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Abstract

The field of tissue engineering involves design of high-fidelity tissue substitutes for predictive

experimental assays in vitro and cell-based regenerative therapies in vivo. Design of striated

muscle tissues, such as cardiac and skeletal muscle, has been particularly challenging due to a high

metabolic demand and complex cellular organization and electromechanical function of the native

tissues. Successful engineering of highly functional striated muscles may thus require creation of

biomimetic culture conditions involving medium perfusion, electrical and mechanical stimulation.

When optimized, these external cues are expected to synergistically and dynamically activate

important intracellular signaling pathways leading to accelerated muscle growth and development.

This review will discuss the use of different types of tissue culture bioreactors aimed at providing

conditions for enhanced structural and functional maturation of engineered striated muscles.

INTRODUCTION

Since the first successful organ transplantation in 1954, transplant rejection and organ donor

shortage rendered the transplant therapies an imperfect solution to organ failure and tissue

loss (1, 2). Over the past two decades, tissue engineering (TE) has evolved as a potential

strategy for de novo design of replacement tissues and organs. Furthermore, TE techniques

have been utilized for the development of in vitro microphysiological systems or ‘organ-on-

a-chip’ platforms for pre-clinical drug screening and studying of microtissue physiology and

pathology (3–6). Engineering and therapeutic use of striated (cardiac and skeletal) muscle

tissues, in particular, while promising, has met with difficulties in replicating aligned

cellular organization and adequate functional output characteristic of native muscle. Thus,

significant research in the field has been aimed at providing more favorable culture

environments to aid survival, growth, differentiation, alignment, and functional maturation

of engineered striated muscles in vitro (7–9). In particular, mechanical (stretch, shear) and

electrical stimulation as well as medium perfusion have been the key biomimetic signals

applied to promote and support functional myogenesis in vitro.

Specifically, mechanical loading has been known to profoundly affect different cells in the

body, generally termed mechanocytes, including osteocytes, chondrocytes, cardiomyocytes,

and skeletal muscle cells (10, 11). The cellular responses to mechanical stimuli are mediated
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by mechanotransduction pathways that can either promote tissue development and function

or lead to pathological changes (12). For example, mechanical overload of skeletal muscle

during exercise can enhance its force generating capacity in vivo (13). Conversely, pressure

or volume overload in the heart can lead to physiological or pathological hypertrophy

depending on how the stress is applied (12, 14). Similar to mechanical stimulation, electrical

stimulation influences the survival, proliferation rate, hypertrophy, and other properties of

muscle cells. In vitro, the use of electrical stimulation is aimed at mimicking the action of

the motoneurons (in skeletal muscle) or pacemaker cells (in cardiac muscle) found in native

physiological environment. Denervated skeletal muscles are known to undergo a decrease of

fiber diameter (atrophy) as well as become prone to injury and degeneration (15–17). The

application of electrical signals may enable long-term survival and continued differentiation

of muscle cells in vitro as well as prepare engineered muscle tissues for electromechanical

integration following implantation in vivo.

The need to create a more biomimetic cell culture environment compared to previously used

static and unstimulated conditions led to the development of different types of tissue culture

bioreactors. Nowadays, the use of bioreactors has become a standard tissue engineering

practice to provide a tightly controlled environment for long-term tissue growth as well as to

test the acute responses of tissues to external stimuli (18, 19). While the bioreactor types

used range widely from simple tissue culture plates to high-end multimodal systems, they

are all designed with one or more of the following functions: (1) Maintenance of sterility,

(2) Exchange of gases and nutrients, (3) Control of operating conditions (pH, temperature),

and (4) Delivery of tissue-specific biophysical and biochemical cues. Bioreactor design is

particularly challenging for tissues such as striated muscles that exist in high stress

environments, are metabolically active, and perform vital functions in vivo. Between

skeletal and cardiac muscle, design requirements for tissue culture bioreactors are

comparable owing to the similarities in their cellular density, metabolism, function, and

biomechanical growth laws (20). This review will mostly focus on the environmental

conditions and biophysical stimuli provided by tissue culture bioreactors that can enable

efficient structural and functional maturation of engineered striated muscles in vitro.

