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Expert commentary: “vision of the author”: In depth analysis of changes in abundance for networks of proteins after Herpes
simplex virus-1 (HSV-1) infection is possible with current proteomic methods. Correlation with systems biology information provides
an overview of the cellular responses that contribute to susceptibility to diseases such as herpes simplex encephalitis (HSE) that are
based on rare, but diverse genetic defects. The studies contribute to better understanding of HSV-1 infection in the central nervous
system, can contribute to finding new genetic aetiologies for HSE patients and could provide crucial input to diagnostic and
therapeutic developments. The approach should be more generally applicable to viral infections. Furthermore, the new strategy that is
used takes variation over the population into account and should be applicable both to susceptibility to infectious diseases as well as to
genetic diseases that are based on rare, but diverse genetic defects.

Five year view: Diseases of diverse aetiology are difficult to study, but the present results suggest that functional networks and
proteins with correlation to HSE can be identified with proteomics. In addition proteomics analysis even identified differences in
individual patients that could eventually have consequences for choices of therapeutic regime. Although these results were obtained in
the context of a unified theory of genetic predisposition to infectious disease, attentive readers may have noted that there are
substantial similarities to complex genetic diseases. For example, in complex genetic diseases such as Parkinson's disease, where
patient cohorts of substantial size can be recruited, large scale genome-wide-association-strategies have been crucial to defining many
genes that can contribute to disease susceptibility. About 20 genes that can contribute to Parkinson's disease have been identified
[33-38]. However, these only account for 50-60% of inheritable susceptibility and some of the most commonly occurring “gene
defects” are known to be neither necessary nor sufficient for the disease[38]. Consequently, current genome-wide-association-
strategies, and the even more powerful nucleotide sequencing technologies, are already being seen as being incomplete for
development of medical diagnostics or therapies for complex diseases. For this reason, efforts are rapidly moving on to integrate the
genetic information with proteomics, metabolomics and clinical information to develop “functional-network-based” conceptual
models of normal function, disease, diagnostics and therapy[38]. Proteomics has a vital role to play in these developments and that the
work on HSE indicates indicate some of the challenges that will be faced. “Normal” networks are not a clearly defined concept against
which to detect aberrations. “Normal” variation over the population may be exactly why infections like HSE and diseases like
Parkinson's disease are complex and multi-genomic without any specific“gene defect” being necessary or sufficient, i.e. a gene is only
defective in the context of the genome/proteome of an individual. In this situation, higher level, functional-network-based approaches
that analyze the dynamics of large networks [39] seem essential. This is a forte of proteomics, but the proteomics studies will have to
have a well characterized background of samples representative of variation of function over the population to be relevant. We will
also need new tools for evaluation of significance and new computational and bioinformatics tools of kinds hinted at above to interpret
the results. Efforts to approach these complex problems from the perspective of the genetic theory of infectious disease may have a
crucial advantage in that “infection” can provide a defined, controllable tool to initiate cellular responses in ways that can be easily
exploited by proteomics.
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Abstract

The genetic theory of infectious diseases has proposed that susceptibility to life-threatening

infectious diseases in childhood, occurring in the course of primary infection, results mostly from

individually rare but collectively diverse single-gene variants. Recent evidence for an ever-

expanding spectrum of genes involved in susceptibility to infectious disease indicates the

paradigm has important implications for diagnosis and treatment. One such pathology is childhood

herpes simplex encephalitis (HSE), which shows a pattern of rare, but diverse disease-disposing

genetic variants. The present report shows how proteomics can help to understand susceptibility to

childhood HSE and other viral infections, suggests proteomics may have a particularly important

role to play, emphasizes that variation over the population is a critical issue for proteomics and

notes some new challenges for proteomics and related bioinformatics tools in the context of rare,

but diverse genetic defects.
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Body of the article

Since the 1950s and until recently, it was believed that mutations in a single gene confer

vulnerability to multiple infectious diseases. Concomitantly, common infections have been

presumed to be associated with the inheritance of mutations in multiple susceptibility genes.

