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Neurobiology of Disease

IL-4 Signaling Drives a Unique Arginase " /IL-18" Microglia
Phenotype and Recruits Macrophages to the Inflammatory
CNS: Consequences of Age-Related Deficits in IL-4Ra after

Traumatic Spinal Cord Injury
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Alternative activation of microglia/macrophages (M2a) by interleukin (IL)-4 is purported to support intrinsic growth and repair pro-
cesses after CNS injury. Nonetheless, alternative activation of microglia is poorly understood in vivo, particularly in the context of
inflammation, injury, and aging. Here, we show that aged mice (18 -19 months) had reduced functional recovery after spinal cord injury
(SCI) associated with impaired induction of IL-4 receptor « (IL-4R«) on microglia. The failure to successfully promote an IL-4/IL-4Ro
response in aged mice resulted in attenuated arginase (M2a associated), IL-1[3, and chemokine ligand 2 (CCL2) expression, and dimin-
ished recruitment of IL-4Ra™ macrophages to the injured spinal cord. Furthermore, the link between reduced IL-4R« expression and
reduced arginase, IL-183, and CCL2 expression was confirmed using adult IL-4Ra knock-out (IL-4Ra°) mice. To better understand
IL-4R-mediated regulation of active microglia, a series of studies was completed in mice that were peripherally injected with lipopoly-
saccharide and later provided IL-4 by intracerebroventricular infusion. These immune-based studies demonstrate that inflammatory-
induced IL-4R o upregulation on microglia was required for the induction of arginase by IL-4. In addition, IL-4-mediated reprogramming
of active microglia enhanced neurite growth ex vivo and increased inflammatory gene expression (i.e., IL-13 and CCL2) and the corre-
sponding recruitment of CCR2 " /IL-4Ra " /arginase " myeloid cells in vivo. IL-4 reprogrammed active microglia to a unique and previ-
ously unreported phenotype (arginase */IL-13™") that augmented neurite growth and enhanced recruitment of peripheral IL-4Ra™*
myeloid cells to the CNS. Moreover, this key signaling cascade was impaired with age corresponding with reduced functional recovery

after SCI.
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Introduction

Alternative activation of microglia/macrophages (M2a) is pur-
ported to be protective after spinal cord injury (SCI) participat-
ing in intrinsic survival, growth, and repair processes (David and
Kroner, 2011). Nonetheless, the M2a phenotype is poorly under-
stood in vivo and recent studies indicate that it may be impaired
with normal aging (Fenn et al., 2012; Lee et al., 2013). Impaired
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M2a microglial regulation may explain why older individuals
(60+ years) have reduced functional recovery and increased
mortality after a traumatic injury to the brain or spinal cord
(Chenetal., 1997; Onyszchuk et al., 2008; National SCI Statistical
Center, 2013). Indeed, in rodent models of traumatic brain in-
jury, a worse functional outcome in the aged corresponded with
reduced IL-4 signaling (Kumar et al., 2013) and increased CNS
inflammation (Sandhir et al., 2008). Few studies, however, have
investigated a mechanism for increased age-associated morbidity
and mortality after SCI. This is a significant problem because
incidence of SCI in aged individuals has increased fivefold in the
last 30 years and currently comprises 15% of SCI cases each year
(Fassett et al., 2007). Thus, a better understanding of how differ-
ent microglia/macrophage phenotypes affect SCI recovery in the
aged is required.

Understanding of distinct microglia/macrophage phenotype
has expanded within the last decade. Unfortunately, M1, M2a,
M2b, and M2c phenotyping has primarily been done in vitro
and whether or not these distinct phenotypes develop in vivo and
what functions they perform are not well defined (Mosser and
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Edwards, 2008). In the context of SCI, the IL-4-driven M2a phe-
notype has received the most attention because it may support a
level of endogenous repair (David and Kroner, 2011). For exam-
ple, in models of nerve and spinal cord injury, increased expres-
sion of the M2a marker arginase was associated with prolonged
axonal protection (Barrette et al., 2010) and improved neuronal
growth and survival (Cao et al., 2005). Moreover, media from
IL-4-treated macrophages enhanced neurite growth in vitro
(Kigerl et al., 2009). Thus, an inability to respond to IL-4/IL-13
and induce an M2a phenotype after SCI may impede functional
recovery in the aged.

Therefore, the aims of this study were twofold: (1) test the
hypothesis that impaired IL-4Ra induction and M2a regulation
of microglia in the aged CNS results in an attenuated microglial
response and worse functional outcome after SCI and (2) better
characterize the M2a phenotype in vivo in the context of SCI and
inflammation. We show novel data that aged mice had reduced
functional recovery after SCI associated with failed induction of
IL-4Ra and reduced M2a responses in microglia (reduced argi-
nase), but also reduced inflammatory cytokine (IL-18) and
chemokine (CCL2) expression necessary to recruit IL-4Ra ™
monocytes/macrophages to the injured spinal cord. Moreover, evi-
dence from immune-based studies shows that induction of IL-4Ra
on microglia was required for IL-4-dependent arginase expression in
vivo and axon outgrowth ex vivo. Last, inflammatory-activated mi-
croglia reprogrammed with IL-4 in vivo increased expression of
IL-18 mRNA associated with heightened CCL2 in the brain and
enhanced recruitment of CCR2 */IL-4Ra */Arg * myeloid cells to
the CNS.

Materials and Methods

Mice. Adult BALB/c mice were obtained from a breeding colony kept
in barrier-reared conditions in a specific pathogen-free facility at The
Ohio State University. A breeding colony was established for adult
IL-4Ra-deficient (IL-4Ra %) mice on a BALB/c background (BALB/c-
Il4ra"™15%(]; #003514). Breeding pairs were purchased from Jackson Lab-
oratories. Adult C57BL/6 mice were purchased from Charles River
Breeding Laboratories, adult C57BL/6-Tg“*“ESF®) 131/leysop] mice
(#006567) were purchased from The Jackson Laboratory, and aged
BALB/c mice (1822 months) were purchased from the National Insti-
tute on Aging specific pathogen-free colony (maintained at Charles River
Laboratories). Mice were individually housed in polypropylene cages and
maintained at 25°C under a 12 h light/dark cycle with ad libitum access to
water and rodent chow. All procedures were in accordance with the
National Institute of Health Guidelines for the Care and Use of Labora-
tory Animals and were approved by The Ohio State University Institu-
tional Laboratory Animal Care and Use Committee.

SCI. SCI was performed as previously described (Jakeman et al., 2000;
Donnelly et al., 2011). In brief, mice were deeply anesthetized using
ketamine and xylazine (100 and 10 mg/kg BW i.p., respectively) and
received a laminectomy at vertebral level T9 or a laminectomy followed
by a spinal cord contusion using the Infinite Horizons device (75 kdyn;
Precision Systems and Instrumentation). Mice were returned to a slide-
warmed cage (35—37°C) with three to four mice per cage and adminis-
tered 2 ml sterile saline, and 100 ul Gentocin (5 ml/kg) subcutaneously.
Mice were maintained on the slide-warmed cage overnight. Mice receiv-
ing a spinal cord contusion underwent bladder expression twice daily for
the duration of the experiment.

Motor recovery. Basso Mouse Scale (BMS) scoring was completed as
previously described (Basso et al., 2006). In brief, mice were acclimated
to a plastic-bottomed open field (100 cm diameter, 21 cm wall height)
every other day for 1 week before injury. Because BALB/c mice freeze in
an open field under bright light, dim light was used for all BMS testing.
After injury mice were placed individually in the open field 1, 3, 5, 7, 14,
21, and 28 d post injury (dpi). During testing mice were scored for 4 min
by two observers blinded to experimental treatment. Mice were rated by
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on a scale of 0-9. Testing was completed during the light phase at the
same time each day.

Purification of enriched microglia from brain. Enriched microglia were
isolated from brain as previously described (Henry et al., 2009; Fenn et
al., 2012). In brief, the brain was homogenized through a 70 um cell
strainer and centrifuged to collect a cell pellet. Cells were then suspended
in a discontinuous Percoll density gradient (70%/50%/35%/0%) and
centrifuged. Microglia and peripherally derived CD11b ™ cells were col-
lected at the 70%/50% Percoll interphase (Henry et al., 2009; Wohleb et
al., 2012). In these studies, Percoll-isolated cells were primarily micro-
glia. For example, Percoll-isolated cells from control mice (Saline-Veh,
Saline-IL-4) were ~78% CD11b */CD45'° microgliaand ~3% CD11b */
CD45" peripherally derived macrophages and granulocytes. Following
lipopolysaccharides (LPS; LPS-Veh, LPS-IL-4) the percentage shifted to
~75% microglia and ~9% peripherally derived macrophages and gran-
ulocytes. Based on these percentages, Percoll-isolated cells from the brain
are referred to as “enriched microglia.”