USE OF SCAFFOLDING MATERIALS TO PROMOTE ENGINEERED MUSCLE

STRUCTURE, DIFFERENTIATION, AND FUNCTION

The ultimate goal of any tissue engineering effort is to generate a completely biomimetic

tissue substitute that would structurally and functionally integrate with the host tissue after

implantation at both micro- and macroscopic levels. In general, host-donor differences in

tissue architecture may hinder graft integration, prevent healing and regeneration, and even

compromise safety of the therapy (e.g. by causing cardiac arrhythmias). In the case of

striated muscle, for the most efficient and safe repair, engineered tissue grafts should possess

structural properties characteristic of native muscle including high cell density, alignment,

and proper cell-type distribution (21). Furthermore, striated muscle constructs should be able

to support macroscopic tissue contractions and not only generate high active (contractile)

stresses but also sustain dynamic changes in passive tension that occur during normal

muscle function and exercise.

Rangarajan et al. Page 2

Ann Biomed Eng. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Biomaterial scaffolds represent a component of tissue engineering design that is critical for

the proper structural organization and functional maturation of engineered muscle tissues as

well as for their ability to sustain chronic biophysical stimulation in vitro and in vivo. Both

synthetic and natural scaffolds have been previously utilized for striated muscle tissue

engineering. Up to date, naturally derived hydrogels have proven more capable of producing

constructs with high cell density (due to cell-mediated gel compaction), uniform cell

distribution, and better cell alignment than synthetic polymeric scaffolds (21–23). Hydrogels

can be also micropatterned to reproducibly generate specific tissue structures (21, 24) and

can be used to deliver mechanical stimuli to cells when anchored at opposite ends via porous

materials, metal wires, or elastomeric posts (25–27). On the other hand, hydrogel-based as

well as scaffold-free tissue patches usually fall short of supporting uniform 3D cell

alignment over a large tissue area (28–30). Cylindrically-shaped constructs can support both

high cell density and alignment (31–33), however, they do not allow local control of the

degree or direction of cell alignment. The existing methods to generate uniform 3-D

orientation of cells (over multiple cell layers) in cardiac and skeletal muscle tissue patches

involve the use of 3-D scaffolds with aligned pores (34, 35), mesoscopic hydrogel molding

(25, 36, 37), and stacking of aligned tissue sheets (38). Still, the ability to engineer 3-D

biomimetic striated muscle tissues that are soft, free-standing, relatively large, and possess

stable aligned architecture and physiological density of muscle cells is yet to be

demonstrated.

In addition to being able to support high cell density and alignment, biomaterial scaffolds

need to provide a biophysical environment that is supportive of striated muscle

differentiation and function. In particular, Discher and others have shown that myogenic

cells can sense and react to stiffness of the surrounding matrix and optimally grow and

differentiate on 2D substrates with a stiffness similar to that of native muscle (39, 40).

Similarly, 3D hydrogels of different stiffness have been shown to distinctly affect gene

expression and function of cardiac progenitor cells or neonatal cardiomyocytes (41, 42).

More recent studies however suggest that the stem cell fate and thus the process of striated

muscle differentiation and maturation may not be directly governed by the substrate stiffness

per se, but instead depend on the type, density, and distribution of cell adhesion receptors

which are in turn regulated by the hydrogel chemistry and, potentially, the dynamics of

muscle cell contractions (43, 44). Furthermore, biophysical and biochemical properties of

the surrounding matrix will directly determine how efficiently: 1) individual muscle cell

contractions integrate at the macroscopic tissue level, and 2) externally applied mechanical

stimuli transmit to individual cells. In general, improved understanding of cell-biomaterial

interactions (for both muscle and supporting non-muscle cells) will be required for the

design of advanced 3D scaffolds for tissue engineering of functional striated muscles.

USE OF FLOW TO ENHANCE MASS TRANSPORT WITHIN ENGINEERED

MUSCLE TISSUES

Traditional cell culture systems such as tissue culture plates and flasks maintain cells in

static condition whereby gas exchange that occurs via surface aeration and mass transfer is

diffusion-limited (45). In static systems, engineered skeletal and cardiac muscle tissues
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develop a necrotic core due to low mass transfer rates and high metabolic demand of cells

(30, 31). In an attempt to mimic physiologic delivery of oxygen, nutrients, and chemical

signals by blood flow, researchers have designed tissue culture bioreactors with

continuously mixed media that provide significantly higher mass transfer rates compared to

static cultures. These bioreactors enabled engineering of thicker tissue constructs, however,

physiologically dense (108–109 cells/ml of tissue) engineered striated muscle tissues still

remain limited in thickness to 120–150 μm (28, 46). Examples of dynamic tissue culture

bioreactors (e.g., spinner flasks, rotating wall vessels (RWVs), perfusion systems) are listed

in increasing order of their mass transfer rates in Figure 1. Characteristics of the bioreactors

utilized for seeding and cultivation of engineered skeletal and cardiac muscle tissues are

summarized in Table 1. In addition, different microfluidic systems can be used to facilitate

drug screening studies in striated muscle microtissues by minimizing the fluid volume

needed to perfuse such organ-on-a-chip platforms (47, 48).

