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Effects of a-Tubulin K40 Acetylation and Detyrosination on Kinesin-1
Motility in a Purified System
Neha Kaul,†* Virupakshi Soppina,‡ and Kristen J. Verhey‡
†Department of Mechanical Engineering and ‡Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
ABSTRACT Long-range transport in cells is achieved primarily through motor-based transport along a network of microtubule
tracks. Targeted transport by kinesin motors can be correlated with posttranslational modifications (PTMs) of the tubulin subunits
in specific microtubules. To directly examine the influence of specific PTMs on kinesin-1 motility, we generated tubulin subunits
that were either enriched in or lacking acetylation of a-tubulin lysine 40 (K40) or detyrosination of the a-tubulin C-terminal tail. We
show that K40 acetylation does not result in significant changes in kinesin-1’s landing rate or motility parameters (velocity and run
length) across experimental conditions. In contrast, detyrosination causes a moderate increase in kinesin-1’s landing rate. The
fact that the effects of detyrosination are dampened by prior K40 acetylation indicates that the combination of PTMs may be
an important aspect of the functional output of microtubule heterogeneity. Importantly, our results indicate that the moderate in-
fluences that single PTMs have on kinesin-1 in vitro do not explain the strong correlation between specific PTMs and kinesin-1
transport in cells. Thus, additional mechanisms for regulating kinesin-1 transport in cells must be explored in future work.
INTRODUCTION
Intracellular transport is essential for fundamental cellular
processes, including cell migration, compartmentalization,
polarization, and division. Targeted transport requires the
delivery of cellular components to specific locales by motor
proteins that move along microtubule tracks. Although
the force-generating and cargo-binding aspects of kinesin
motors have been characterized (1,2), less is known about
how motors deliver cargoes such as vesicles, RNA particles,
and organelles with spatial precision to specific locales
(3–5). The pathological outcome of misregulated transport
manifests as early signs of neurodegenerative disease (6,7).

Although all microtubules are composed of ab-tubulin
heterodimers, there are several different mechanisms for
generating microtubule heterogeneity in cells, including the
incorporation of different tubulin isoforms, binding of
microtubule-associated proteins (MAPs), and posttransla-
tionalmodifications (PTMs) of tubulin subunits (8,9). Recent
work has suggested that tubulin PTMs could provide a
dynamic microtubule labeling system. Most tubulin PTMs,
including detyrosination and polyglutamylation, occur on
the tubulin C-terminal tails (CTTs) which are exposed on
the surface of the microtubule. These PTMs are thus posi-
tioned to influence a variety of microtubule-based functions
in cells, including targeted transport of cellular compo-
nents by kinesin motors (10,11). In contrast, acetylation of
a-tubulin at lysine-40 (K40) occurs on a loop that is located
in the microtubule lumen (12). PTMs of tubulin and their
enzymes have been implicated in the pathology of a variety
of neurodegenerative diseases (11,13,14).
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Much of the work on kinesins and tubulin PTMs has
focused on kinesin-1 because this motor associates prefer-
entially with PTM-marked microtubules in cells, whereas
kinesin-2 and kinesin-3 motors show no selectivity for
PTM-marked tracks (15). Specifically, kinesin-1 shows
preferential binding to microtubules in cells containing
a-tubulin subunits marked by K40 acetylation and/or CTT
detyrosination (15–17). Hyperacetylation of cellular micro-
tubules can cause misregulation of kinesin-1 transport
and rescue the transport deficit in Huntington’s disease
(18–20). However, K40 acetylation is not sufficient to direct
kinesin-1 transport to the axonal compartment in neuronal
cells (21). Rather, detyrosination provides an axonal cue
for selective kinesin-1 transport (17).