Purification of enriched CD11b" cells from spinal cord. Enriched
CD11b " cells were isolated from the spinal cord as previously described
(Donnelly et al., 2011). In brief, the entire spinal cord was homogenized
through a 70 wm cell strainer and centrifuged to collect a cell pellet. Cells
were then suspended in a modified discontinuous Percoll density gradi-
ent (70%/35%/0%) and centrifuged. Microglia and peripherally derived
CD11b * cells were collected at the 70%/35% Percoll interphase. Because
of this modified gradient, a larger proportion of isolated cells was not of
a CD11b " lineage and likely consisted of other brain glia including as-
trocytes (Norden et al., 2014). Nonetheless, in these studies Percoll-
isolated cells from laminectomy mice were ~58% CD11b*/CD45'"
microglia, ~2% CD11b +IGR1'/es macrophages,and ~1.5% CD11b *
GR1 ™ granulocytes. Following SCI the percentage shifted to ~43% mi-
croglia, ~6% macrophages, and ~6% granulocytes. Because of the lower
proportion of microglia isolated from the spinal cord and increase in
peripherally derived cells, Percoll-isolated cells from the spinal cord are
referred to as “enriched CD11b " cells.”

Intracerebroventricular cannulation and injections. Intracerebroven-
tricular cannulation was performed as previously described (Huang et
al., 2008). In brief, mice were deeply anesthetized using ketamine and
xylazine (100 and 10 mg/kg BW i.p., respectively). A 26 gauge stainless
steel guide cannula was placed in the lateral cerebral ventricle using the
following stereotaxic coordinates from bregma: Lateral 1.2 mm; A-P 0.5
mm; and a depth of —2 mm from the dura mater. Two anchoring cranial
screws were inserted adjacent to the cannula and the cannula was secured
with cranioplastic cement. A dummy cannula was inserted in the guide
cannula to prevent occlusion and infection. Mice were injected subcuta-
neously with Buprenex (111 ug/kg BW) after surgery and again 24 h
later. Mice were provided a minimum of 7 d to recover before treatment.

After at least 7 d post intracerebroventricular cannulation, mice were
given an intraperitoneal injection of saline or LPS (0.33 mg/kg-BALB/c;
0.5 mg/kg-C57BL/6). One hour later mice received a 2 ul volume intra-
cerebroventricular injection of vehicle (0.1% BSA) or IL-4 (25 ng/ul) ata
rate of 1 ul/min. Twenty-four hours after LPS injection mice were killed
or perfused and brains were collected for flow cytometric, RNA, or im-
munohistochemical analyses.

DRG neuronal cultures with microglia. For the DRGs, cervical, thoracic,
and lumbar DRG neurons were isolated from the spinal cord as described
previously (Gensel et al., 2009). In brief, DRGs were dissected from an
adult BALB/c mouse spinal cord and plated at a density of 800 cells/well
in a 24-well plate and maintained in fresh media (Neurobasal A with 2%
B27 supplement (Invitrogen), 1% GlutaMAX, and 1% penicillin/strep-
tomycin) at 37°C/5% CO, for 3 d before treatment. After 3 d, a separate
subset of adult BALB/c mice was injected with saline or LPS intraperito-
neally. After 4 h microglia were isolated by Percoll gradient separation
and added at a density of ~1 X 10° cells/well to 0.4 wm transwell inserts
situated directly above DRG neurons. Microglia/DRG cocultures were
then treated with vehicle (0.1% BSA) or IL-4 (20 ng/ml) for 24 h.

GFP™" bone marrow-chimera. Bone marrow (BM)-chimeras were es-
tablished using chemical ablation with busulfan and reconstitution of the
BM with donor cells obtained from C57BL/6-Tg “A“"FSFP) mice as pre-
viously described (Wohleb et al., 2013). In brief, recipient C57BL/6 male
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mice (6 weeks old) were injected intraperitone- A

Adult-Isotype
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Adult-SCI (1 dpi) __ Adult- SCI (3 dpi)

ally once daily for 2 consecutive days with
busulfan in a 1:1 solution of DMSO and deion-
ized H,0 (30 mg/kg/100 ul). Donor C57BL/6-
Tg (CAGEGFP) BM-derived cells were isolated
from the femur, passed through a 70 wm cell

IL-4Ra - PE

2.12%

9.5%

23.2% 14.2%

strainer, and the total number of cells was de-
termined with a BD Coulter Particle Count and

[
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Size Analyzer (Beckman Coulter). Donor BM- B
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derived cells (1 X 10°) were transferred to re-
cipient mice by tail vein injection (100 ul) 48 h
after the second dose of busulfan. Mice were
left undisturbed for 4 weeks to allow for en-
graftment. Engraftment was verified by deter-

©2.99%

11.7%

10.4%

9.4%

mining the percentage of GFP ™ cells in the BM
and the blood. Mice that had <30% BM en-

&

graftment were excluded from the study. L B A o
RNA isolation and RT-PCR. RNA was iso- c —> CD11b - APC D E

lated from a 1 mm coronal brain section or 40 ggacrrﬁ - 51 Eg?:rln“ i) > 2+ Eégn“ api)

two, 1 mm spinal cord sections immediately o 1 pi < 1 pi = b pi

adjacent to the injury epicenter using the Tri- g” 301 [IscCl (3 dpi) E 41 Oscl 5‘3 dpi) % 1.64ISCI (3 dpi)

Reagent protocol (Sigma) and subjected to the S | * _E | d °

DNA-free RNA clean up procedure (Ambion) = 533] S =)

according to manufacturer instructions. RNA Es 207 * OZ2 7 = 32

was isolated from Percoll-enriched microglia ] £ e 2: .g_'i"

or CD11b ™ cells using the PrepEase kit (Af- =1 10~ 3 i »

fymetrix) according to manufacturer’s instruc- x4 ] "‘—:’

tions. Real-time (RT)-PCR was performed o = =

using the Applied Biosystems TaqMan Assays- Adult  Aged Adult  Aged Adult Aged

on-Demand Gene Expression protocol as pre-
viously described (Wohleb et al., 2011, 2012).
In brief, experimental cDNA was amplified by
RT-PCR where a target cDNA (e.g., IL-1f3, ar-
ginase [, CCL2) and a reference cDNA
(GAPDH) were amplified simultaneously us-
ing an oligonucleotide probe with a 5’ fluores-
cent reporter dye (6-FAM). Fluorescence was
determined on an ABI PRISM 7300 sequence
detection system (Applied Biosystems). Data
were analyzed using the comparative threshold
cycle method and results are expressed as fold difference from GAPDH.

Flow cytometry. Cells were assayed for surface antigens by flow cy-
tometry as previously described (Henry et al., 2009; Fenn et al., 2013).
In brief, Percoll-enriched microglia or CD11b ™ cells were incubated
with rat anti-mouse CD14-FITC, CD11b-PE, CD45-PerCP-Cy5.5, and
CCR2-APC antibodies (eBioscience). For the GFP chimera experiments, cells
were fluorescent for GFP (FITC + PE channels) and incubated with CD45-
PerCP-Cy5.5 and CD11b-APC antibodies. Expression of these surface
receptors was determined using a BD FACSCalibur four-color cytome-
ter. Ten thousand events characterized as microglia/macrophages were
recorded. Microglia and macrophages were identified by CD11b "/
CD45'° and CD11b */CD45" expression, respectively (Wohleb et al.,
2011). For each antibody, gating was determined based on appropriate
negative isotype-stained controls. Flow data were analyzed using FlowJo
software (Tree Star).