Stirred Flasks

Stirred spinner flasks were among the first bioreactors employed to promote circulation of

media and supply of oxygen to 3-dimensional cell cultures (19). Although media mixing in

these bioreactors yields an increase in overall cell viability compared to static cultures (49),

the use of rotating stirrer bars also creates a turbulent shear stress environment which can

negatively affect health and viability of shear-sensitive cells such as cardiomyocytes (46,

49).

Rotating Wall Bioreactors

For shear-sensitive cells, such as cardiomyocytes, an ideal culture environment would

involve both the presence of high mass transfer rates and low shear stresses. NASA was the

first to introduce a tissue culture bioreactor that satisfied these requirements, a rotating wall

vessel (RWV). Through control of rotation speed, the RWVs maintain a free-falling

(“microgravity”) tissue environment in which cells experience low shear stress but still

receive sufficient supply of oxygen and nutrients (50). There are several adaptations of the

RWV currently in use, including slow lateral turning vessel (STLV), high aspect ratio vessel

(HARV), and the rotating wall perfusion vessel (pRWV) (19). STLVs and HARVs are

cylindrical vessels that differ in the base-to-height aspect ratio and size and position of the

gas exchange membrane. In STLVs, the gas exchange membrane wraps around an inner

cylinder whereas in HARVs, the membrane is flat and positioned at the base of the cylinder

(51). In pRWVs, the media perfuses through the rotating cylinders. These bioreactors have

been utilized to promote formation of functional skeletal and cardiac muscle tissues.

Specifically, Molnar et al. cultured satellite cells on microcarrier beads in HARVs and

observed that cells experiencing microgravity showed better cellular organization than those

in static cultures (52). Interestingly, application of microgravity improved cell proliferation

without the anticipated muscle atrophy. Papadaki and Bursac et al. observed significant

improvements in cell viability, hypertrophy, expression of cardiac proteins, and electrical

function when engineered cardiac tissues were cultured in HARVs compared to spinner

flask bioreactors (46, 53).
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Perfusion Bioreactors

Perfusion bioreactors have been developed to allow continuous flow of culture medium and

provide high transfer rates of gases and nutrients, stabilization of pH, and effective removal

of toxins, all of which are expected to result in better structural organization and functional

properties of engineered striated muscles. Specifically, the use of perfusion through porous

polymer scaffolds has been shown to improve seeding efficiency leading to increased

density and more uniform 3-D distribution of skeletal muscle cells and cardiomyocytes (54–

56). In addition to more uniform cell seeding, perfusion of cardiac and skeletal muscle

tissues can promote their viability and long-term maintenance in vitro, as shown by

Chromiak et al. for avian skeletal muscle organoids (57). In recent studies, Cheng et al.

analyzed the individual and combined effects of IGF and bidirectional perfusion on

engineered cardiac tissues and showed reduced cell apoptosis, increased connexin-43

expression, stronger contractions, and decreased excitation threshold (58). Similarly,

Shansky et al. employed a perfusion bioreactor to study paracrine effects of IGF-1 on avian

skeletal muscle constructs and observed overexpression of muscle myosins (59). Brown et

al. compared pulsatile and static perfusion of engineered cardiac tissues and showed that

pulsatile flow led to improved contractile properties and excitability of cardiomyocytes (60).

While these and other studies suggest beneficial roles of in vitro perfusion on the structure

and function of engineered striated muscles, for physiologically dense muscle tissues, high

shear stresses during interstitial perfusion may negatively affect viability of shear-sensitive

muscle cells. Furthermore, removal of perfusion conditions at the time of implantation is

likely to result in rapid tissue ischemia and death in vivo.

Recently, Okano’s group reported a novel “vascularization” strategy whereby an underlying

vascular bed was used to generate perfused vessel networks within engineered cardiac and

skeletal muscle tissue sheets (61, 62). Specifically, co-cultured engineered sheets of neonatal

rat cardiomyocytes and endothelial cells were laid on top of either perfused collagen micro-

channels or an ex vivo vascular bed. The co-cultured cells showed high viability, formation

of vascular structures under perfusion, and increased connectivity between underlying

vascular bed and tissue sheets in the presence of bFGF. Theoretically, these vascularized

cardiac tissues could be continually ‘grown’ by the repetitive stacking of additional cell

sheets. Upon implantation, these tissue patches connected to host vasculature, resulting in

increased viability compared to non-vascularized controls (62). While promising, it remains

to be studied if this approach can enable in vitro growth of dense striated muscle tissues

thicker than 150 μm.

