rank sum test was

used for comparisons of amplitudes, and the χ2 test was used to compare proportions. SAS

9.2 (SAS Institute, Cary, NC, USA) was used for all statistical analyses.
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Results

We enrolled 34 subjects (16 males) with a mean age ± SD of 65.6 ± 14.3 years (range 24–

83; Table 1). Subjects were classified into three etiologic groups: (1) aminoglycoside

toxicity (N = 9), (2) bilateral Menière’s disease (N = 11), and (3) other [N = 14; cerebellar

ataxia, neuropathy, vestibular areflexia syndrome (CANVAS, N = 1), meningitis (N = 1),

Sjogren’s syndrome (N = 1), temporal bone radiation exposure (N = 1), auto-immune

disease (N = 1), cisplatin chemotherapy exposure (N = 1), and idiopathic (N = 8)]. Of these

subjects, 29 (85 %) reported unsteadiness or oscillopsia during locomotion [22]. The mean

age of subjects across etiologic groups did not differ significantly; subjects with bilateral

Menière’s disease were significantly more likely to be female (Table 1). All subjects (100

%) with BV secondary to aminoglycoside toxicity had pathologic caloric and head-impulse

testing. Subjects with Menière’s disease demonstrated a typical pattern of bilateral loss of

low-frequency (caloric) VOR function with relative preservation of high-frequency

responses. The proportion of patients with pathologic caloric responses did not differ

significantly by etiologic group; however, the percentage of bilateral HIT abnormalities was

significantly lower in patients with Menière’s disease (Table 1).

We evaluated the relative prevalence of semicircular canal versus saccular versus utricular

deficits in our BV study population. By definition, 100 % of patients had evidence of canal

dysfunction based on abnormal caloric and/or HIT. To compute the prevalence of saccular

dysfunction, we defined abnormal as below the fifth percentile peak-to-peak amplitude from

control subjects (<28.58 μV). Sixty-one percent (95 % CI 42, 77) of BV patients had

evidence of saccular dysfunction (Table 2), comparable to the 70 % prevalence of saccular

dysfunction previously observed in a similar cohort [6]. To compute the prevalence of

utricular function, we defined abnormal as below the fifth percentile n1 amplitude from

control subjects (<5.15 μV). Sixty-four percent (95 % CI 45, 80) of BV patients had

evidence of utricular dysfunction (Table 2); this proportion was not significantly different

from the percentage with saccular dysfunction.

We next compared semicircular canal, saccular and utricular function based on etiology of

BV. We observed that only ocular VEMP amplitudes differed significantly among patient

groups (p = 0.0047), with the lowest median n1 amplitude observed in BV patients with

aminoglycoside toxicity (1.6 μV) and the highest median n1 amplitude seen in patients with

bilateral Menière’s disease (8.3 μV; Table 3). Cervical VEMP mean peak-to-peak amplitude

and caloric mean peak SPV did not differ significantly by etiology of BV (p = 0.4036 and p

= 0.1683, respectively; Table 3).

We evaluated for associations between utricular function and caloric function, and saccular

function and caloric function in patients with BV. We observed a significant correlation

between ocular VEMP n1 amplitudes and caloric mean peak slow phase velocities (r = 0.51;

p = 0.0023; Fig. 2). In contrast, we did not observe a significant correlation between cervical

VEMP peak-to-peak amplitudes and caloric mean peak slow phase velocities (r = 0.22; p =

0.22; Fig. 2).
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Finally, we considered overall and subscale (physical, functional and emotional) DHI scores

in patients with BV. We evaluated whether DHI scores varied by etiology of BV, and the

extent to which semicircular canal versus saccular versus utricular function was associated

with DHI scores. DHI-Physical subscale scores were poorest (highest) among BV patients

with aminoglycoside toxicity and were lowest in patients with bilateral Menière’s disease (p

= 0.021; Table 4). Overall DHI scores, or functional or emotional subscale scores, did not

significantly differ among BV patient groups (Table 4).

We found significant correlations between cervical VEMP peak-to-peak amplitudes and

overall DHI score as well as all three DHI subscale scores (Table 5). We also observed a

significant correlation between ocular VEMP n1 amplitudes and DHI-physical subscale

score (Table 5). There were no significant correlations between caloric SPV and DHI scores.

Discussion

This study is among the first (to our knowledge) to evaluate semicircular canal, saccular and

utricular function concurrently in a cohort of patients with BV. We observed in this study

that patients with BV experience a global reduction in vestibular function involving both the

semicircular canals and the two otolith organs—the saccule and the utricle. This finding is

consistent with a prior study that demonstrated reduced cervical VEMP responses

(indicative of saccular dysfunction) in BV patients, and another study that reported

attenuated responses to eccentric rotation (suggestive of utricular dysfunction) in patients

with bilateral semicircular canal dysfunction [23, 24]. We also found that losses of saccular

and utricular function were less severe than the loss of semicircular canal function, and that

the rate of saccular and utricular dysfunction was similar (61 vs. 64 %). Previous studies

have also suggested a relative preservation of saccular function in BV patients [6, 25].

Moreover, a lower prevalence of both utricular and saccular function has been reported in

older patients with presbystasis (a form of BV) [26]. Temporal bone studies in older

individuals have also found greater reductions in vestibular hair cell counts in the

semicircular canal ampullae compared to the otolithic maculae associated with aging [27];

there may be a differential susceptibility across the vestibular end-organ to the toxic and

metabolic exposures associated with BV as well. It should be noted that the relative

predominance of semicircular canal deficits in our cohort of patients may reflect the fact that

the diagnosis of BV is typically established based on bilaterally absent canal function. It has

been shown that subtypes of BV characterized by isolated bilateral otolith dysfunction also

exist [7]; these patients would not have been captured in our study.