Immunohistochemical staining. Mice were killed by CO, and transcar-
dially perfused with 0.1 m PBS followed by 4% formaldehyde. Tissues
were cryoprotected with 30% sucrose for 72 h following postfixation. For
all tissues three representative images from each sample were taken for
analysis. Fluorescent images were taken with a Zeiss 510 Meta confocal
microscope and analyzed using MetaMorph Analysis software (Molec-
ular Devices). DAB/eriochrome cyanine (EC) images were taken with a
Carl Zeiss Axioplan 2 Imaging microscope and analyzed using Image]
NIH software.

Spinal cord. spinal cords were rapidly frozen in OCT compound. Serial
coronal sections (10 wm) were cut using a Microm HM550 cryostat
(Mikron Instruments) and collected every 100 um throughout a 5 mm
segment with the lesion epicenter at the middle. Sections were stained
with antibodies against arginase I (1:200; Santa Cruz Biotechnology) and

Figure 1.

different from Adult-SCI-3 dpi.

Age-related impairment in the induction of IL-4Rcx surface expression on microglia after SCI. Adult female (3—4
months) and aged female (18 —22 months) BALB/c mice were subjected to a mid-thoracic (T9) laminectomy (Lam) or SCI. After 1
dpior3 dpi, enriched (D11b * cells from the spinal cord were isolated. Representative bivariate dot plots of (D11b/IL-4Rcx labeling
in microglia from (4) adult and (B) aged mice. Gating was based on age-matched isotype controls. €, Average percentage of
IL-4Ree * microglia (n = 4-5). D, IL-4 and (E) IL-13 mRNA expression was determined from two 1 mm sections of spinal cord
collected adjacent to the lesion epicenter (n = 4-5). Error bars represent the mean == SEM. Means with *p < 0.05 are signifi-
cantly different and means with *p = 0.1 tend to be different from Adult-Lam controls. Means with *p << 0.05 are significantly

Tomato lectin (TomL; 1:200; Sigma; Kigerl et al., 2006) for fluorescent
staining, or neurofilament (1:1000; Aves Labs), and EC (Sigma) solution
for DAB staining. For measuring epicenter tissue sparing, images were
taken at the epicenter and up to 200 wm rostral and caudal of the
epicenter.

Brain. Brains were frozen in dry-ice cooled isopentane. Coronal sec-
tions (10 wm) were cut using a Microm HM550 cryostat and collected
every 20 wm throughout the intracerebroventricular injection site. Sec-
tions were stained with antibodies against arginase I (1:200; Santa Cruz
Biotechnology) and Iba-1 (1:1000; Wako Chemicals) for fluorescent
staining. Images were taken from the region adjacent to the intracerebro-
ventricular injection site and up to 100 wm distal to the injection site for
imaging of the choroid plexus.

DRG cultures. DRG neurons were fixed with 2% formaldehyde for 20
min and stained with B-tubulin-III (1:2000; Sigma). Images were taken
every 1500 wm across a coverslip with a Carl Zeiss Axioplan 2 Imaging
microscope and analyzed using MetaMorph Analysis software (Molecu-
lar Devices). Only images that contained a DRG neuronal cell body were
analyzed. Neurite growth was determined by the proportional area of
B-tubulin-IIT labeling. DRG cell bodies were excluded in the analysis of
B-tubulin-III proportional area.

Statistical analysis. Data were subjected to the Shapiro—Wilk test using
Statistical Analysis Systems (SAS) statistical software. To determine sig-
nificant main effects and interactions between main factors, data were
analyzed using one-way (i.e., Pretreatment and Treatment), two-way
(i.e., Pretreatment X Treatment), or three-way (i.e. Pretreatment X
Treatment X Time) ANOVA using the general linear model procedures
of SAS. When appropriate, differences between treatment means were
evaluated by an F-protected t test using the least-significant difference
procedure of SAS. In addition, data showing the percentage of mice that
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aged microglia were analyzed using separate
age-matched isotype controls because of
higher autofluorescence in aged microglia
asaresult of lipofuscin accumulation (Fig.
1B; Xu et al., 2008; Fenn et al., 2012). Fig.
1, A—C, shows that a moderate SCI in-
creased microglial surface expression of
IL-4Ra in the spinal cord of adult mice at
1 dpi (p < 0.006) and 3 dpi (p = 0.08),

B 1200, C 2400 E“"I:_':Eg: nGnI;z:‘:gl‘l)i:Ytes but was not increased on microglia of
& 1000 b 3 _2000{AIL-4Ra* MOs aged mice at either time point (Age X SCL:
£ 2 200 c8 . * Fi55 = 10.39, p < 0.008).Thus, SCI-
8 § _’I‘_ * 2 51600_ induced IL-4Ra expression on microglia
3 ¢ 6007 * 3 21200 * was impaired in aged mice.
2% 400- 1 800 1 Next, two 1 mm sections of the spinal
c e X . .. .
3 T ] cord adjacent to the injury epicenter were
o 200 I_-r_I I_1-_I = 400 collected for mRNA expression of IL-4
0 0 - and IL-13. IL-4 mRNA was significantly
Lam SCI SCI Lam SCI_SCI Lam SCI SCI Lam SCI SCI increased 3 dpi independent of age (p <
1dpi 3dpi 1dpi 3dpi 1dpi 3dpi 1dpi 3dpi .
0.02; Fig. 1D). In contrast, IL-13 mRNA
Adult Aged Adult Aged .
D oD E was reduced after SCI, but only in adult
1000 1E3 IL-4Ra* MOs 100 - !
%) 1 IL-4Ra™9 M®s ’g 4 mice (Age X SCI: F(2y23) = 6.11,p < 0.01).
0 ~ 800 - *H# o x 0= 80 Although aged mice had lower IL-13 lev-
E é 1 * g T els at baseline (p < 0.04), IL-13 mRNA
g 3 600 * + % 60 . was maintained after SCI in aged mice and
% 2 4001 % £ 401 I was significantly higher at 3 dpi compared
oS . 22 with adult mice (p < 0.05). Therefore,
S 2004 X8 20- microglial IL-4Re induction was im-
= — . .
} S paired with age, but IL-4 and IL-13 levels
0 am scl scI Lam Sci Sci 0" lam sci sci Lam sci sci  Wwere maintained or increased in aged
1dpi 3 dpi 1dpi 3dpi 1dpi 3dpi 1dpi 3dpi  mice after SCI.
Adult Aged Adult Aged

Figure 2.

achieved a particular BMS score or level of arginase expression were
evaluated by the x? test. All data are expressed as treatment means =
SEM. Values were considered significant at p < 0.05 and a tendency at
p=0.1.

Results

Age-related impairment in the induction of IL-4R« surface
expression on microglia after SCI

We previously reported that peripheral challenge with LPS, a
potent activator of the innate immune system, markedly in-
creased surface expression of IL-4Ra on microglia of adult, but
not aged mice (Fenn et al., 2012). Impaired induction of IL-4Ra
on microglia from aged mice corresponded with reduced sensi-
tivity to ex vivo IL-4 stimulation (Fenn et al., 2012). To test if these
age-associated deficits in M2a-mediated regulation would persist
in vivo after an SCI, adult (3—4 months) and aged (18-19
months) mice were subjected to a moderate (75 kdyn) mid-
thoracic (T9) laminectomy or spinal cord contusion injury (SCI).
IL-4Ra protein expression was determined on spinal cord micro-
glia (CD11b */CD45') at 1 dpi or 3 dpi (Fig. 1A, B). Adult and

Recruitment of IL-4Rcx * cells to the injured spinal cord was impaired in aged mice. Adult female (3— 4 months) and
aged female (18 —22 months) BALB/c mice were subjected toa T9 laminectomy (Lam) or SCI. After 1 dpi or 3 dpi, enriched (D11b *
cells from the spinal cord were isolated. A, Representative dot plots of (D11b/CD45 and CD11b/GR-1 labeling for microglia
(CD11b */CD45") and peripherally derived granulocytes (CD11b */CD45"/GR-1") and macrophages (CD11b */CD45"/GR-
1'°). B, Relative number of granulocytes associated with the spinal cord (SC) out of 10,000 live cells (n = 4-5). €, Relative number
of IL-4Ra ™ granulocytes, microglia, and macrophages (Mds) associated with the spinal cord out of 20,000 live cells (n = 4-5).
D, Relative number of IL-4Re * and IL-4Rex ~ macrophages associated with the spinal cord out of 10,000 live cells (n = 4-5). E,
Percentage of IL-4Rc ™ macrophages of the total macrophage population associated with the spinal cord (n = 4 -5). Error bars
represent the mean = SEM. Means with *p << 0.01are ignificantly differentand means with *p = 0.09 tend to be different from
their Age-matched-Lam control. Means with *p << 0.04 are significantly different from Adult-SCI-1 dpi.