USE OF BIOPHYSICAL STIMULATION TO PROMOTE ENGINEERED

MUSCLE MATURATION AND FUNCTION

Engineering of highly functional striated muscle tissues will likely require extensive

understanding of the muscle development, structure, physiology, functional adaptation, and

injury repair mechanisms. Ideally, advanced bioreactors for muscle tissue engineering are

expected to provide active monitoring of tissue viability, metabolism, and function, as well

as controlled application of important biophysical cues present in healthy innervated muscle.

In particular, controlled electrical stimulation (pacing) to induce active muscle contraction
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and mechanical stimulation (stretch) to alter passive muscle loading are utilized to mimic the

most important aspects of striated muscle work. Overview of bioreactor systems with

capabilities for biophysical stimulation utilized for cardiac and skeletal muscle tissue

engineering are listed in Table 2.

Mechanotransduction in Native and Engineered Muscle Tissues

Different regimes of mechanical loading have been shown to cause profound alterations in

muscle structure and function by the activation of a variety of intracellular signaling

cascades. In general, any change in the mechanical stress experienced by striated muscle

cells leads to one of the following outcomes: cell elongation (preferential sarcomere addition

in series), thickening (preferential sarcomere addition in parallel), elongation and thickening

(sarcomere addition in both series and parallel), or apoptosis and death. In skeletal muscle,

chronic active overload may lead to myofiber thickening (hypertrophy), while chronic

passive stretch leads to myofiber elongation (63). In cardiomyocytes, the mechanosensitive

response varies depending on the type of overload, pressure or volume, and can result in

either physiological growth (characterized by both cell elongation and thickening),

physiological or pathological concentric hypertrophy (cell thickening) and physiological or

pathological eccentric hypertrophy (cell elongation) (14).

Mechanical loading affects muscle cell growth, differentiation, and morphology via various

intracellular molecular pathways, some of which are depicted in Figure 3. In particular,

static and cyclic stretch have been shown to upregulate secretion of different autocrine and

paracrine factors (64, 65) including insulin-like growth factor I (IGF-I), adenosine mono-

and tri-phosphate (AMP, ATP), reactive oxygen species (ROS), and prostaglandins (PG)

(65, 66). In striated muscle cells, these cytokines activate a number of downstream effectors

among which Phosphoinositide 3-kinase (PI3K), G-protein, Mitogen activated protein

kinase (MAPK), calcium, and AMP activated kinase (AMPK) play the most important roles

in muscle mechanotransduction (63, 65, 67, 68). Specifically, phosphoinositide 3-kinases

play a major role in cell metabolism and directly regulate cell proliferation and

differentiation. These enzymes can be activated by autocrine/paracrine action of IGF-I and

other growth factors upon stimulation by mechanical stress (69). G-proteins (heterotrimeric

guanine nucleotide binding proteins) associate with the cell-surface receptors and increase

transcription of muscle-specific genes in cardiac and skeletal muscle cells subjected to

mechanical strain to mediate cell growth and hypertrophy (11, 70, 71). Stretch-induced IGF-

I and other cytokines act via G-protein coupled receptors (GPCRs) to activate mitogen

activated protein kinases (MAPK) pathways known to play integral roles in muscle

mechanotransduction (72, 73). MAPKs are divided into c-Jun NH2-terminal kinase (JNK),

extracellular regulated kinase (ERK), and p38 families. The JNK family is also known as

stress-activated protein kinases. Increased ERK and JNK phosphorylation was observed in

response to mechanical stress in skeletal muscle cells, while p38 phosphorylation was either

found to be unaffected, or increased for eccentric but not concentric muscle loading (67, 74).

Positive growth and differentiation effects of IGF-I on skeletal and cardiac muscle were

recapitulated in vitro where addition of IGF-I to culture medium improved structural and

contractile properties of engineered muscle tissues (58, 59).
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G-protein receptor activated phospholipase C (PLC) pathway is another major contributor to

the mechanotransduction signaling in striated muscles that integrates with both the Ras-Raf

and Calcium-mediated pathways (75). PLC activation of protein kinase C (PKC) isoforms

has been shown to stimulate expression of cytoskeletal protein β-MHC leading to

cardiomyocyte hypertrophy (76). Muscle mechanotransduction is also governed by

intracellular calcium levels that are mainly regulated by calcium influx through stretch-

activated channels (SAC), active force generation, and phospholipase pathways (65, 77, 78).