To directly study the effects of a-tubulin K40 acetylation
and CTT detyrosination on kinesin-1 motility, we generated
tubulin subunits that were enriched for or depleted in these
modifications. We used microtubules polymerized from
these tubulins in single-molecule motility experiments
with a constitutively active version of kinesin-1. Our results
indicate that although PTMs can directly influence the inter-
action between the motor and microtubules, the modest
effects are not sufficient to account for the correlations be-
tween microtubule PTMs and kinesin-1 transport in cells.
MATERIALS AND METHODS

Cloning, expression, and purification of
RnKHC(1-560)

We used a constitutively active version of the kinesin heavy chain (KHC)

subunit of kinesin-1 containing amino acids 1–560 of rat KIF5C for our ex-

periments. For expression in mammalian cells, RnKHC(1-560) was tagged

with three tandem monomeric Citrine (mCit) fluorescent proteins (FPs) as

described previously (22). KHC(1-560)-3xmCit was expressed in COS-7

cells and cell lysates were prepared as described previously (22). COS-7
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(monkey kidney fibroblast; ATCC) cells were grown in Dulbecco’s

modified Eagle’s medium (DMEM) þ 10% fetal bovine serum (FBS) and

2 mML-glutamine at 37�C with 5% CO2, and transfected using Expressfect

(Denville Scientific, South Plainfield, NJ). Kinesin-1 expressed in E. coli,

KHC(1-560)-EGFP, was tagged with an EGFP for visualization and a 6x-

His tag for affinity purification as described previously (23,24). Following

Ni-NTA column purification, the KHC(1-560)-EGFP motor was further

purified by microtubule affinity purification (23). The purified motors

were aliquoted and flash-frozen for storage at �80�C. No differences in

motility parameters were observed between KHC(1-560) motors from

mammalian cells lysates and those purified from bacterial cells.
Tubulin purification and enzymatic treatment

Tubulin was purified from bovine brains or from HeLa S3 cells (ATCC,

Manassas, VA) according to published protocols (25,26). HeLa S3 cells

were grown by sequential dilution of cells in minimum essential me-

dium-Joklik modification (Sigma-Aldrich, St. Louis, MO) þ 10% FBS at

37�C with 5% CO2. All cells were grown in the presence of 50 U/mL

penicillin/streptomycin, and 10 L of suspension culture yielded 2.5 mg of

soluble HeLa tubulin. The tubulin was resuspended in BRB80 (80 mM

PIPES, pH 6.8, 1 mM MgCl2, 1 mM EGTA) before it was aliquoted and

flash-frozen for storage at �80�C. A 7.5% SDS-PAGE gel was run with

samples from the purification procedure to verify the purity of the tubulin

(Fig. S1 in the Supporting Material).

For acetylation and deacetylation of tubulin, plasmids for expression

of recombinant GST-MEC-17 (pGEX-MEC-17 (27) (a gift from JacekGaer-

tig, University of Georgia)) and His_SIRT2 (pHEX-His-SIRT2 (28), a gift

from Eric Verdin, UCSF)) were expressed in E. coli and the proteins were

purified as described previously (12). For detyrosination, HeLa tubulin

was incubated with 10 mg/mL carboxypeptidase A (CPA; Sigma-Aldrich)

on ice for 20 min. Enzyme-treated tubulins were processed through two

temperature-dependent cycles of polymerization and depolymerization to

remove any polymerization-incompetent tubulin generated during enzyme

treatment (Fig. S2). Tubulinmodificationwas confirmed by immunoblotting

with the monoclonal antibody 6-11B-1, which recognizes K40-acetylated

a-tubulin (T6793; Sigma-Aldrich) or a polyclonal antibody that recognizes

detyrosinated a-tubulin (AB3201; Millipore, Billerica, MA).
Single-molecule motility assays using total
internal reflection fluorescence microscopy

Motility assays were performed on a Zeiss Axiovert 135 microscope modi-

fied to allow total internal reflection fluorescence (TIRF) microscopy using

a 100�/1.45 N.A. a-Plan-Fluar objective. A 488 nm Ar-ion laser was used

for excitation. The emission was chromatically separated using a dual-view

imaging device (DV2; Photometrics, Tucson, AZ) with T585lpxr dichroic

and HQ510, ET525/50m filters (Chroma Technology, Bellows Falls, VT),

and images were collected on an EMCCD camera (Cascade 512B; Photo-

metrics, Tucson, AZ).