Diminished presence of IL-4Ra™*
myeloid cells in the spinal cord of aged
mice after injury
A hallmark of SCI is the active recruit-
ment of peripheral myeloid cells (i.e.,
granulocytes, monocytes) to the injury
site (Popovich et al., 1997; Sroga et al,,
2003; Shechter et al., 2009, 2013). As these
cells may also express IL-4Re, IL-4Ro ex-
pression was determined on granulocytes
(CD11b */CD45"/GR-1") and mono-
cytes/macrophages  (CD11b */CD45"™/
GR-1") in the spinal cord at 1 and 3 dpi. The flow cytometric
gating strategy is illustrated in Fig. 2A. Both monocytes and mac-
rophages are described here as macrophages. Fig. 2B shows that
the relative number of GR1™ granulocytes was increased 1 dpi
(p < 0.0001) and 3 dpi (p < 0.0001) independent of age. More-
over, GR-1" granulocytes did not express high levels of IL-4Ra
(Fig. 2C). Indeed, >95% of the IL-4Ra ™, peripherally derived
cells were GR-1'° macrophages (data not shown). Of the IL-
4Ra ™ myeloid cells after SCI, ~70-75% were microglia and
~25-30% were macrophages (Fig. 2C). Fig. 2C shows that by
combining the contribution of granulocytes, macrophages, and
microglia the total relative number of IL-4Ra * cells was robustly
increased in the spinal cord of adult mice at 1 dpi (p < 0.01) and
3 dpi (p = 0.09), whereas the IL-4Ra ™ cell number remained
unchanged in aged mice at either time point (Age X SCI: F, 53, =
4.83, p < 0.02; Fig. 20).

Next, we investigated if the proportion of macrophages re-
cruited or maintained in the injured spinal cord differed with age.
At 1 dpi the total relative number of macrophages (both IL-4Ra ~
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Figure3. EnhancedIL-18and CCL2 mRNA expression in adult WT mice after SCI. A, B, Adult

female (3—4 months) and aged female (18 —22 months) BALB/c mice, and (C, D) adult male WT
(2— 4 months) and adult male (3— 4 months) IL-4Ra-deficient (IL-4Ra*®) BALB/c mice were
subjected to a T9 laminectomy (Lam) or SCI. Two 1 mm sections of spinal cord were collected
adjacent to the epicenter. mRNA expression of (4, €) IL-18 and (B, D) CCL2 (n = 4-5). Error
bars represent the mean == SEM. Means with *p << 0.05 are significantly different from Age-
matched and genotype-matched-Lam controls. Means with *p < 0.0001 are significantly dif-
ferent and means with *p = 0.09 tend to be different from Time point-matched Adult-SCl or
WT-SCl groups.

and IL-4Ra ™) in the spinal cord of aged mice was increased
compared with adult mice (p < 0.04; Fig. 2D). Despite this in-
crease in macrophage number, the proportion of IL-4Ra ™ mac-
rophages was reduced in aged mice from ~35% at baseline down
to <15% by 3 dpi (p < 0.01; Fig. 2E) and the proportion of
IL-4Ra  macrophages was increased in adult mice from ~18%
at baseline, to >40% at 1 and 3 dpi (p < 0.0002). Collectively,
these data indicate that there is impaired induction of IL-4Ra on
microglia of aged mice associated with an altered distribution of
IL-4Ra " macrophages after SCI.

Enhanced IL-1f3 and CCL2 mRNA expression in adult mice
after SCI

Because macrophage recruitment after SCI was affected by age,
mRNA expression of two key mediators of myeloid cell recruit-
ment (IL-18 and CCL2) were measured proximal to the injury
epicenter. In these experiments, adult WT, aged WT, and adult
IL-4Ra®© mice were used. All mice for these experiments were
on a BALB/c background. Fig. 3A shows that IL-13 mRNA was
significantly increased at 1 dpi (p < 0.0001), but was higher in the
spinal cords of adult mice compared with aged mice (Age X SCI:
F1 23 = 14.95, p < 0.001). Similarly, adult mice had exaggerated
expression of CCL2 mRNA 1 dpi compared with aged mice
(Age X SCI: F(; 53y = 6.03, p < 0.03; Fig. 3B). By 3 dpi IL-15 and
CCL2 mRNA expression levels were not different between age
groups. A similar profile of IL-13 and CCL2 mRNA expression
was detected in adult IL-4Ra*° mice compared with WT con-
trols. Indeed, IL-13 and CCL2 mRNA expression were reduced in
IL-4Ra*° mice compared with WT mice at 1 and 3 dpi, respec-
tively (IL-18: p = 0.09; CCL2: p < 0.0001; Fig. 3C,D). Functional
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IL-4Ra signaling in adult WT mice corresponded with increased
expression of IL-13 and CCL2 and enhanced recruitment of IL-
4Ra ™ macrophages to the injured spinal cord.

Arginase protein expression was reduced in the injured spinal
cord of aged mice

Here we show that IL-4Ra induction on microglia was impaired
in aged mice after SCI. Our previous studies indicate that a lack of
IL-4Ra induction results in reduced IL-4-mediated arginase
(Fenn et al., 2012). Therefore, arginase, a key marker of M2a
microglia/macrophages, was determined in adult WT, aged WT,
and adult IL-4Ra*° BALB/c mice 7 dpi. This time point (7 dpi)
represents the peak of arginase expression after SCI in adult mice
(Kigerl et al., 2009). Fig. 4, A and B, shows representative labeling
ofarginase and TomL in adult WT,aged WT,and adult IL-4Re° mice
after SCI. Similar to our previous work (Sroga et al., 2003; Kigerl
et al., 2009), a dense accumulation of TomL * microglia/macro-
phages was evident in the injury epicenter. Moreover, arginase
protein was increased after SCI and colocalized specifically with
TomL * microglia/macrophages (Fig. 4 B, C).

Consistent with impaired IL-4Ra upregulation on microglia/
macrophages of aged mice, arginase expression was significantly
reduced in the epicenter of Aged-SCI mice (p < 0.009) compared
with Adult-SCI mice (tendency for SCI X Age: F, ;5 = 3.40,p =
0.09; Fig. 4D). A similar pattern of reduced arginase expression
was evident in adult IL-4Ra° mice compared with WT mice
(p < 0.02; Fig. 4D). These data indicate that IL-4Ra-dependent
arginase induction was significantly reduced in myeloid cells of
aged mice 7 dpi.

Aged mice had impaired functional recovery and extended
lesion length after SCI

Reduced arginase expression in the injured spinal cord of aged
mice may point to deficiencies in endogenous repair and worse
functional recovery after SCI. To test this, functional recovery
was assessed over a 28 d period after SCI using the BMS (Basso et
al., 2006; Fig. 5A). Age alone did not influence the BMS score for
uninjured mice as all Lam controls had similar scores over the
28 d testing period. Following SCI, however, both adult and aged
BALB/c mice exhibited significant motor impairments that im-
proved over the 28 d time period (SCI X Time: F4 535y = 19.57,
p <0.0001). Nonetheless, spontaneous recovery was significantly
reduced in aged mice compared with adult mice at 1, 3, 5, 7, 21,
and 28 dpi (Age X SCI: F(, 5,) = 12.96, p < 0.0001).

A significant functional milestone in recovery from SCI is the
ability to achieve frequent or consistent bilateral weight-
supported stepping. Mice that achieved a BMS score of 5 have
achieved this recovery milestone. Fig. 5B shows that ~75% of the
Adult-SCI mice achieved a BMS score of 5 by 28 dpi, but none of
the Aged-SCI mice reached this level of recovery (p < 0.0001).
Aged mice averaged a BMS score of 3 associated with hindlimb
plantar placement, but without stepping.