Increased intracellular calcium levels can stimulate activity of PKC and Calmodulin-

dependent protein kinase (CaMK) and profoundly affect proliferation and hypertrophy of

developing cardiomyocytes (79). Stimulation of the calcium/calmodulin pathway can also

activate calcineurin to induce translocation of cytoplasmic nuclear factor of activated T cells

(NFATc) into the nucleus and enhance the transcription of a number of muscle-specific

genes (e.g. MHC isoforms) leading to cardiac and skeletal muscle hypertrophy (64, 65, 80).

Mechanical Stimulation by Stretch

Due to essential roles that mechanical forces play in muscle growth, differentiation, and

function, the ability to apply controlled patterns of mechanical stimulation is critical for

promoting functional myogenesis in vitro. A variety of mechanical stimulation regimes have

been utilized for muscle tissue engineering including static stretch (i.e., a single step of

stretch at the beginning of culture), ramp stretch (i.e., continuous or discrete, step-by-step

increase in stretch amplitude), and cyclic stretch (i.e., a periodic train of stretch pulses with a

given shape, amplitude, frequency, and duration of intermittent pauses). In theory, these

temporal regimes of mechanical stimulation can be applied along one (uniaxial), two

(biaxial), or all planar tissue axes (multiaxial) (81) (Fig. 2), with uniaxial stimulation being

the simplest and mostly utilized stimulation regime for engineering of striated muscle.

Studies that utilized mechanical stimulation for cardiac and skeletal muscle tissue

engineering are summarized in Table 3. Vandenburgh et al. were among the first to utilize

bioreactors with mechanical stimulation for culture and testing of cylindrically shaped

striated muscle constructs. (82, 83). They and others (84, 85) found that both uniaxial static

and cyclic stretch have beneficial effects on engineered muscle survival, alignment,

hypertrophy, and differentiation, as well as glucocorticoid-induced skeletal muscular

atrophy (86, 87). In a study by Candiani et al., application of a biomimetic stretch regime

(with a 2-day steady ramp stretch to 3.3%, followed by cyclic 5-pulse, 0.5 Hz, 3.4% burst

stretches for 2 min with 28 min intermittent breaks over a period of 10 days) to C2C12 cells

induced an 8-fold increase in the expression of myosin heavy chain (MHC) protein

compared to static control (88). More recently, Machingal et al. engineered skeletal muscle

constructs using mechanically preconditioned muscle progenitor cells (by 10% stretch, 3

times per minute for the first 5 min of every hour, for 1 week). Two months post-

implantation in a volumetric muscle loss injury model in mice, preconditioned constructs

had superior biomechanical properties and induced accelerated and prolonged functional

recovery following implantation (89, 90).

Interestingly, application of different mechanical stimulation regimes has been shown to

affect the switch between the two skeletal muscle fiber phenotypes, namely, slow oxidative
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(type I), which is economical in energy consumption and fatigue resistant, and fast anaerobic

(type II), which is used when there is a large but short physical demand. Specifically, stretch

or mechanical load upregulated type I and downregulated type II muscle fiber genes (e.g.

slow MHC), and when the load was removed or reduced, the fibers reverted back to type II

along with a reduction in slow MHC expression (11, 91). It is possible that the application of

appropriate mechanical stimulation regimes within tissue culture bioreactors could allow

engineering of skeletal muscle tissue with the desired fiber type composition, with the goal

of better matching the native muscle phenotype present at the injury site.

Similar to studies with engineered skeletal muscle tissues, beneficial effects of mechanical

stimulation on tissue structure, differentiation, and function have been also demonstrated for

engineered cardiac muscle. Fink et al. investigated the effects of mechanical stimulation on

engineered neonatal rat and chick cardiac muscle and found that 6 days of 20%, 1 Hz

uniaxial cyclic stretch improved cardiomyocyte alignment, elongation, and hypertrophy

yielding a 2–4 fold increase in contractile force amplitude (85). Akhyari et al. subjected

human neonatal heart cells seeded in gelatin foam scaffolds to continuous cyclic stretch

(20%, 1.3 Hz) for 14 days using the Bio-Stretch apparatus (81) and showed significant

improvements in cell spreading, distribution, and proliferation (92). Birla et al. designed a

novel bioreactor for stimulation of engineered cardiac tissues but was unable to show any

positive effects of a short-term cyclic stretch (10% at 1 Hz up to 24 hours) on cardiac

function (93). Recently, Tulloch et al. co-cultured endothelial cells with human pluripotent

stem cell-derived cardiomyocytes and applied cyclic stretch (5% at 1 Hz) for 4 days. They

found that synergistic action between mechanical loading and endothelial cell presence led

to increased cardiomyocyte proliferation (94).