Microtubules polymerized in the presence of 1 mM GTP using 4 mg/mL

of untreated or treated tubulins and stabilized with 10 mM taxol in BRB80

were flowed into the chamber and allowed 5 min to adhere before the cham-

ber was blocked with 1 mg/mL bovine serum albumin (BSA). Recombinant

kinesin motors (~10 nM) or cell lysates containing expressed motors were

then added to the chamber in P12 buffer (12 mM PIPES, pH 6.8, 2 mM

MgCl2, 1 mM EGTA) supplemented with 1 mM MgCl2, 2 mM ATP,

1 mg/mL BSA, 10 mM glucose, 1.65 mg/mL glucose oxidase, 0.27 mg/

mL catalase, and 143 mM b-mercaptoethanol. For motility assays in a

more physiological buffer, buffer conditions were 25 mM HEPES/KOH

pH 7.4, 115 mM KOAc, 5 mM NaOAc, 5 mM MgCl2, 0.5 mM EGTA.

For some assays, treated tubulins were differentially labeled before they

were added to the assay. Succinimidyl esters of Alexa488 (Life Technolo-

gies, Grand Island, NY) and Atto590 (ATTO-TEC, Siegen, Germany) dyes
were used to label deacetylated and acetylated tubulin, respectively.

The tubulin was cycled through two cycles of polymerization and depoly-

merization to remove incompetent tubulin from the preparation. The

labeled-to-unlabeled tubulin ratios were 1:60 and 1:15 for Alexa488- and

Atto590-labeled tubulin, respectively. Differentially labeled microtubules

were mixed together and then introduced into the same flow chamber.
Data collection and analysis

To simultaneously capture motility events on Atto590-labeled acetylated

and Alexa488-labeled deacetylated microtubules, a still image of each

microtubule population was first acquired in the red and green channels.

The fluorescence from the Alexa488 dye decayed rapidly in the presence

of the 488 nm excitation light, making the green channel available for

recording video sequences of 3xmCit- or EGFP-labeled KHC(1-560)

motility events. The captured still images were then used to identify the

acetylated versus deacetylated microtubule tracks for each kinesin event

traced during data analysis. In assays using unlabeled tubulins, the micro-

tubules were identified after imaging by generating standard deviation

(SD) maps of fluorescent KHC(1-560) motility from the movie recording

as described previously (22). Data were collected from several locations

per flow chamber, each of which contained three to four microtubules in

the field of view.

The single-molecule motility data were analyzed using a custom-written

MATLAB routine (The MathWorks, Natick, MA). The program identifies

diffraction-limited fluorescent spots within a selected region of interest

and determines the exact location of the centroid of each spot based on

its fit to a Gaussian intensity profile. Individual fluorescent spots are recog-

nized as spots of interest if they appear and track in subsequent frames in a

manner consistent with a motility event. The velocities and run lengths of

individual spots are computed from frame-by-frame coordinates. All runs

above 0.15 mm were included in the MATLAB analysis. Histograms of

the population data were generated by plotting the number of events

observed against binned values of the data. The profile of the velocity his-

togram was fit to a Gaussian distribution using the function F ¼ A �
exp(�0.5� ((centers� m)./s) .̂ 2) ./ (s� sqrt(2� p)), where A is the ampli-

tude, m is the mean, and s is the SD. The mean value of the distribution

represents the average speed of the observed single motor events. The

cumulative distribution function (CDF) of the run lengths (ecdf function

in MATLAB) was fit to an exponential curve defined by the function F ¼
1 � exp((minRL � RLx)./t), where minRL ¼ 0.15 mm and RLx is the