After the completion of locomotor testing at 28 dpi, the per-
centage of tissue sparing and total lesion length was determined
(Donnelly et al., 2011). Although tissue sparing at the lesion epi-
center was reduced by 10% in aged spinal cords, this was not
significantly different from adults (Fig. 5C). Lesion length, how-
ever, was 38% longer in Aged-SCI mice compared with Adult-
SCI mice (p = 0.06; Fig. 5D,E). Indeed, 1.2 mm rostral and
caudal of the epicenter Aged-SCI tissue still showed evidence of a
lesion, whereas the lesion was not present in Adult-SCI mice at
this distance (Fig. 5D). Thus, aged mice had reduced functional
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Arginase protein expression was reduced in the injured spinal cord of aged and IL-4Rcx K0 mice. Adult female (3—4 months), aged female (18 —22 months), adult male WT (2- 4

months), and adult male IL-4Rc* (3— 4 months) BALB/c mice were subjected to a T9 laminectomy (Lam) or SCI. Spinal cords were collected 7 dpi. A, Representative images of the injury epicenter
inadult, aged, and adult IL-4Rc ° mice labeled with TomL (green) and arginase (Arg; red). Dashed white box shows the area represented in Cused for quantitative analysis. B, Representative image
of TomL/Arg labeling in the epicenter at 63X magpnification. Scale bar, 25 pm. , Representative images of TomL (i), Arg (ii), and TomL/Arg (i) labeling. Dashed white box shows the area
represented in iv at 40 X magnification. Scale bar, 200 .um. D, Quantification of Arg staining in adult, aged, adult WT, and adult IL-4Rce® mice (n = 4-6). Error bars represent the mean + SEM.

Means with *p < 0.01 are significantly different from Adult or WT controls.

recovery and an extended lesion size compared with adult mice
following SCI.

To evaluate the extent to which reduced IL-4Ra expression
contributed to functional recovery deficits in aged BALB/c mice,
functional recovery was tested in WT and IL-4Ra*® BALB/c
mice 28 d after SCI. Similar to aged mice, adult IL-4Ra*°-SCI
mice showed worse functional recovery at 28 dpi compared with
adult WT-SCI mice. For example, similar to other immune re-
ceptor KOs (e.g., TLR2 Ko, Kigerl et al., 2007), IL-4Ra KO mice
did not significantly differ in BMS score compared with WT mice
(data not shown) but had a BMS subscore that was ~73% lower
than WT controls (p = 0.07; Fig. 5F). Moreover, 50% of WT
mice achieved a BMS score of 5, whereas only 33% of IL-4Ra*®
mice achieved this functional milestone (Fig. 5G). Also, 25% of
WT mice achieved a BMS score of 6 (frequent/consistent step-
ping with some coordination) but 0% of IL-4Ra* mice reached
this score (Fig. 5H). Collectively, these studies indicate that re-
duced IL-4Ra expression in IL-4Ra * and aged mice contributes
to impaired functional recovery after SCI.

IL-4Ra induction on activated microglia was required for
IL-4-dependent arginase expression
Our data indicate that aged mice had reduced functional recovery
after SCI associated with impaired microglial induction of IL-
4Ra. An age-related deficit in IL-4Ra upregulation corresponded
with attenuated arginase expression, reduced IL-13 and CCL2
expression, and reduced presence of IL-4Ra ™ macrophages in
the injured spinal cord. Nonetheless, it is difficult to understand
the significance of enhanced or impaired IL-4/IL-4Re signaling
in microglia after SCI because the onset and nature of the
inflammatory stimulus is not known, arginase induction is
partially IL-4-indpendent (Fig. 4C), and various cross-
signaling mechanisms likely control the magnitude and effect
of inflammation. Therefore, we moved to an immune-based
model in adult mice in which the inflammatory stimulus
(LPS) and delivery of IL-4 could be better controlled and M2a
profile examined.

Adult BALB/c mice were surgically implanted with an in-
dwelling cannula in the lateral ventricle. After 7 d, mice were
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given an intraperitoneal injection of saline
or LPS to promote an inflammatory re-
sponse in the CNS. After 1 h, mice were
then given an intracerebroventricular in-
jection of vehicle or IL-4. Fig. 6A shows
that 24 h after LPS, IL-4Ra expression was
upregulated on microglia in the spinal
cord (p < 0.05) and the brain (p < 0.05)
to a similar extent. Because cannulas for
central IL-4 infusion can be better estab-
lished in the brain, we investigated IL-4/
IL-4Ra-induced M2a responses in brain-
resident microglia. Fig. 6B shows that
intracerebroventricular administration of
IL-4 increased mRNA expression of argi-
nase by ~10-fold, and this induction was
augmented over 160-fold in mice that
were pretreated with LPS (LPS X IL-4:
F(, 35 = 4.4, p < 0.05). Peripheral injec-
tion of LPS alone, however, did not increase
arginase mRNA expression.

To confirm these mRNA results and to
determine the extent to which the induc-
tion of arginase was microglia specific,
arginase protein was measured in brain-
resident microglia (Iba-17") proximal to
the intracerebroventricular injection site
(Fig. 6C). Representative images of Iba-1
(Fig.6Di, green) and arginase (Fig.6Dii,
red) labeling are shown. Arginase protein
was not present in the brain of the control
mice (Saline-Vehicle) or mice injected
with just LPS (LPS-Vehicle; Fig. 6D, F).
Although a low level of arginase was in-
duced by IL-4 (Saline-IL-4) consistent
with the mRNA data (Fig. 6B), this was
not significantly different from control
mice. Arginase protein, however, was
markedly increased in the brain of mice
that received both peripheral LPS and in-
tracerebroventricular IL-4 (LPS X IL-4:
Fiaa) = 23.72, p < 0.0005; Fig. 6D,F).
Moreover, this robust induction of argi-
nase was detected specifically in Iba-17
microglia (Fig. 6Div,E). These data indi-
cate that inflammatory-induced IL-4Ra
upregulation on microglia is required for
these cells to respond to IL-4 and increase
arginase protein expression.

After SCI, aged mice had deficits in
microglial IL-4Ra induction with corre-
sponding impairments in arginase pro-
tein expression. Therefore, the same
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Figure 5.  Aged mice had impaired functional recovery and extended lesion length after SCI. Adult female (3— 4 months) and
aged female (18 —22 months) BALB/c mice were subjected to a T9 laminectomy (Lam) or SCI. Functional recovery was assessed by
BMS scoring over a 28 d period after SCI. Spinal cords were collected 28 dpi. A, BMS scores for 1,3, 5,7, 14, 21, and 28 dpi for Lam
controls (n = 4) and SCI mice (n = 10-13). B, Percentage of adult and aged SCI mice that achieved an average BMS score of =5
at 28 dpi. €, Quantification of epicenter tissue sparing using neurofilament/EC staining (n = 4). D, Representative images of
neurofilament/EC staining in injured spinal cord of adult and aged mice 1.2 mm rostral and caudal of the epicenter. Dark staining
denotes intact axons and myelin sheathing. E, Lesion length from adult and aged mice (n = 4). In a separate study, adult male WT
(2—4 months) and adult male IL-4Rac*° (3— 4 months) BALB/c mice were subjected to a T9 Lam or SCI. F, BMS subscore for WT
and IL-4Rae % mice at 28 dpi (n = 8). G, Percentage of WT and IL-4Rar *° SCI mice that achieved an average BMS score of 5 at 28
dpi (n = 8). H, Percentage of WT and IL-4Ra ° SCI mice that achieved an average BMS score of 6 at 28 dpi (n = 8). Error bars and
data points represent the mean == SEM. Means with *p << 0.0001 are significantly different from Adult-Lam controls. Means with
*p < 0.03 are significantly different from Adult-SCl or WT-SCl groups. Means with * p = 0.07 tend to be different from Adult-SCI
or WT-SCl groups.