Of note is however that not all regimes of mechanical stimulation have positive effects on

engineered striated muscle differentiation, as found by Boonen et al. who showed a decrease

in myogenic regulatory factors and delay in sarcomerogenesis upon application of 2%

uniaxial ramp stretch followed by 4% uniaxial intermittent dynamic stretch to C2C12 cells

(95). Similarly, although not widely used, specific regimes of biaxial stretch have shown

increased cell proliferation along with delayed activation and differentiation of satellite cells

(96, 97). Taken together, while mechanical loading plays a vital role in myogenic growth

and development, the optimal stimulation regimes for structural and functional maturation of

engineered muscle remain to be determined and are likely to differ for different muscle

types, scaffolds, and culture media formulations.

Electrical Stimulation

Continuous contractile activity of the beating heart muscle (initiated by firing of pacemaker

cells) or working skeletal muscle (initiated by release of acetylcholine from motor neurons)

is of critical importance for the maintenance of striated muscle cell viability, muscle tone

and mass, and, ultimately, human mobility and life. The ability to replicate this activity in

vitro requires that appropriate electrical stimulation regimen is applied to cultured cells or

engineered tissues in a controlled and biomimetic fashion. Over the last 30 years, large

numbers of in vitro and in vivo studies have shown beneficial effects of electrical

stimulation on skeletal muscle cell fusion, alignment, hypertrophy, expression of contractile
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proteins and myogenic markers, electrical excitability, and force generation (98–103). While

most of the in vitro studies involved the use of standard monolayer cultures, few tissue

culture bioreactors have been designed for long-term stimulation of 3D engineered muscle.

For example, Donnelly et al. designed a tissue culture bioreactor with the ability to vary

electrical stimulation parameters including frequency, pulse amplitude, and pulse width

(104). At higher stimulation frequencies, they found that 2D monolayers of C2C12 cells

showed higher rates of protein synthesis, while 3D muscle constructs displayed improved

force generation. On the other hand, large amplitude electrical stimuli of more than 6 ×

threshold value caused significant electrochemical damage in engineered muscle (103).

Specific patterns of muscle activity have been shown to determine the skeletal muscle fiber

phenotype in seminal studies by Buller et al., who converted the fast into slow muscle fibers

by cross-innervating them with slow fiber neurons (105). In vitro, Naumann et al., showed

that different regimes of chronic electrical stimulation can modulate expression of MHC

isoforms in primary rat myotubes and that changes from fast to slow fiber phenotype occur

during stimulation with high frequency bursts (106). The fast-to-slow fiber type conversion

has also been observed during application of chronic low frequency stimulation (CLFS)

(107), presumably due to its similarity to neuronal stimulation patterns present in slow

muscle fibers (108). The reversal of the fast-to-slow fiber type switch could be achieved by

removing stimulation, denervation, administration of tetrodotoxin, stimulation at high

frequency, and shortening of the muscle length (109). Still, slow-to-fast fiber type transition

is more difficult to achieve due to lower work-to-rest ratio and random firing pattern of the

fast muscle fibers (110). Lately, Guo et al. developed a functional human neuromuscular

junction system by co-culture of human stem cell derived motoneurons and primary muscle

cells (111). Such systems could be adapted to incorporate electrical stimulation, and when

miniaturized, used for high-throughput drug and toxicology screening, disease modeling,

and studies of neuromuscular synaptogenesis.

Similar to skeletal muscle cells, electrical stimulation of cardiomyocytes has been shown to

promote cardiomyocyte ultrastructural organization, hypertrophy, alignment, excitability,

and electrical coupling (112, 113). In 2D neonatal rat cardiomyocyte cultures, chronic

electrical pacing (1–3 Hz for 2–4 days) stabilized action potential duration and conduction

velocity as well as altered expression of ion channel and gap junctional proteins (114, 115).