output of the ecdf function. The decay constant from the fit, t, yields the

mean run length. All histograms for the velocity and run length data were

characterized by excellent fits (R2 > 0.93). The landing rate of kinesin mo-

tors on microtubules was computed by quantifying the number of motile

events on a selected microtubule in a recorded movie divided by the length

of the microtubule and the length of the movie to obtain a landing rate with

the units events/mm/min. From this, a relative Kd was calculated as the koff/

kon, where koff ¼ the average velocity/average run length and the relative

kon ¼ the landing rate. To determine statistical significance between data

sets, a two-sample t-test statistic was calculated in MATLAB. Data were

randomly resampled by bootstrapping to arrive at a p-value for comparing

the means. A p-value < 0.01 was used to reject the null hypothesis.
RESULTS

Acetylation of a-tubulin K40 and its effect on
kinesin-1 motility

We first set out to test whether acetylation of K40 in
a-tubulin directly affects kinesin-1 motility. To do this,
we polymerized microtubules from purified bovine brain
tubulin treated with either recombinant deacetylase SIRT2
Biophysical Journal 106(12) 2636–2643
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(28) or acetyltransferase MEC-17 (27) enzymes. To verify
the effects of enzymatic treatment, immunoblotting was
carried out with a monoclonal antibody (6-11B-1) that spe-
cifically recognizes the acetylated K40 residue. Consistent
with previous reports (27–29), SIRT2 treatment resulted in
a complete loss of K40 acetylation, whereas MEC-17 treat-
ment resulted in a 1.3-fold increase in the total levels of K40
acetylation (Fig. 1 A).

The motility of kinesin-1 motors along microtubules
polymerized from either deacetylated or acetylated tubu-
lins was determined in single-molecule motility assays. To
E

A

D

CB

FIGURE 1 Effects of a-tubulin K40 acetylation on kinesin-1. (A)

Bovine brain tubulin was treated with either MEC-17 acetyltransferase or

SIRT2 deacetylase enzymes and the resulting K40 acetylation levels were

analyzed by western blot using antibodies that specifically recognize a-

tubulin acetylated at K-40 (6-11B-1) or total b-tubulin. (B–E) Microtubules

polymerized from acetylated or deacetylated tubulins were differentially

dye labeled and introduced into the same flow chamber for single-molecule

motility assays, and the (C) landing rate, (D) velocity, and (E) run length of

individual KHC(1-560)-3xmCit motors were measured. (B) Representative

kymographs of kinesin-1 motility along deacetylated (left) and acetylated

(right) microtubules. Vertical scale bar: 1 s; horizontal scale bar: 1 mm.

(C) For the landing rate, the data are presented as box-whisker plots of

the number of motility events per unit length of microtubule per unit

time. The black line indicates the mean, the dashed red line indicates the

median, the rectangle indicates the 25th-75th percentile, and the red spots

indicate outlying data points. (D) For velocity, the data are presented as a

histogram of the population and the average velocity was computed from

Gaussian fits of the data (red lines). (E) For run length, the population

data (red boxes) were plotted as CDFs and the averages were computed

from exponential fits (blue lines). **p % 0.01. To see this figure in color,

go online.
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directly compare the motility of KHC(1-560)-3xmCit on
deacetylated and acetylated microtubules, the treated tubu-
lins were first differentially labeled with fluorescent dyes
to distinguish them in the motility assay. The motors were
thus introduced into a flow chamber containing Alexa488-
labeled deacetylated and Atto590-labeled acetylated micro-
tubules. Kinesin-1 motors were observed to move along
both deacetylated and acetylated microtubules (Fig. 1 B;
Movies S1 and S2). Quantification of the motility events
showed that the landing rate for kinesin-1, calculated as
the number of binding events observed on a given length
of microtubule per unit time, was 3.82 5 1.03 events/mm/
min (relative Kd ¼ 2.94 events/mm; Table 1) on de-
acetylated microtubules, and 3.71 5 1.51 events/mm/min
(relative Kd ¼ 2.81 events/mm; Table 1) on acetylated mi-
crotubules (Fig. 1 C; Table 1, p ¼ 0.72). Upon landing,
the motor moved with a mean velocity of 0.65 5 0.17
mm/s on deacetylated microtubules and 0.64 5 0.13 mm/s
on acetylated microtubules (Fig. 1D; Table 1; p< 0.01). Ki-
nesin-1 exhibited a mean run length of 0.532 5 0.001 mm
(mean þ SE) on deacetylated microtubules and 0.507 5
0.001 mm on acetylated microtubules (Fig. 1 E; Table 1;
p < 0.01). The changes in kinesin-1 motility observed in
this purified system (a 1.5% decrease in velocity and 4%
decrease in run length) do not account for changes in kine-
sin-1 motility that are observed in vivo.