immune-based protocol as above was also performed in a sub-
set of adult (3 months) and aged (20 months) BALB/c mice to
assess arginase protein expression. Representative images of
the Adult-LPS-IL-4 group and Aged-LPS-IL-4 group are
shown (Fig. 6G). Increased lipofuscin accumulation in the
brain with age often results in increased background labeling
for immunohistochemistry or flow cytometry (Sierra et al.,
2007; Xu et al., 2008; Fenn et al., 2012). Indeed, arginase la-
beling was sevenfold higher in Aged-Saline-Vehicle controls
compared with adult-Saline-Vehicle controls (data not

shown). Thus, to assess the level of exaggerated arginase ex-
pression in the Aged-LPS-IL-4 group, arginase protein expres-
sion was compared with age-matched Saline-IL-4 controls.
Fig. 6H shows that IL-4-mediated reprogramming of active
microglia to an arginase © phenotype was attenuated by 79%
in the brain of aged mice compared with adults. These data
indicate that reprogramming of activated microglia by IL-4
was impaired with age. Thus, a robust induction of arginase in
vivo required (1) an inflammatory/activating signal and (2)
responsiveness to an M2a reprogramming signal.
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Figure6. IL-4Ravinduction on activated microglia was required for IL-4-dependent arginase expression. Adult (3 months) male
BALB/c mice received an intraperitoneal injection of saline or LPS and 1h later received an intracerebroventricular (icv) injection of
vehicle or IL-4. Brains and spinal cords were collected 24 h after LPS. A, Enriched microglia were isolated from the brain and
enriched (D11b ™ cells were isolated from the spinal cord. Average percentage of IL-4Rae * microglia by flow cytometry (n =
2-3). B, mRNA expression of arginase (Arg) from a 1 mm coronal section at the intracerebroventricular injection site (n = 8 -18).
C, Schematic of the area where images were collected for Iba-1/Arg labeling. D, Representative images of Iba-1 (i), Arg (ii), and
Iba-1/arginase (iii) labeling. Scale bars, 100 rum. White arrows indicate microglia used for higher magnification in iv. Scale bar, 25
m. E, Representative image for orthogonal analysis of colocalization for Iba-1 (green)/Arg (red) labeling. F, Percentage Iba-
17 /Arg * microglia (n = 3—4). G, A separate subset of adult (3 months) and aged (20 months) male BALB/c mice were
given Sal/LPS and Vehicle/IL-4 injections as above. Brains were collected 24 h after LPS. Representative images for Arg
staining. Scale bar, 50 wm. H, Percentage increase in Arg staining for LPS-IL-4 mice compared with age-matched Saline-
IL-4 controls (n = 3). Error bars represent the mean == SEM. Means with *p << 0.05 are significantly different from Saline
controls. Means with **p << 0.01 are significantly different from Saline-Vehicle controls. Means with *p < 0.01 are
significantly different from Adult-Saline-IL-4.

IL-4-mediated reprogramming of activated microglia
supported neurite outgrowth

Previous studies show that M2a microglia/macrophages (argi-
nase ") promote axon growth in vitro and enhance remyelination
in vivo (Kigerl et al., 2009). Whether or not a similar repair po-
tential is elicited in microglia primed by an inflammatory stimu-
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lus has not been tested. Therefore, axon
growth was determined in adult DRG
neurons cocultured with inflammatory-
activated microglia, with or without IL-4.
Adult BALB/c mice were injected intra-
peritoneally with saline or LPS. After 4 h
microglia were isolated and cultured ex
vivo in transwell inserts placed directly
over DRG neurons isolated from adult
BALB/c mice 3 d prior. Cocultures were
then treated with either vehicle or IL-4
and neurite outgrowth was measured 24 h
later. Fig. 7A shows representative images
from the four different experimental
groups. There was a significant interac-
tion between microglia activation and
IL-4 stimulation (LPS X IL-4, F, ,,, = 4.77,
p < 0.05) on DRG axon outgrowth (e.g.,
increased proportional area of B-tubulin-
III staining). For instance, B-tubulin-IIT
proportional area was reduced when
neurons were cocultured with inactive
microglia treated with IL-4 (Sal-IL-4; p <
0.03). Moreover, B-tubulin-III proportional
area was unaffected by coculture with
active microglia alone (LPS-Vehicle).
B-tubulin-III proportional area was
highest, however, when DRG neurons
were cocultured with active microglia
reprogrammed with IL-4 (LPS-IL-4;
p = 0.1; Fig. 7B). These data are inter-
preted to indicate that IL-4-mediated
reprogramming of activated microglia
supported neurite outgrowth and
complexity.

IL-4-mediated reprogramming of
activated microglia augmented mRNA
expression of IL-13 and CCL2
Differential distribution of macrophages
in the aged spinal cord after SCI was asso-
ciated with impaired IL-4Ra induction on
microglia, reduced arginase expression,
and reduced mRNA expression of IL-1f3
and CCL2. The LPS model confirmed that
IL-4-mediated reprogramming of inflam-
matory microglia induced a robust argi-
nase response similar to that observed
after Adult-SCI. Therefore, IL-18 and
CCL2 mRNA were measured in a coronal
brain section 24 h after LPS and IL-4 treat-
ments in adult BALB/c mice. As expected,
microglial mRNA expression of IL-13 was
increased 24 h after LPS compared with
saline controls (p = 0.08; Fig. 8A). Con-
sistent with the SCI studies, IL-13 mRNA
expression was further enhanced by intra-

cerebroventricular IL-4 treatment (LPS X IL-4, F, ,,) = 5.40,
p <0.03). A similar pattern was evident for brain CCL2 in that
injection with peripheral LPS and intracerebroventricular
IL-4 resulted in enhanced mRNA expression compared with LPS
alone (LPS X IL-4: F; 55, = 11.17, p < 0.003; Fig. 8B).Together,
post treatment with IL-4 in vivo enhanced expression of
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Figure7.

IL-4-mediated reprogramming of activated microglia supported neurite outgrowth ex vivo. Adult (3 months) male BALB/c mice received an intraperitoneal injection of saline or LPS and

4h later enriched microglia wereisolated. Enriched microglia were plated in transwell inserts directly over DRG neurons collected from adult (3 months) male BALB/c mice. Cultures were treated with
vehicle or IL-4 for 24 h. A, Representative images of B-tubulin-Ill staining of DRG neurons. B, 3-tubulin-Il proportional area as a percentage of Saline-Vehicle (n = 6 —8). Error bars represent the
mean % SEM. Means with *p < 0.03 are significantly different and means with *p = 0.1 tend to be different from Saline-Vehicle controls.
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Figure 8.  IL-4-mediated reprogramming of activated microglia augmented mRNA expres-

sion of IL-18 and CCL2. Adult (3 months) male BALB/c mice were given an intraperitoneal
injection of saline or LPS and 1 h later received an intracerebroventricular (icv) injection of
vehicle or IL-4. Brains were collected 24 h after LPS. A T mm coronal brain section was taken and
the remainder of the brain was used to isolate enriched microglia. A, mRNA expression of IL-13
in enriched microglia (n = 8—14). B, mRNA expression of (CL2 from a coronal brain section
(n = 7-11). Error bars represent the mean % SEM. Means with *p << 0.05 are significantly
different and means with *p = 0.1 tend to be different from Saline-Vehicle controls. Means
with *p < 0.04 are significantly different from LPS-Vehicle.

inflammatory-associated factors IL-18 and CCL2 compared with
treatment with LPS alone.

IL-4-mediated reprogramming of activated microglia
increased the trafficking of CCR2 * macrophages to the brain
We show increased mRNA expression of IL-18 and CCL2 at 1 dpi
in the spinal cord of adult mice compared with aged mice (Fig. 3)
and that IL-4 reprogramming of active microglia promoted the
expression of IL-13 and CCL2 (Fig. 8). This is important because
these are two critical factors associated with recruitment of mac-
rophages to the CNS. Indeed, increased IL-18 and CCL2 corre-
sponded with increased association of IL-4Ra ™ macrophages
with the spinal cord of adult mice (Fig. 2). Therefore, we sought
to determine the extent to which IL-4 promotes macrophage
recruitment to the CNS in our immune-based studies. To assess
macrophage trafficking C57BL/6 mice were used (Wohleb et al.,
2013). First, IL-4Ra induction on enriched microglia of WT

C57BL/6 mice after LPS was confirmed, and this induction was
unaffected by intracerebroventricular IL-4 (data not shown).
Second, the relative proportion of microglia and brain-associated
macrophages was determined after intraperitoneal LPS and in-
tracerebroventricular IL-4 injections. Representative bivariate
dot plots of CD11b and CD45 labeling on Percoll-isolated brain
microglia (CD11b */CD45 1)y and macrophages (CD11b */CD45"™)
are shown (Fig. 9A). Consistent with the SCI studies, Fig. 9B
shows that the highest percentage of brain-associated macro-
phages was measured in mice with activated microglia repro-
grammed by intracerebroventricular IL-4 (LPS-IL-4, p < 0.04).
Next, the phenotype of recruited macrophages was investigated.
IL-4Ra expression was assessed on macrophages following a sa-
line or LPS injection alone. In these experiments 65% of IL-4Ra *
cells were also CCR2 * (data not shown). Of the CCR2 * macro-
phages, only 5% expressed IL-4Ra protein under basal condi-
tions (Saline) and this proportion increased to >20% after LPS
injection (Fig. 9C). Thus, IL-4Ra is expressed primarily on
CCR2 " macrophages and CCR2 * macrophages increase their
expression of IL-4Ra following an LPS challenge.