In recent work towards a unified genetic theory of disease [1-3], Prof. JL Casanova

identified and characterized many new genetic defects that predispose otherwise healthy

individuals to a single type of infection [4]. This novel causal relationship has modified the

paradigm that dominated the field for several decades. Single-gene inborn errors of

immunity in children may confer severe and selective vulnerability to specific infectious

illnesses, whereas corresponding infections in adults usually involve more complex gene

patterns. Several diseases have been studied including mycobacterial diseases, invasive

pneumococcal disease, chronic mucocutaneous candidiasis, severe flu, Kaposi sarcoma and

herpes simplex encephalitis (HSE).

Herpes simplex encephalitis

Herpes simplex virus (HSV-1) encephalitis (HSE) is a severe infection of the central

nervous system (CNS)[5]. Although HSV-1 is widespread and typically innocuous in human

populations, HSE is the most common form of sporadic viral encephalitis in Western

countries, where it is estimated to occur in approximately two to four per million individuals

per year. Peaks of HSE incidence occur between theages of 6 months to3 years during

primary infection with HSV-1. The virus reaches the CNS via a neurotropic route involving
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the trigeminal and olfactory nerves [6,7]. The mortality rate, which used to be as high as

70%, has declined significantly thanks to treatment with the anti-viral acyclovir [8-10]. In

spite of the treatment, up to 60% of patients suffer from long-term neurological sequelae of

varying severity [7,11].

Genomic studies, exome sequencing

Exome sequencing, the targeted sequencing of the protein-coding portion of the human

genome, has been shown to be a powerful and efficient method for detection of disease

variants underlying Mendelian disorders. In the human genome, exons represent about 1%

[12]. It is estimated that the protein coding regions of the human genome constitute about

85% of the disease-disposing mutations [13]. Robust sequencing of the complete coding

region (exome) has the potential to be clinically relevant in genetic diagnosis as

understanding of the functional consequences in sequence variation improves [13].

Currently exome sequencing is discovering inborn errors of immunity in children that confer

severe and selective vulnerability to certain infectious diseases [14,15].

Childhood HSE has not been associable with known immunodeficiencies and its

pathogenesis remained elusive until identified the first five genetic aetiologies of this

condition were identified [16-21]. Autosomal recessive UNC-93B deficiency abolishes Toll-

like receptor 3 (TLR3), TLR7, TLR8, and TLR9 signalling [16], whereas autosomal

dominant TLR3 deficiency specifically affects TLR3 signalling[21]. Recently an autosomal

recessive form of complete TLR3 deficiency has been described as a compound

heterozygous for two loss-of-function TLR3 alleles [17]. Moreover an autosomal dominant

deficiency in TNF receptor-associated factor 3 (TRAF3) [19], a Toll/IL1R (TIR) domain-

containing adaptor inducing IFN-β (TRIF) deficiency [20] and TANK-binding kinase

(TBK1)–deficiency [18] have been described.

All of these genetic defects involve the Toll-like receptor 3 (TLR3) signalling pathway and

these studies suggested that childhood HSE may result from impaired interferon (IFN)-α/β

and IFN-λ production in response to the stimulation of TLR3 by dsRNA intermediates of

HSV-1 in the CNS (Fig. 1). However, the study of proteins implicated in the TLR3-IFN

pathway for HSE patients revealed that only a small fraction of children with HSE carry

mutations in UNC93B1, TLR3, TRAF3, TRIF or TBK1 [16-21]. A larger proportion of

patients display an impaired production of IFN type I and III upon TLR3 stimulation of their

fibroblasts. Conversely, the study of IFN type I and III production after TLR3 activation in

SV40-fibroblasts of HSE patients has shown that 30%, of a total of 89 patients analysed,

have IFN type I and III production which is normal. This suggested that in spite of the

importance of the TLR3 pathway in HSE immunity, genetic defect(s) responsible for the

susceptibility to HSV-1 in the CNS could be due to TLR3-independent pathways, or other

TLR3, IFN-dependent pathways that are activated after the initial TLR3 activation.

Formulating a Proteomics Approach

Conventional attempts to define disease-related genetic defects involving single proteins

commonly try to screen large numbers of patient samples to validate single gene defects.