One possible explanation for the fact that the effect of
K40 acetylation in our experimental setup does not mirror
in vivo changes for kinesin-1 motility is that the differential
dye labeling of deacetylated and acetylated tubulins abol-
ished any influence of acetylation on the motility properties
of kinesin-1. To test this possibility, we performed control
assays using unlabeled deacetylated or acetylated microtu-
bules in separate flow cells. In this case, K40 acetylation
caused a decrease in the landing rate, an increase in the
mean velocity, and no significant change in the mean run
length of kinesin-1 (Fig. 2 A; Table 1). A second possibility
is that the ionic strength of the motility buffer could account
for the differences between our in vitro results and previous
in vivo work, because the kinesin-microtubule interaction
has been shown to be dependent on the ionic strength of
the motility buffer (30). Under physiological ionic strength
conditions, K40 acetylation caused no significant changes in
kinesin-1’s landing rate, mean velocity, or mean run length
(Fig. 2 B; Table 1). A third possibility is that the use of taxol
to stabilize microtubules in our assays could alter kinesin-1
motility compared with the situation in cells. KHC(1-560)-
3xmCit showed a similar landing rate and mean velocity on
deacetylated and acetylated microtubules in the presence of
GMPCPP to stabilize microtubules, but a decrease in the run
length (Fig. 2 C; Table 1). These control assays demonstrate
that alteration of the K40 acetylation state of a-tubulin
did not cause consistent changes in kinesin-1 motility
across the experimental conditions used (Table 1). Overall,
the magnitude of the changes in these experiments is small



TABLE 1 Motility parameters for kinesin-1 on acetylated and deacetylated bovine brain microtubules under different conditions

a-Tubulin state

Combined Assay Unlabeled Tubulin Physiological Buffer GMPCPP Stabilized

Deacetylated Acetylated Deacetylated Acetylated Deacetylated Acetylated Deacetylated Acetylated

n 1132 1151 678 369 87 71 208 141

Landing rate

(events/mm/min)

3.82 5 1.03 3.71 5 1.51 7.02 5 1.38** 5.76 5 0.82** 1.32 5 1.02 1.35 5 0.75 5.10 5 0.92 4.76 5 0.75

Koff ¼ Vel/RL 1.30 1.32 1.33 1.40 1.75 1.75 1.11 1.27

Kd (relative) 2.94 2.81 5.29 4.13 0.69 0.55 4.61 3.74

Change in Kd �5% �22% �21% �19%

Velocity (mm/s) 0.65 5 0.17** 0.64 5 0.13** 0.61 5 0.14** 0.67 5 0.14** 0.82 5 0.28 0.77 5 0.05 0.73 5 0.15 0.75 5 0.14

Upper 95% CI 0.67 0.65 0.62 0.68 0.89 0.90 0.77 0.77

Lower 95% CI 0.63 0.63 0.60 0.66 0.74 0.65 0.69 0.73

Run length (mm) 0.532 5

0.001**

0.507 5

0.001**

0.457 5 0.001 0.481 5 0.002 0.470 5

0.004

0.436 5

0.003

0.663 5

0.002*

0.588 5

0.004*

Upper 95% CI 0.533 0.510 0.460 0.485 0.478 0.443 0.668 0.596

Lower 95% CI 0.530 0.505 0.455 0.478 0.464 0.431 0.661 0.582

Data are presented as mean 5 SD for velocity and landing rate, and mean 5 SE for run length. n, number of events observed; CI, confidence interval of

mean. *p % 0.05, **p % 0.01.
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and not sufficient to explain the in vivo correlation of K40
acetylation and kinesin-1 motility.
Detyrosination of a-tubulin CTTs and its effect on
kinesin-1 motility

Wenext set out to directly test the effects of detyrosination on
kinesin-1 motility. To obtain a population of microtubules
enriched in tyrosinated a-tubulin, we purified tubulin from
A

B

C

HeLa cells, which contain 99.5% tyrosinated a-tubulin
(31). The tyrosinated HeLa tubulin was treated with CPA to
remove the C-terminal tyrosine residue as described previ-
ously (32), thus generating detyrosinated tubulin. As shown
in Fig. 3 A, untreated HeLa tubulin contains undetectable
levels of detyrosination, whereas CPA-treated HeLa tubulin
is enriched in detyrosination. Tyrosinated or detyrosinated
microtubules were polymerized from these tubulins and
used inmotility assayswith recombinantKHC(1-560)-EGFP.
FIGURE 2 Effects of K40 acetylation on

kinesin-1 under different experimental conditions.