In 3D engineered neonatal rat cardiac tissues, 1 Hz electrical stimulation for 8–9 days

yielded increase in cell elongation, volume fraction, expression of gap junctional protein

connexin-43, excitability, and maximum tissue capture rate (112, 116). Sauer et al. and Chen

et al. have shown that short term (90 s) and chronic (4 day) electrical stimulation can also

promote cardiac differentiation of mouse ESC-derived embryoid bodies (EBs) through the

generation of intracellular reactive oxygen species (ROS), suggesting the potential utility of

electric stimulation for enhanced functional maturation of stem cell-derived cardiomyocytes

(113, 117). Recently, Lieu et al. applied cyclic electrical stimulation (2.5V/cm, 1Hz for 14

days) to hESC-derived cardiomyocytes starting at 24–28 days of differentiation and showed

compelling evidence for structural and electromechanical maturation of cells including

appearance of robust sarcomeres, increased expression of excitation-contraction coupling

and calcium cycling genes, increased potassium currents, hyperpolarization of resting

potential, and increased calcium transient amplitude (118). Similarly, in recent studies by

Rangarajan et al. Page 9

Ann Biomed Eng. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Nunes et al., cyclic electrical stimulation of variable frequency (1–6 Hz increase for the first

7 days followed by steady 1 Hz for 14 days) promoted structural and functional maturation

of human ESC-derived cardiomyocytes within 3D collagen-based tissue constructs (119).

While it is almost certain that chronic electrical stimulation can provide significant benefits

for differentiation and maturation of engineered striated muscles, the optimal stimulation

regimes leading to physiological rather than pathological phenotypic changes remain to be

identified (120).

Multimodal Stimulation

The native microenvironment of striated muscle is a complex source of various physical and

biochemical signals, which to be fully reproduced in vitro, will require the design of

multimodal bioreactors with the ability to simultaneously provide a combination of flow,

electrical and mechanical stimuli. Feng et al. were the first to design a bioreactor capable of

co-delivering electrical and mechanical stimulation to engineered cardiac muscle. They

suggested that application of a 10 V electrical pulse at the beginning of each period of cyclic

stretch (3.7%, 1 Hz) enhanced cardiomyocyte size and contractile properties (121). Using a

multimodal bioreactor, Liao et al. simultaneously applied intermittent cyclic stretch (5%

amplitude, 1 Hz for 1 h with 5 h of rest for total of 7 days) and electrical stimulation (4

V/cm) to tubular skeletal muscle constructs and measured higher fraction of cross-striated

myotubes, expression of MHC proteins, and excitability compared to unstimulated cultures

(122). In this particular case, combined electromechanical stimulation did not provide

additional benefit compared to application of individual (electrical or mechanical)

stimulation regimes. Barash et al. (123) and more recently Maidhof et al. (124) constructed

bioreactors that delivered combined electrical stimulation (1 Hz) and media perfusion to

engineered cardiac tissues and found that the bimodal stimulation improved cardiomyocyte

structural and contractile properties. In a recent report, Kensah et al. designed a bioreactor

that was capable of electrical stimulation, mechanical stimulation, perfusion, and real-time

monitoring of tissue morphology and force production. In these bioreactors, collagen-based

neonatal rat cardiac tissue constructs were subjected to mechanical stretch (10%, 1 Hz, for 7

days) and β-adrenergic stimulation. Expression of cardiac hypertrophy markers and

contractile force amplitudes in stretched tissues were higher than those cultured in static

conditions but lower than those observed under β-adrenergic stimulation alone or with

mechanical stretch (125). Overall, multimodal bioreactors hold promise in providing the

most biomimetic culture environment for growth and maturation of engineered striated

muscles. However, with increased bioreactor complexity, susceptibility to failure increases

and so do the difficulties in identifying the optimal regime of stimulation (110). In addition,

translational potential of the entire approach may decrease due to potential regulatory and

commercialization issues. All of these factors must be considered when designing a viable

tissue engineering strategy for use in toxicology screening, drug development, and cell-

based therapies.

CONCLUSIONS

Striated muscle tissue engineering has come a long way since the very first attempts to

culture and maintain muscle cells in vitro. With better control of pH, temperature, and
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sterility, improved mass transfer of nutrients and oxygen, application of electrical and

mechanical stimulation, and ability to monitor cell differentiation and function in real time,

sophisticated tissue engineering bioreactors will pave the way for generation of highly

functional biomimetic muscle tissues. When developing a successful bioreactor system, one

should have an in-depth knowledge of the native tissue biology and physiology and

prioritize the design parameters in accordance with the aims of the study in order to strike a

balance between the minimum required complexity and reliability. Understanding potential

synergistic or antagonistic effects of different biophysical and biochemical stimuli on

engineered muscle structure and function is of particular importance and is yet to be

explored in detail. For the optimal tissue growth and maturation, operational parameters for

different types of stimuli should be carefully selected and, if not physiologically or

developmentally based, may be detrimental to cell health and/or cause compensatory

pathological changes. These changes, often transient in nature and eventually followed by

tissue deterioration, may be mistakenly interpreted as improved functional outcomes.