This often has the major obstacle that sufficient numbers of patient samples are difficult to
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obtain. Since TLR3-dependent pathways are clearly involved in HSV-1 susceptibility, it was

considered that it might be possible to use a combination of proteomics and systems biology

methods to look for other networks and/or proteins[22]. The basic idea behind this strategy

is that the increasing amount of available systems biology information has changed the

situation. Using only small numbers of healthy controls and patient samples with appropriate

functional stimulation, it might now be possible to detect disease-related functional

networks by monitoring large numbers of proteins simultaneously, even if the underlying

genetic defect in any individual patient cannot be statistically validated by such a study. If

successful, definition of such functional networks could already have important diagnostic

and therapeutic implications.

In the case of HSE, a large volume of previous biochemical experiments on several hundred

patients and healthy individuals provided a strong base of knowledge, well established,

highly reproducible sample preparation methods and related experimental tests of cellular

response for the proteomics experiments. These previous studies also made it clear that there

was a potential problem that is not often considered in present proteomics studies: what

constitutes a normal, healthy response? Monitoring the abundance of key proteins (IFN-beta,

IFN-lambda, IL6, NFκB and IRF3), cell survival after Vesicular stomatitis virus (VSV)

infection, and viral replication [16-21], suggested that several different phenotypes could be

distinguished and indicated that there were highly reproducible variations of up to 50 fold in

the amounts of IFN type I and III produced by control cells from different healthy

individuals in response to dsRNA (Fig 2). In short, for these kinds of proteomics

experiments highly reproducible sample preparation for “normal” cell samples that span the

range of possible response over the human population seem to be required. Put differently,

proteomics experiments should probably only be undertaken in the context of a large base of

previous characterization of healthy population variation. With this background in mind, the

goal was set out to obtain an initial test of four propositions. (1) Is the variation over

population seen by biochemical tests for a few proteins expressed in larger numbers of

proteins? (2) Are there proteomics signatures that are characteristic despite population

variation? (3) Can significant differences between healthy and patient cells be detected

despite population variation? (4) Are the differences of potential genetic, diagnostic or

therapeutic interest? Positive results were obtained for all four propositions, but indicated

some new challenges for proteomics and bioinformatics (see below).

A Short Summary of the Biological Findings

The SILAC measurements of differential protein abundance were conducted for six samples:

three healthy controls from different individuals that showed weak (C3), medium (C1) and

strong (C2) production of IFNs in response to dsRNA that was intended to sample

population variation, a healthy control without dsRNA stimulation (C2NS), a patient with an

UNC-93B-/- defect that abolishes TLR3 pathway response (UNC) and a patient with an

unknown genetic defect (P). As described in the original publication [22], common

functional pathways in healthy individuals implicated in transmigration of immune cells,

apoptosis and oxidative stress that were abrogated in HSE patients were discovered.

Furthermore, a set of new proteins for further investigation of possible disease aetiologies

was identified (Fig.3) and evidence was obtained that manipulation of one of these (SOD2)
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could have therapeutic benefits. The observation of changes in proteins involved in

mitochondrial oxidative stress systems (SOD2, PPIF) opened a new, additional perspective

apart from nuclear-directedTLR3 pathways that is consistent with other recent studies of

response to viral infections [23-25]. For the patient with an unknown gene defect and

without the fibroblastic phenotype, a lack of ICAM-1 upregulation, strong upregulation of

SOD2, and upregulation of a variety of proteins previously associated with TLR3 pathways,

delineated a new cellular phenotype which will help to dissect his genetic aetiology. The

details of these results and of their context relative to the biological literature are contained

in the original publication, to which the reader is referred – in the following we note some

new features of the experimental results that have important consequences for future

proteomics studies.

New Challenges for Proteomics and Bioinformatics

(1) Population variation is a crucial issue for proteomics—Comparison of the

SILAC ratios between the different healthy samples indicated related response with

correlation values in the ranges usually accepted as biologically relevant (Fig. 4A).