Microtubules polymerized from deacetylated or

acetylated tubulins were used for single-molecule

motility assays. (A–C) The motility of KHC(1-

560)-3xmCit motors was observed on (A) unla-

beled deacetylated or acetylated microtubules

in separate flow chambers, (B) deacetylated or

acetylated microtubules under physiological ionic

strength conditions, or (C) taxol-free GMPCPP-

stabilized deacetylated or acetylated microtubules.

The data are presented as box-whisker plots. The

black line indicates the mean, the dashed red line

indicates the median, the rectangle indicates the

25th–75th percentile, and the red spots indicate

outlying data points. *p % 0.05, **p % 0.01. To

see this figure in color, go online.
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FIGURE 3 Effects of microtubule detyrosination on kinesin-1 motors.

(A) Purified HeLa tubulin (500 ng) that was untreated or treated with

CPA to detyrosinate a-tubulin (Fig. S1, lane 6, and Fig. S2, lane 7, respec-

tively) or bovine tubulin (500 ng) was analyzed by western blotting with

an antibody to detyrosinated a-tubulin. (B–E) Microtubules polymerized

from tyrosinated or detyrosinated tubulins were used in single-molecule

motility assays. (B) Representative kymographs of KHC(1-560)-EGFP

motility along tyrosinated (left) and detyrosinated (right) microtubules.

Vertical scale bar: 1 s; horizontal scale bar: 1 mm. (C–E) The (C) landing

rate, (D) velocity, and (E) run length of KHC(1-560)-EGFP motors were

measured on tyrosinated and detyrosinated microtubules in separate flow

chambers. The data are presented as described in Fig. 1. **p % 0.01. To

see this figure in color, go online.

2640 Kaul et al.
KHC(1-560)-EGFP motors were observed to move on
both tyrosinated and detyrosinated microtubules (Fig. 3 B).
Quantification of the motility data showed a statistically sig-
nificant increase in the landing rate from 1.175 0.50 events/
mm/min on tyrosinated microtubules to 1.805 0.56 events/
mm/min on detyrosinated microtubules (p% 0.01; Fig. 3 C;
Table 2). This represents a 49% increase in the relative Kd
of the motor for the microtubule (from 1.30 events/mm to
1.94 events/mm upon detyrosination; Table 2). Detyrosina-
tion also caused a slight but statistically significant increase
in KHC(1-560)-EGFP velocity (0.375 0.11 mm/s on tyrosi-
nated microtubules versus 0.40 5 0.14 mm/s on detyrosi-
nated microtubules; p < 0.01; Fig. 3 D; Table 2), but no
significant change in run length (0.4095 0.002 mm on tyro-
sinated microtubules versus 0.4285 0.001 mm on detyrosi-
nated microtubules; p ¼ 0.14; Fig. 3 E; Table 2). Based
on these results, we conclude that detyrosination of the
a-tubulin CTT primarily affects the initial interaction of
Biophysical Journal 106(12) 2636–2643
kinesin-1 motors with the microtubule track by increasing
their landing rate.
Effects of combined a-tubulin acetylation and
detyrosination on kinesin-1 motility

We next considered the possibility that the two a-tubulin
modifications, K40 acetylation and CTT detyrosination,
may work in conjunction with each other. This is supported
by the fact that in multiple cell types, microtubules are often
colabeled with antibodies to a-tubulin K40 acetylation and
detyrosination (31,33–35).