Next we investigated the recruitment of CCR2 * macrophages
after intracerebroventricular IL-4 treatment. Fig. 9D shows that
post treatment with intracerebroventricular IL-4 after LPS en-
hanced trafficking of CCR2 " macrophages to the brain (p <
0.03). The expression of CCR2 on a per cell basis (i.e., CCR2 MFI)
was also enhanced following LPS-IL-4 treatments compared with
LPS-Veh controls (Fig. 9E, p = 0.1). Analysis of both CCR2 and
CX;CRI expression on brain-associated macrophages indicated
that CCR2 ™ cells were selectively retained or recruited after LPS
and IL-4 (77 * 3%) compared with LPS alone (66 * 3%, p <
0.05; Fig. 9E). The breakdown of the expression of CCR2 and
CX,;CR1is shown in the LPS-Veh and LPS-IL-4 groups in Fig. 9E.
Compared with LPS alone (LPS-Veh), there was a relative in-
crease in the percentage of CCR2 */CX,CR1" (67% from 60%)
and CCR2 */CX,CR1 "*® macrophages (10% from 3%), and rel-
ative reduction in the percentage of CCR2"¢/CX,CR1"™ (19%
from 27%) and CCR2"%/CX;CR1"¢ (4% from 7%) macro-
phages in the LPS-IL-4 group.
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Figure 9. IL-4-mediated reprogramming of activated microglia increased the recruitment of CCR2 ™ macrophages to the brain. Adult (3 months) male (57BL/6 mice were given an
intraperitoneal injection of saline or LPS and 1 h later received an intracerebroventricular (icv) injection of vehicle or IL-4. Enriched microglia were isolated from the brain 24 h after LPS.
A, Representative dot plots for (D11b/CD45 staining. Oval indicates peripherally derived macrophages (CD11b */CD45™). B, Percentage of (D11b */CD45" macrophages (Mds)
associated with the brain (n = 4-7). (, Percentage of CCR2 * macrophages that were IL-4Ra ™ following Saline or LPS treatment alone (n = 3). D, Relative number of CCR2 *
macrophages associated with the brain out of 10,000 live cells (n = 4-7). E, Proportion of CCR2 " macrophages and CCR2 MFI in macrophages of LPS-Veh and LPS-IL-4 groups. A
breakdown of the proportion of CCR2 */~ and CX;CR1 */~ macrophages in LPS-Veh and LPS-IL-4 groups is also shown. F, Partial GFP BM-chimera mice were established on the (57BL/6
background. Mice achieved an average of 60 — 80% engraftment. After 4 weeks mice were injected with intraperitoneal LPS. Representative series of dot plots showing that >80% of
the CD11b */CD45 " cells identified in A and used for flow analyses were GFP * indicating they derived from a peripheral source. Error bars represent the mean = SEM. Means with *p <<
0.04 are significantly different and means with *p = 0.07 tend to be different from Saline-Vehicle controls. Means with *p << 0.05 are significantly different and means with *p = 0.1
tend to be different from LPS-Vehicle.
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To confirm that these macrophages
were BM derived and to determine their
neuroanatomical distribution, GFP BM-
chimera mice on a C57BL/6 background
were established (Wohleb et al., 2013).
Flow cytometric analysis confirmed that
the increased population of CD11b™"/
CD45" cells 24 h after LPS was periph-
erally derived (Fig. 9F). Next, the
neuroanatomical distribution and M2a
phenotype (arginase *) was examined at
the intracerebroventricular injection site
and nearby choroid plexus. Fig. 10A
shows representative images of GFP ™/
Iba-1 */arginase ™ cells in the injection
site 24 h after LPS in LPS-Vehicle and
LPS-IL-4 treatment groups. Histological
analysis confirmed the flow cytometric
studies and revealed that trafficking of
BM-derived cells to the brain was signifi-
cantly increased in LPS-IL-4-treated mice
compared with all other groups (p < 0.03;
Fig. 10B). Moreover, these peripherally
derived GFP* cells, similar to resident
microglia, were capable of expressing ar-
ginase in response to IL-4. Indeed, in mice
injected with both intraperitoneal LPS
and intracerebroventricular I1L-4, ~25%
of all GFP ™ cells were also arginase * (Fig.
10A). Of the arginase * cells, ~45% were
microglia (Iba-17"), ~40% were periph-
erally derived cells that had trafficked into
the brain parenchyma (GFP */Iba-17%),
and ~15% were peripherally derived cells
in the perivascular spaces (GFP™; Fig.
10C).Together, IL-4-IL-4Ra-dependent
alternative activation of microglia was associated with increased
recruitment of BM-derived myeloid cells to the CNS, which in
turn, were directed to an arginase * phenotype.

LPS IL-4 LPS Vehicle

GFP Cells (#/ section) w

Figure 10.

Discussion

There is significant interest in understanding activation profiles
of microglia and macrophages in aging, disease, and CNS injury.
Our previous work indicates that IL-4Ro was markedly enhanced
on microglia of adult, but not aged mice after a peripheral LPS
challenge (Fenn et al., 2012). Moreover, LPS-activated microglia
from adult mice were more responsive to IL-4 ex vivo than aged
mice (Fenn et al., 2012). The primary aim of this study was to
determine whether impaired IL-4/M2a microglial regulation in
the aged CNS resulted in immune and functional deficits after
SCI. The secondary aim was to better understand the role of M2a
microglia/macrophages in vivo in the context of inflammation
and aging. We show original data that IL-4Ra was enhanced after
SCI on microglia of adult, but not aged, mice. IL-4Ra upregula-
tion corresponded with increased IL-18 and CCL2 mRNA ex-
pression, enhanced association of IL-4Ra * macrophages with
the injured spinal cord, increased arginase expression, and improved
functional recovery. Immune-based studies revealed that IL-4-
dependent arginase required inflammatory-induced IL-4Ra expres-
sion. Moreover, treatment with IL-4 in the inflammatory CNS
directly augmented the expression of inflammatory mediators
(IL-1B, CCL2) and enhanced CCR2 */IL-4Ra © macrophage re-
cruitment. Thus, IL-4 drove a unique M2a microglial phenotype
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GFP ™ macrophages could switch to an arginase ™ phenotype after LPS-IL-4 treatment. Partial GFP BM-chimera
mice were established on the (57BL/6 background and achieved an average of 60 —80% engraftment. After 4 weeks adult (3
months) GFP BM-chimera mice were given an intraperitoneal injection of saline or LPS and 1 h later received an intracerebroven-
tricular (icv) injection of vehicle or IL-4. Mice were perfused and fixed 24 h later. 4, Representative images showing GFP (i), GFP/Arg
(if), and GFP/Arg/Iba-1 (ii) staining. Scale bars, 100 m. White arrows indicate GFP * or GFP */Iba-1" cells used for insets in i,
iv, and v, and white arrowheads indicate Arg ™ colocalization with GFP *, Iba-17, or GFP */Iba1 * cells used for insets in i, iv,
and v. Scale bars, 25 um. B, Number of GFP ™ cells per section at the icv injection site and nearby choroid plexus (n = 4-5).C,
Percentage Arg * cells that were GFP ™, Iba-1*, and GFP/Iba-1 * in the LPS-IL-4 group. Error bars represent the mean = SEM.
Means with *p << 0.04 are significantly different from Saline-Vehicle controls.

(arginase "/IL-1B "), which supported both intrinsic repair and
the recruitment of peripheral myeloid cells. Moreover, this phe-
notype was reduced in aged mice corresponding with limited
recovery after SCI.