Correlation with the unstimulated sample was in all cases very small. However, in

agreement with the large differences in IFN production, the response to dsRNA showed

large variation in the overall magnitude of SILAC ratios between different healthy

individuals (Fig. 4B). The SILAC ratios revealed that the strong variation in response levels

over the population previously detected with small numbers of proteins using western

blotting is in fact reflected in the abundance changes for large numbers of proteins.

Although the H/L distributions remained approximately Gaussian, for the healthy cells with

the strongest response (C2), several hundred proteins showed 2-fold changes in abundance.

(2) Sets of “Most Significant” Proteins are Dependent on Population Variation
—Even though similar functional networks were involved, the identity and rank order of

proteins with the “most significant” abundance changes differed strongly between different

individuals. For example, seven annexins were recorded for all samples. For the healthy

samples the general trend for abundance changes was C2 > C1 > C3 in parallel to the

changes in IFNs, but the rank order of individual annexins showed C1: ANXA5 > ANXA1

> ANXA7; C2: ANXA7 > ANXA6 > ANXA11; C3: ANXA11 > ANXA7 > ANXA4 (Fig.

5A). This feature complicates the choice of “most significant” proteins for subsequent

analysis of functional networks using systems biology tools such as GeneGo. Because the

H/L distributions remained approximately Gaussian (Fig. 4B), a Significance B formulation

was used[26] to select the most significant changes for each sample type (Fig. 5B).

However, for samples such as C1 and C2 the distribution of H/L is not dominated by

experimental noise (C2NS), but rather by cellular response (Fig. 4B). Consequently proteins

excluded from the C2 most significant set in fact showed substantially stronger abundance

changes than proteins accepted for the C1 or C3 data sets (Fig. 5B). As an alternative that

was the same for all data sets, a Significance B* factor was calculated relative to the signal

intensity/scatter of the unstimulated C2NS data set (Fig. 5C), i.e. relative to real

experimental noise. The disadvantage of this was that, because of the large differences in

cellular response, the number of proteins accepted for network analysis was heavily

dominated by C2, e.g. at Significance B* < 1e-5, the C3/C1/C2 significant data sets included
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15/351/842 proteins. Conversely, use of Significance B < 0.05 led to exclusion of large

numbers of proteins from the C1 and C2 data sets that had large abundance changes with

high reliability relative to real experimental noise. As a compromise, Significance B < 0.05

and H/L cut offs was used to select approximately equal numbers of “most significant”

proteins from each sample type [22]. This “equal sampling” was successful in identifying

relevant functional networks using GeneGo. However, only a minority of the “most

significant” proteins were common to all three healthy individuals, even though other

proteins in the union over the healthy samples satisfied the stringent cutoff Significance B*

< 1e-5. In the context of small numbers of samples it might be possible to use dosage of the

stimulation (amount of dsRNA) to attain similar response levels for different cell samples,

but for higher throughput analyses of larger numbers of samples, new computational

approaches are needed.

Such population variation has been seen in other recent proteomics studies. For example,

measurements for 90 genetically different strains of yeast showed that most variation in

protein abundance was due to variability in translation and/or protein stability rather than in

transcript levels [27]. Similarly, a recent study of four patients with acute myeloid leukemia,

five patients with acute lymphoid leukemia and 8 healthy controls compared the basal

abundances of 639 different proteins using alignment-based quantitation of LC-MS/MS data

sets [28] and found population variation similar to that shown in Fig. 5.

(3) Current systems biology tools need adaptation to analysis of population
variation—The ultimate goal of a population-wide, network-based analysis of function

would be to identify common networks across the population and to specify for different

individuals the extent to which a common stimulation engages the different networks. Such

networks will not be easy to define since they are likely to be highly intertwined (buffered

networks in the terminology of complex adaptive systems theory [29]) and the “output” of

any sub-network may be diverse and may include: changes in protein abundance, post-

translational state and subcellular spatial distribution [30,31] (from proteomics), changes in

abundance of metabolites, co-factors, etc. (metabolomics) and genetic changes (epigenetics,

micro-RNAs, etc.). The conceptual model of similar networks turned on to different degrees

in different individuals that are reflected in protein abundance changes (Fig. 6A) is a testable

model. Across the space of icell samples from different individuals, all proteins k that

belong to network j have a vector of measured H/L ratios of the form:

 in which ajk represents an amplitude for “unit engagement” of the

network jfor each protein k and nij represents the amplitude to which the network is engaged

in each individual i. That is, in a multidimensional space with H/L ratios for different cell

samples as the orthogonal axes, there is an axis described by the vector (n1j,n2j, …,nij) that is

the same for all proteins k in network j (Fig. 6B).