Tyrosinated tubulin purified from HeLa cells was treated
with recombinant MEC-17 to generate tyrosinatedþacety-
lated tubulin. A fraction of this tubulin was then treated
with CPA to generate detyrosinatedþacetylated tubulin.
Single-molecule motility assays were performed to measure
the motility parameters of kinesin-1 on both types of micro-
tubules. Detyrosination of previously acetylated a-tubulin
caused an increase in the landing rate of KHC(1-560)-
EGFP from 1.48 5 0.40 events/mm/min on tyrosina-
tedþacetylated microtubules to 1.75 5 0.52 event/mm/min
on detyrosinatedþacetylated microtubules (Fig. 4 A;
Table 2); however, this increase was not statistically signifi-
cant (p¼ 0.30). This represents a 28% increase in the relative
Kd of the motor for the microtubule (from 1.67 event/mm
on tyrosinatedþacetylated microtubules to 2.13 event/mm
on acetylated þ detyrosinated microtubules; Table 2).
Whereas detyrosination caused an increase inmotor velocity,
detyrosinationþacetylation resulted in a decreased velocity
(0.47 5 0.13 mm/s on tyrosinatedþacetylated microtubules
and 0.40 5 0.12 mm/s on detyrosinatedþacetylated micro-
tubules; p < 0.01; Fig. 4 B; Table 2), whereas the mean run
length was unchanged (0.520 5 0.000 mm on tyrosina-
tedþacetylated microtubules and 0.502 5 0.001 mm on de-
tyrosinatedþacetylated microtubules; p ¼ 0.43; Fig. 4 C;
Table 2). These results indicate thatK40 acetylation dampens
the effects of detyrosination on the kinesin-1 landing rate.
Therefore, PTMs may act in conjunction with each other to
affect the overall landing rate of kinesin-1.
DISCUSSION

Previous studies in cells have demonstrated a strong corre-
lation between the direction of kinesin-1 transport and the
presence of specific PTMs on subsets of microtubule tracks
(15–21). Findings from these studies predicted that individ-
ual PTMs would directly impact the motor. Using a purified
system to examine the effects of specific tubulin PTMs on
the motility of a kinesin motor, we found that neither acet-
ylation nor detyrosination greatly affected kinesin-1 veloc-
ity or run length; however, detyrosination did increase the
landing rate of kinesin-1. Yet, these in vitro results using a
purified system do not recapitulate the track selectivity of
kinesin-1 that is observed in cells. The most likely scenario



TABLE 2 Motility parameters for kinesin-1 on tyrosinated and detyrosinated tubulins from HeLa cells

Treatment None CPA MEC-17 MEC-17 þ CPA

a-Tubulin state Tyrosinated Detyrosinated Tyrosinated þ acetylated Detyrosinated þ acetylated

n 294 392 1461 854

Landing rate (events/mm/min) 1.17 5 0.50** 1.80 5 0.56** 1.48 5 0.40 1.76 5 0.52

Koff ¼ Vel/RL 0.90 0.93 0.90 0.80

Kd (relative) 1.30 1.94 1.67 2.13

Change in Kd þ49% þ28%

Velocity (mm/s) 0.37 5 0.11** 0.40 5 0.14** 0.47 5 0.13** 0.40 5 0.12**

Upper 95% CI 0.39 0.43 0.48 0.42

Lower 95% CI 0.34 0.37 0.45 0.38

Run length (mm) 0.409 5 0.002 0.428 5 0.001 0.520 5 0.000 0.502 5 0.001

Upper 95% CI 0.412 0.431 0.521 0.503

Lower 95% CI 0.405 0.426 0.520 0.501

Data are presented as mean 5 SD for velocity and landing rate, and mean 5 SE for run length. n, number of events observed; CI, confidence interval of

mean. *p % 0.05, **p % 0.01.
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would appear to be that individual MAPs influence kinesin-
1 binding and motility in cells (9), a possibility that deserves
further experimental focus.