One important aspect of this study was that aged mice had
worse functional recovery after SCI compared with adults. For
example, ~75% of adults had frequent or consistent stepping
with no coordination (BMS score = 5) by 28 dpi compared with
0% of aged mice that achieved this score. Consistent with a worse
BMS score, lesion length was longer in aged mice at 28 dpi. These
data are consistent with previous studies showing increased pa-
thology and demyelination (Siegenthaler et al., 2008) and worse
functional recovery (Gwak et al., 2004) in middle-aged (12
months) rats after a spinal cord contusion or hemisection. Here
we extend these findings in mice of advanced age (18-19
months) and provide evidence of impaired reprogramming of
microglia. These data are clinically relevant because no basic
models of SCI in advanced ages had been established and a mech-
anism for worse recovery had not been proposed (Chen et al.,
1997; Fassett et al., 2007; National SCI Statistical Center, 2013).
Impaired functional recovery at 28 dpi was also recapitulated in
adult IL-4Ra mice. Together, our data using both models in-
dicate that IL-4/IL-4Ra dysfunction is a key contributing factor
to poorer functional recovery after SCI.

A potential mechanism for increased morbidity after SCI in
the aged mice is reduced responsiveness to IL-4 by microglia/
macrophages. We focused on IL-4 rather than IL-13 because IL-4
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was increased in both adult and aged mice after SCI, whereas
IL-13 was reduced acutely after SCI in adults. Although the in-
crease in IL-4 mRNA was undetectable until 3 dpi, other studies
have detected IL-4 protein from microglia at 1 dpi (Guerrero et
al., 2012) corresponding to the time point of IL-4Ra upregu-
lation. The source of IL-4 was not determined here because of
alack of cell specificity in our RNA analyses of the spinal cord,
but other studies suggest that IL-4 may derive from spinal cord-
resident microglia (Guerrero et al., 2012), or infiltrating
myeloperoxidase-positive neutrophils (Lee et al., 2010). What-
ever the source, IL-4 mRNA induction in adult and aged mice was
the same. Therefore, reduced IL-4Rq, rather than reduced IL-4,
was responsible for the less arginase ~ myeloid cells in aged mice.
These findings are consistent with a previous study showing that
equivalent levels of IL-4/IL-13 resulted in attenuated upregula-
tion of IL-4/IL-13-response genes in aged mice compared with
adults (Lee et al., 2013). The link between IL-4Ra impairments
and reduced arginase, IL-183, and CCL2 expression in aged mice
after SCI was further confirmed using adult IL-4Ra*° mice. No-
tably, although arginase expression was reduced in the spinal
cords of IL-4Ra*° and aged mice, it was not ablated. The role of
this IL-4Ra-independent arginase expression remains to be elu-
cidated, but here we demonstrate that reduced IL-4/IL-4Ra-
dependent arginase corresponded with an impaired immune
response and reduced functional recovery.

Another important aspect of this study was our M2a profile
analysis in vivo in the context of active inflammation. IL-4-driven
M2a responses in microglia/macrophages are primarily reported
using in vitro culture systems with either pretreatment or cotreat-
ment of IL-4 followed by an inflammatory stimulus. In those
studies, IL-4 increased arginase expression and reduced inflam-
matory mediators including IL-18 and TNF-« (Kitamura et al.,
2000; Butovsky et al., 2006; Lyons et al., 2007). In vivo, however,
IL-4 concentrations are low/undetectable at baseline and are in-
creased after the establishment of an inflammatory response to
injury. Thus we aimed to better model these conditions with an
immune-based approach in which microglia were activated using
a peripheral LPS injection and then IL-4 was provided centrally
1 h later. In both the SCI and LPS-intracerebroventricular IL-4
experiments, IL-4/IL-4Ra-mediated responses increased argi-
nase, but also augmented the expression of IL-13, and CCL2 in
microglia or brain/spinal cord. Thus, this arginase */IL-18 * mi-
croglia phenotype may better represent an “alternative activa-
tion” state in vivo. Although this phenotype may be perceived as
“inflammatory,” it is still beneficial for restricting pathology. For
example, intact IL-4/IL-4Re signaling in Adult-SCI mice corre-
sponded to reduced tissue lesion length and better functional
recovery than aged mice. Moreover, the arginase */IL-18" mi-
croglial phenotype induced by LPS-IL-4 treatment promoted
DRG neurite growth/complexity ex vivo. In contrast, IL-4 alone
failed to increase arginase protein and DRG neurite growth was
reduced. Although our previous studies report increased DRG
neurite growth with IL-4 alone (Gensel et al., 2009; Kigerl et al.,
2009), those studies were performed using BM-derived macro-
phages and did not involve coculture. The results presented here
are consistent with a previous study in which IL-4 treatment 2 h
after LPS reduced nitric oxide production and motor neuron
death beyond that of pretreatment with IL-4 (Zhao et al., 2006).

Increased neurite growth in the presence of inflammation is
consistent with recent studies examining microglial activation in
neurite development and axonal dieback. For example, DRG
neurons cultured with conditioned media from BM-derived
macrophages activated with zymosan (TLR-2/dectin-1 agonist)
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had increased axonal growth over baseline (Gensel et al., 2009).
Moreover, pharmacological induction of inflammatory media-
tors (IL-1B, CCL2, and iNOS) protected against axonal dieback
in amodel of laser-induced SCI (IL-13, CCL2, and iNOS; Stirling
etal, 2014). Mice with attenuated inflammatory responses (i.e.,
TLR2XC mice, minocycline treatment), however, had worse
functional outcome after a contusive SCI (Kigerl et al., 2007;
Stirling et al., 2014) and impaired axon regeneration after sciatic
nerve injury (Kwon et al., 2013). Thus, an intact inflammatory
response by microglia may be protective in the context of SCI.

Recruiting a specific macrophage population after SCI is an-
other way in which IL-4 reprogramming of active microglia may
be beneficial. Indeed, functional IL-4/IL-4Ra signaling in Adult-
SCI mice corresponded to increased association of IL-4Ra ™
monocytes with the spinal cord, whereas the injured spinal cord of
aged mice was dominated by IL-4Rac ™ macrophages. These results
were mirrored in the immune-based studies wherein LPS-IL-4 treat-
ment increased IL-13 and CCL2 expression corresponding with in-
creased recruitment of CCR2 */CX;CR1"/IL-4Ra ™ macrophages
to the brain. This CCR2 */CX;CR1"/IL-4Ra " phenotype is inter-
preted as beneficial for repair because CCR2 "/CX,CR1' mono-
cytes are characterized as iINOS ' and associated with less pathology
after SCI (Donnelly et al., 2011). Moreover, depletion of CCL2 is
associated with reduced recovery after SCI (Shechter et al., 2009).
CCL2 may be enhanced after IL-4 treatment as a result of in-
creased polyamine levels. Arginase is the rate-limiting enzyme for
production of polyamines, a necessary factor for CCL2 induction
and macrophage recruitment to the brain (Puntambekar et al.,
2011). Therefore, IL-4 signaling after SCI may be required for the
recruitment or maintenance of a macrophage population that
participates in repair. In further support of this idea, administra-
tion of an IL-4-expressing adenoviral vector into the CNS drives
expression of chemokines to recruit other cells involved in im-
mune regulation (i.e., regulatory T-cells) in a mouse model of
multiple sclerosis (Butti et al., 2008).

In support of IL-4-driven recruitment of reparative macro-
phages, our experiments show that peripherally derived macro-
phages also developed an arginase © phenotype after LPS-IL-4
treatment. This arginase © phenotype is important because pe-
ripherally derived IL-4Ra */arginase * myeloid cells can function
as myeloid derived suppressor cells (MDSCs; Bronte et al., 2003;
Pesce et al., 2009; Kohanbash et al., 2013). Elimination of MDSC
recruitment after SCI reduced arginase, IL-10, and IL-13 expres-
sion and caused worse functional recovery (Saiwai et al., 2013). It
is unclear if peripherally derived IL-4Ra */arginase * myeloid
cells exhibited here suppress T-cell responses consistent with
MDSC function. Nonetheless, it is clear that IL-4 reprogramming
of active microglia increases the association of CCR2 */arginase *
peripheral myeloid cells with the CNS.

In summary, inflammatory-induced IL-4Ra on microglia
promoted increased sensitivity to IL-4 resulting in elevated
arginase, IL-183, and CCL2 expression and the recruitment of
peripherally derived CCR2 */IL-4Ra ™ cells to the CNS to ben-
efit recovery after SCI. These data provide an innovative cellular
perspective on IL-4 signaling and the pathophysiology of age-
related deficits after CNS trauma.
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