The model implies the need to search for correlation amongst functionally related proteins

(systems biology functional correlations) in functional data (H/L ratios) for high

dimensional spaces (many individual samples) – a feature that seems not to be available in

current publicly accessible systems biology tools. There are strong indications of such
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relations in the present data (Fig. 6C, D), but new, more sophisticated analysis and statistical

validation is required.

Final conclusions

Even for a disease like HSE of apparent aetiological diversity, and in the face of cellular

diversity amongst individuals, proteomics provided an overview of cellular responses that

may be crucial to HSE susceptibility. At present the systems biology knowledge encoded in

data bases such as GeneGo ascribed the groups of proteins for which upregulation was

detected to several different related, but fragmented pathways. Much greater depth than in

these initial proteomics experiments is certainly possible. Future studies of the pathways

should contribute to a better understanding of HSV-1 infection in the CNS, should

contribute to finding new genetic aetiologies for HSE patients and could provide crucial

input to diagnostic and therapeutic developments.

Although a relatively small number of patient and healthy samples were used, the results

also provide a promising “proof of principle” for the strategy of comparing large numbers of

proteins in individual patient cell samples with a database of “possible” responses by healthy

cells. Importantly, in this strategy: (1) greater reliability requires a larger number and greater

depth for easy to obtain healthy cell samples to ensure that the background against which

individual patient samples are compared is adequate, as opposed to the large numbers of

hard to obtain patient samples required in more conventional approaches; and, (2) the

“output” being measured is closer to function than features such as genetic defects, which

may aid in subsequent diagnostic and therapeutic efforts. In this sense the appreciable

differences in response for different healthy individuals may represent an advantage if this

means the “range of possible responses” can be established with moderate numbers of

healthy samples. Furthermore, cellular response to dsRNA is a common feature of viral

infection and approaches of the type outlined here can be expected to apply to a wide range

of viruses.

It may also be noted that the proteomics results seem not to be predictable with current gene

network tools. For example, only 9 of described set of 152 most significant proteins by

Perez et all [22] showed overlap with the 601 genes predicted (p < 0.05) to be most closely

related to the TLR3 pathway with the Human Gene Connectome approach [32]. Amongst

many possibilities, this might arise because systems biology data bases are still too sparse,

because aggregation of data from many cell types over many functional contexts obscures

relationships for specific contexts, because other information such as post-translational state

and subcellular spatial distribution of proteins as well as epigenetic modifications are

insufficiently represented, or because proteomics is also detecting responses more distant

from the TLR3 pathway. Similar differences in classificatory features have been observed

between transcriptomic and proteomic results in the case of human leukemia cells [28]. In

short, information from proteomics seems to be highly complementary to other approaches.
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Key issues

1. Herpes simplex virus (HSV-1) encephalitis (HSE) is a devastating infection of

the central nervous system, the most common form of sporadic viral encephalitis

in Western countries and typically produces neurological sequelae in patients,

especially young children.

2. In keeping with the genetic theory of infectious diseases, mutations in five

diverse genes have been implicated in susceptibility to HSE, but only a low

percentage of patients exhibit these mutations. They show that the toll-like

receptor 3 (TLR3) signalling pathway is crucial for primary infection.

3. Different phenotypes have been identified amongst patients, e.g. about 30% of

HSE patients have normal Interferon type I and III production after TLR3

stimulation, implying that pathways beyond the TLR3-IFN pathway must be

involved.

4. Use of a new strategy in which large numbers of proteins in patient samples are

compared with population variation for healthy individuals and with systems

biology functional information helped identify additional pathways and proteins

that are implicated in susceptibility to HSE.