Our findings on K40 acetylation are consistent with two
recent reports that found no significant differences in kine-
sin-1 binding to or motility along acetylated versus deacety-
lated microtubules (12,24). In this work, we extended the
scope of those studies by measuring the landing rate on
and the relative Kd for acetylated and deacetylated microtu-
bules. Thus, there is a good consensus that K40 acetylation,
which is located on the luminal side of the microtubule (12),
does not directly influence motor binding or motility on the
outside of the microtubule. How can this finding be recon-
ciled with previous observations suggesting that K40 acety-
lation positively influences the binding of kinesin-1 motors
and/or transport of kinesin-1 cargoes in cells (15,17–20)?
Previous work relied on either hyperacetylation of cellular
microtubules via chemical inhibition of deacetylase en-
zymes (17–20) or expression of mutant tubulins that could
not be acetylated (19). With regard to the former, deacety-
lase inhibitors are likely to cause general alterations in pro-
tein acetylation, including changes in tubulin beyond K40
acetylation. Indeed, recent work has shown that b-tubulin
can also be acetylated (36), although the effects of deacety-
lase inhibitor treatment on the site are not known. With re-
gard to the latter, the expression of mutant tubulins could
alter microtubule structure in cells and thereby influence
kinesin binding and/or motility. It thus appears that the
functional output of cellular microtubules recognized by
the anti-acetylK40 antibody (6-11B-1) cannot be recapitu-
lated in purified systems. In support of this, loss of the ace-
tyltransferase MEC-17 in C. elegans was shown to lead to a
change in protofilament number (37,38), whereas cryo-elec-
tron microscopy analysis revealed no structural differences
between microtubules polymerized from acetylated and
deacetylated tubulins in vitro (39). The functional output
of K40 acetylation in cells may thus be due to local changes
in a-tubulin conformation and/or subunit interactions
(12,37) as well as the recruitment of specific MAPs (9).
Our results provide the first analysis (to our knowledge)
of kinesin-1 motility along tyrosinated and detyrosinated
mammalian microtubules. We find that the major influence
of a-tubulin detyrosination is on the landing rate of kinesin-
1 on microtubules (Table 2). This is consistent with previous
work showing that kinesin-1 binds more tightly to CPA-
treated tubulins (16,17,40), and recent work showing that
kinesin-1 displays similar motility parameters (velocity
and processivity) on microtubules polymerized from yeast
tubulins containing tyrosinated or detyrosinated human
a-tubulin CTTs (41). Can the increased relative Kd of
kinesin-1 on detyrosinated microtubules in vitro explain
the selective transport of kinesin-1 along detyrosinated mi-
crotubules in cells? Knockdown of tubulin tyrosine ligase
(TTLL1, the enzyme that retyrosinates a-tubulin) results
in increased levels of detyrosinated tubulin and alters the
trafficking of kinesin-1 motors in polarized hippocampal
neurons (17). However, it seems unlikely that detyrosination
provides the only cue to kinesin-1 for selective transport, as
kinesin-1 motility can be observed along tyrosinated micro-
tubules in cells (15) and knockout of Ttll1 in mice does not
impair neuronal polarization (42). It also appears that the
combination of PTMs may be important for their functional
output, as the effect of detyrosination on kinesin-1’s landing
rate was dampened when the tubulin was previously acety-
lated (an increase of 49% in the relative Kd for CPA treat-
ment alone versus an increase of 28% for previously
acetylated microtubules; Table 2). Thus, the primary effect
of detyrosination is to regulate the binding affinity of kine-
sin-1 for microtubules and not the motility properties of the
motor once it is bound. Mechanistically, modulation of the
landing rate offers an elegant and simple way to regulate
transport because it does not require changes in the ATP hy-
drolysis rate of the motor, as would be required for changing
the motor velocity.

Taken together, our results indicate that the view of
single PTMs directly regulating kinesin-1 transport is too
simplistic; rather, multiple inputs regulate the interaction of
kinesin-1 with microtubules. In cells, the initial interaction
Biophysical Journal 106(12) 2636–2643
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FIGURE 4 The effects of detyrosination on kinesin-1’s landing rate

were dampened by previous acetylation of K40. Purified HeLa tubulin

was treated with MEC-17 to generate acetylatedþtyrosinated microtubules

and then a portion was further treated with CPA to generate acetyla-

tedþdetyrosinated microtubules. (A–D) Microtubules polymerized from

these tubulin types was used in single-molecule motility assays. (A)

Representative kymographs of KHC(1-560)-EGFP motility along acetyla-

tedþtyrosinated (left) or acetylatedþdetyrosinated (right) microtubules.

Vertical scale bar: 1 s; horizontal scale bar: 1 mm. (B–D) The motility of

individual KHC(1-560)-EGFP motors was observed and used to measure

the (B) landing rate, (C) velocity, and (D) run length of the motors. The

data are presented as described in Fig. 1. **p % 0.01. To see this figure

in color, go online.
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of kinesin-1 with microtubules is likely to be influenced by
a combination of PTMs, particularly detyrosination, as well
as MAPs and perhaps tubulin isoforms (9). Further work
using the isolated assay system that we have developed
will provide insight into how specific alterations of tubulin
subunits can influence kinesin-1 motors in vitro, which in
turn will further our understanding of how PTMs influence
cellular events such as the movement of motors and their
cargoes in cells.
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