Development of bioreactors that can support long-term tissue growth and provide

continuous tuning of operational parameters based on real-time monitoring of tissue function

and maturation could help avoid these issues. Recently developed tissue systems, such as

microtissue systems or NMJ systems, show real promise in therapeutic applications,

studying the physiopathology of tissue-specific diseases and even enhancing post-

implantation integration and survival. We expect that in the years to come new advances in

bioreactor technology will be critical for successful engineering of highly functional striated

muscle tissues eventually leading to their clinical use for treatment of muscle disease and

injury.
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Fig. 1.
Bioreactors for engineering of striated muscle tissues. Static flask, A; Spinner flask, B.

Tissue constructs are threaded onto stainless steel needles; Rotating Wall Vessel, C.

Levitating tissue constructs experience “microgravity” condition. Arrow shows direction of

vessel rotation; Perfusion bioreactor, D. Arrows shows the direction of media flow through

tissue construct.

Rangarajan et al. Page 19

Ann Biomed Eng. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2.
Examples of stretch regimes to be applied to engineered striated muscle: Uniaxial stretch, A;

Biaxial stretch, B; Multiaxial stretch, C.
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Fig. 3.
Important mechanotransduction signaling pathways in striated muscle cells. Blue,

Intracellular calcium-mediated signaling; Purple, Phospholipase C signaling; Orange,

MAPK pathway; Green, PI3K pathway; Peach, JAK/STAT pathway; Yellow, Overlap

between signaling pathways.
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Table 2

Bioreactors with biophysical stimulation for engineering of striated muscles

Cell Source Electrical Stimulation Mechanical Stimulation Perfusion Ref.

Bioreactors for Cardiac Muscle Tissue Engineering

ECCMs, NRCMs − + − (131)

NRCMs − + − (132) (93)

NRCMs + − − (116)

NRCMs + − + (123)

NRCMs − + + (60)

NRCMs + + + (125)

Mouse iPSC-CMs + + + (133)

Human Pediatric CMs − + − (92)

Human ESC/iPSC-CMs − + − (94) (133)

Human ESC/iPSC-CMs + − − (118, 119)

Bioreactors for Skeletal Muscle Tissue Engineering

C2C12 Line + − − (104)

C2C12 Line − + − (88)

C2C12 Line + + − (122)

Rat MPCs + MDCs − + − (89) (90)

Human Muscle Cells − + − (134)

Human Muscle Precursor Cells − + − (135)

CM: Cardiomyocyte; ECCM: Embryonic Chick Cardiomyocyte; NRCM: Neonatal Rat Cardiomyocyte; hESC-CM: Human Embryonic Stem Cell-
derived Cardiomyocyte; iPSC-CM: Induced Pluripotent Stem Cell-derived Cardiomyocyte; MPC: Muscle Progenitor Cell; MDC: Muscle Derived
Cell.
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Table 4

Use of bioreactors for electrical stimulation of engineered striated muscle

Cell Source Cyclic regime Duration Outcome Ref.

NRCMs 2 ms pulses 5 V/cm, 1 Hz 8 days Improved CM ultrastructure, alignment,
contraction, excitability

(112)

NRCMs 2 ms pulses 4 V/cm, 1 Hz 9 days Increased CM volume fraction, elongation,
connexin-43 expression

(116)

Human ESC-CMs 2.5 V/cm, 1 Hz 14 days Enhanced CM sarcomerogenesis, Ca
handling, electrical properties

(118)

Human ESC/iPSC-CMs 3–4 V/cm, 1–6 Hz for 7 days, then 1 Hz 7–21 days Promoted cell organization, conduction
velocity, Ca2+ handling

(119)

C2C12 Line 5 V/cm, 1 Hz for 1 hour every 6 hours 7 days Enhanced formation of striations,
contractile protein expression

(122)

C2C12 Line 12.5, 25, 50 V/cm, 4 pulses at 10 or 100 Hz,
then 3.6 s rest

7 days Higher pulse amplitude increased force
production and excitability, higher pulse
frequency increased the rate of protein

synthesis

(104)
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