5. Initial evidence has been obtained that new pathways and proteins identified

with this strategy can contribute to therapeutic treatments.

6. The results indicate that normal variation over the population in healthy

individuals is a crucial issue for proteomics and these new measures of

significance and new forms of data analysis are needed to deal with population

variation.

7. The results were obtained in the context of a unified theory of genetic

predisposition to infectious disease, but similar paradigms should be expected

for complex genetic diseases and population variation.

8. Efforts to approach these complex problems from the perspective of the genetic

theory of infectious disease may have a crucial advantage in that “infection” can

provide a defined, controllable tool to initiate cellular responses in ways that can

be easily exploited by proteomics.

9. Response of cells to dsRNA is a characteristic of many viral infections and the

approach described here should be widely applicable to viral infection.

10. Integration of proteomics information with genetic, metabolomics and medical

information is important to develop “functional-network-based” conceptual

models of normal function, disease, diagnostics and therapy.
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Figure 1.
A simplified diagram of the TLR-mediated and interferon (IFN)-mediated immunity in

response to viruses. TLR3 is located in the endoplasmic reticulum (ER) and in endosomes,

where it recognizes double-stranded RNA produced during the replication of most viruses.

Activation of TLR3 induces activation of IRF-3 and NF- κ B via the TRIF adaptor, and the

production of IFN-α/β and/or - λ. UNC-93B is required for the trafficking of TLR3, TLR7,

TLR8 and TLR9 from the ER to the endosomal compartment. Proteins of the TLR3 pathway

for which genetic mutation have been identified and associated with susceptibility to Herpes

simplex virus-1 encephalitis (TLR3, TRIF, UNC-93B, TRAF3 and TBK1) are depicted in

blue.
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Figure 2.
Production of IFN-β by SV40-fibroblasts after poly(I:C) stimulation (25 μg/ml) for 24

hoursas assessed by ELISA. C1-C5 are the positive healthy controls and UNC93B1-/-is the

UNC-93B-deficientpatient. Mean values ± SD were calculated from three independent

experiments.
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Figure 3.
Illustration of the potential biological significance in immunity against HSE for proteins

upregulated after TLR3 activation.
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Figure 4.
(A) Correlation of log2(H/L) between healthy samples (C1, C2, C3) and the healthy, non-

stimulated sample (C2NS). (B) Cumulative proportion of proteins with the indicated H/L

ratios for all six samples.
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Figure 5.
Heat maps showing alternative strategies for selection of “most significant” protein sets for

subsequent functional network searches using GeneGo. (A) SILAC ratios recorded for 7

different annexins over the six simple types. The number of ratio counts for individual

proteins ranged from 6 to 243 per sample. (B) Proteins retained with a Significance B < 0.05

filter applied to each sample independently. (C) Proteins retained with a Significance B* <

0.001 filter applied across all samples. Boxed regions: proteins deleted that had |log2(S)|

equal to or greater than “significant” proteins retained in other samples.
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Figure 6.
(A) Model of abundance changes for four networks with intrinsic abundance changes ajk for

different proteins for unit turn-on of the network. For three cell samples from healthy

individuals each network is turned on to different degrees. These results in changes in the set

of “most significant” proteins selected with Significance B filters (dashed lines) and their

rank order for each cell sample. (B) Relationships in the 3D space of SILAC ratios

[log2(S1), log2(S2), log2(S3)] for proteins from a single network. The red/blue spheres and

axis indicate increased/decreased abundance. The relative amplitude to which the network is

turned on in the different cell samples is given by the axis log2(S1):log2(S2):log2(S3) = 1:1:1

for equal activation in all cell samples. (C) Putative network for proteins involved in redox

responses following stimulation of the healthy samples with dsRNA.

log2(S1):log2(S2):log2(S3) = 0.42:0.91:0.13. (D) Putative network for proteins involved in

nuclear processes following stimulation of the healthy samples with dsRNA.

log2(S1):log2(S2):log2(S3) = 0.69:0.73:0.26.
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