We observed that ocular VEMP testing was the only vestibular test that significantly

differed based on etiology of BV, with the highest n1 amplitudes (indicative of greatest

utricular function) in patients with Menière’s disease and the lowest n1 amplitudes

(indicative of poorest utricular function) in patients with aminoglycoside toxicity. In general,

we found that aminoglycoside exposure abolished both canal and otolith function to the

greatest extent relative to Menière’s disease and other BV etiologies, although this

difference was only statistically significant for utricular function. Aminoglycoside

antibiotics, such as gentamicin, have been shown to preferentially target type I vestibular

hair cells [28], which are responsive to high-frequency stimulations such as the air-
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conducted sound and bone vibration associated with cervical and ocular VEMPs

respectively [29]. As such, BV secondary to aminoglycoside toxicity may manifest with

reduced VEMP responses. Bilateral Menière’s disease appears to be associated with a lesser

degree of vestibular loss globally compared to aminoglycoside toxicity. However, given that

Menière’s disease typically presents with reduced caloric responses [30] and is characterized

by cochleosaccular hydrops [31], only the relative preservation of utricular function in

Menière’s disease compared to aminoglycoside toxicity represented a statistically significant

difference. These data suggest when a BV patient is identified in a clinical context, ocular

VEMP testing may be the most sensitive test in distinguishing the etiology of BV.

We found that utricular function was significantly correlated with horizontal semicircular

canal function, whereas saccular function was not significantly associated with canal

function. One prior study also noted a parallel between horizontal linear otolith–ocular

reflexes (a measure of utricular function) and rotational responses (a measure of horizontal

canal function) [32]. The shared susceptibility of these structures may reflect the common

embryologic origin and vascular supply of the pars superior of the labyrinth. In the clinical

setting, a finding of bilateral semicircular canal dysfunction on routine caloric testing may

suggest concomitant utricular dysfunction.

Finally, these data suggest that in patients with BV, dysfunction of the otolith organs had a

greater association with functional impairment (captured by the DHI) compared to canal

dysfunction. This was particularly true for cervical VEMP amplitudes, which are indicative

of saccular function. Thus, in patients who present with BV diagnosed by caloric testing,

both cervical and ocular VEMP testing may be considered to characterize otolith function

and also to estimate the functional impact on the patient. Moreover, assessing the loss of

otolith function in addition to semicircular canal function has important implications for

treatment of BV. Current treatment modalities for BV are in their infancy and are not in

widespread clinical practice; these include vestibular rehabilitation to promote compensation

by central and other peripheral sensory systems (e.g. visual, proprioceptive) [33], sensory

substitution devices (e.g. auditory or vibrotactile biofeedback devices) [34], and vestibular

prosthetics [35]. Given that otolith dysfunction contributes significantly to the disability

associated with BV, effective treatment of BV will likely need to specifically address otolith

impairment.
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Fig. 1.
Sample right and left oVEMP traces from a control subject (a, b) and a patient with absent

oVEMPs (c, d). N1 and P1 peaks are marked
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Fig. 2.
Correlation between cervical and ocular vestibularevoked myogenic potential (VEMP) and

caloric function in bilateral vestibulopathy (BV) patients. The correlation between ocular

VEMP n1 amplitudes and caloric mean peak slow phase velocities was statistically

significant (r = 0.51; p = 0.0023), while there was no significant correlation between

cervical VEMP peak-to-peak amplitudes and caloric mean peak slow phase velocities (r =

0.22; p = 0.22)
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Table 2

Cervical VEMP and ocular VEMP test results in control subjects versus BV patients

Subjects N cVEMP Amplitude μV Median (IQR) oVEMP Amplitude μV Median (IQR)

Controls 55 104.2 (79.4) 12.1 (8.1)

All BV 34 18.1 (42.3) 4.2 (5.7)

 % Abnormal (95 %CI)a 61 (42, 77) 64 (45, 80)

VEMP vestibular-evoked myogenic potential, BV bilateral vestibulopathy, SPV slow phase velocity, IQR interquartile range 25th–75th percentile

a
For cervical VEMP testing, abnormal was defined as a peak-to-peak amplitude below the fifth percentile from control data. For ocular VEMP

testing, abnormal was defined as a n1 amplitude below the fifth percentile from control data
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Table 5

Correlation between Dizziness Handicap Inventory (DHI) scores and caloric, cervical VEMP and ocular

VEMP testing in BV patients

Vestibular function test DHI: overall DHI: physical DHI: functional DHI: emotional

Caloric SPV (°/s) r = −0.003 r = −0.09 r = −0.09 r = 0.16

p = 0.9879 p = 0.6325 p = 0.6330 p = 0.4229

Cervical VEMP (uV)a r = −0.46 r = −0.46 r = −0.47 r = −0.39

p = 0.0138 p = 0.0130 p = 0.0108 p = 0.0418

Ocular VEMP (uV)b r = −0.26 r = −0.41 r = −0.24 r = −0.13

p = 0.1748 p = 0.0288 p = 0.2111 p = 0.4985

VEMP vestibular-evoked myogenic potential, BV bilateral vestibulopathy, SPV slow phase velocity, SD standard deviation

a
Cervical VEMP peak-to-peak amplitudes are used in correlation analyses

b
Ocular VEMP n1 amplitudes are used in correlation analyses
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